Self-Healing Silver Nanowires and Reduced Graphene Oxide/Polyurethane Composite Film Based on the Diels–Alder Reaction under Infrared Radiation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Silver Nanowire–Reduced Graphene Oxide Composites
2.3. Preparation of Prepolymer Thermally Reversible Diels–Alder (DA) Reaction Polyurethane
2.4. Preparation of AgNWs-RGO-DA-PU Composite Film
2.5. Characterization
3. Results
3.1. Silver Nanowire–Reduced Graphene Oxide Composites
3.2. Thermo-Reversible DA-Reaction Polyurethane
3.3. Microstructures of AgNWs-RGO-DA-PU Composite Film
3.4. Electrical and Thermal Properties of AgNWs-RGO-DA-PU Composite Film
3.5. IR Thermal Response Performances of AgNWs-RGO-DA-PU Composite Film
3.6. Mechanical Performances of AgNWs-RGO-DA-PU Composite Film
3.7. Self-Healing of AgNWs-RGO-DA-PU Composite Film
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, S.; Urban, M.W. Self-healing polymers. Nat. Rev. Mater. 2020, 5, 562–583. [Google Scholar] [CrossRef]
- Terryn, S.; Langenbach, J.; Roels, E.; Brancart, J.; Bakkali-Hassani, C.; Poutrel, Q.-A.; Georgopoulou, A.; Thuruthel, T.G.; Safaei, A.; Ferrentino, P.; et al. A review on self-healing polymers for soft robotics. Mater. Today 2021, 47, 187–205. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, L.; Yaseen, M.; Huang, K. A review on the self-healing ability of epoxy polymers. J. Appl. Polym. Sci. 2021, 138, 50260. [Google Scholar] [CrossRef]
- Xie, J.; Gao, L.; Hu, J.; Li, Q.; He, J. Self-healing of electrical damage in thermoset polymers via anionic polymerization. J. Mater. Chem. C 2020, 8, 6025–6033. [Google Scholar] [CrossRef]
- Kang, J.; Tok, J.B.-H.; Bao, Z. Self-healing soft electronics. Nat. Electron. 2019, 2, 144–150. [Google Scholar] [CrossRef]
- Pena-Francesch, A.; Jung, H.; Demirel, M.C.; Sitti, M. Biosynthetic self-healing materials for soft machines. Nat. Mater. 2020, 19, 1230–1235. [Google Scholar] [CrossRef]
- Jiang, C.; Zhang, L.; Yang, Q.; Huang, S.; Shi, H.; Long, Q.; Qian, B.; Liu, Z.; Guan, Q.; Liu, M.; et al. Self-healing polyurethane-elastomer with mechanical tunability for multiple biomedical applications in vivo. Nat. Commun. 2021, 12, 4395. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, Z.; Tang, C.; Hao, W. Influencing factors on the healing performance of microcapsule self-healing concrete. Materials 2021, 14, 4139. [Google Scholar] [CrossRef]
- Lu, X.; Fei, G.; Xia, H.; Zhao, Y. Ultrasound healable shape memory dynamic polymers. J. Mater. Chem. A 2014, 2, 16051–16060. [Google Scholar] [CrossRef]
- Cai, Y.; Li, C.; Yang, Y.; Li, H.; Wang, Y.; Zhang, Q. Self-healable and reprocessable cross-linked poly(urea-urethane) elastomers with high mechanical performance based on dynamic oxime-carbamate bonds. Ind. Eng. Chem. Res. 2021, 60, 13585–13593. [Google Scholar] [CrossRef]
- Chen, X.; Dam, M.A.; Ono, K.; Mal, A.; Shen, H.; Nutt, S.R.; Sheran, K.; Wudl, F. A thermally re-mendable cross-linked polymeric material. Science 2002, 295, 1698–1702. [Google Scholar] [CrossRef]
- Cordier, P.; Tournilhac, F.; Soulie-Ziakovic, C.; Leible, L. Self-healing polymers. Nature 2008, 451, 977–980. [Google Scholar] [CrossRef]
- Willocq, B.; Khelifa, F.; Brancart, J.; Van Assche, G.; Dubois, P.; Raquez, J.-M. One-component Diels–Alder based polyurethanes: A unique way to self-heal. RSC Adv. 2017, 7, 48047–48053. [Google Scholar] [CrossRef] [Green Version]
- Shen, W.; Du, B.; Liu, J.; Zhuo, H.; Yang, C.; Chen, S. A facile approach for the preparation of liquid crystalline polyurethane for light-responsive actuator films with self-healing performance. Mater. Chem. Front. 2021, 5, 3192–3200. [Google Scholar] [CrossRef]
- Aishwary, M.; Giridhar, M.; Suryasarathi, B. Light weight, ultrathin, and “thermally-clickable” self-healing MWNT patch as electromagnetic interference suppressor. Chem. Eng. J. 2019, 366, 72–82. [Google Scholar]
- Ma, W.; Cai, W.; Chen, W.; Liu, P.; Wang, J.; Liu, Z. A novel structural design of shielding capsule to prepare high-performance and self-healing MXene-based sponge for ultra-efficient electromagnetic interference shielding. Chem. Eng. J. 2021, 426, 130729. [Google Scholar] [CrossRef]
- Amamoto, Y.; Otsuka, H.; Takahara, A.; Matyjaszewski, K. Self-healing of covalently cross-linked polymers by reshuffling thiuram disulfide moieties in air under visible light. Adv. Mater. 2012, 24, 3975–3980. [Google Scholar] [CrossRef]
- Liu, X.X.; Du, P.F.; Liu, L.; Zheng, Z.; Wang, X.L.; Joncheray, T.; Zhang, Y.F. Kinetic study of Diels–Alder reaction involving in maleimide-furan compounds and linear polyurethane. Polym. Bull. 2013, 70, 2319–2335. [Google Scholar] [CrossRef]
- Liu, Y.L.; Chuo, T.W. Self-healing polymers based on thermally reversible Diels–Alder chemistry. Polym. Chem. 2013, 4, 2194–2205. [Google Scholar] [CrossRef]
- Kuang, X.; Liu, G.; Dong, X.; Wang, D. Triple-shape memory epoxy based on Diels–Alder adduct molecular switch. Polymer 2016, 84, 1–9. [Google Scholar] [CrossRef]
- Chang, C.M.; Liu, Y.L. Functionalization of multi-walled carbon nanotubes with furan and maleimide compounds through Diels–Alder cycloaddition. Carbon 2009, 47, 3041–3049. [Google Scholar] [CrossRef]
- Ren, D.; Chen, Y.; Yang, S.; Li, H.; Rehman, H.U.; Liu, H. Fast and efficient electric-triggered self-healing shape memory of CNTs@rGO enhanced PCLPLA copolymer. Macromol. Chem. Physics. 2019, 220, 1900281. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Y.; Zhang, M.; Wang, Q.; Xia, K.; Yin, Z.; Wei, Y.; Ji, Y.; Zhang, Y. Electricity-triggered self-healing of conductive and thermostable vitrimer enabled by paving aligned carbon nanotubes. ACS Appl. Mater. Interfaces 2020, 12, 14315–14322. [Google Scholar] [CrossRef]
- Seo, J.-M.; Jeon, I.-Y.; Baek, J.-B. Mechanochemically driven solid-state Diels–Alder reaction of graphite into graphene nanoplatelets. Chem. Sci. 2013, 4, 42734277. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.; Sheng, D.; Liu, X.; Xu, S.; Yang, Y. Effect of different sizes of graphene on Diels–Alder self-healing polyurethane. Polymer 2019, 182, 121822. [Google Scholar] [CrossRef]
- Yang, S.; Wang, S.; Du, X.; Cheng, X.; Haibo Wang, H.; Du, Z. Mechanically and thermo-driven self-healing polyurethane elastomeric composites using inorganic-organic hybrid material as crosslinker. Polym. Chem. 2020, 11, 1161–1170. [Google Scholar] [CrossRef]
- Luan, Y.; Gao, F.; Li, Y.; Yang, J.; Hu, Y.; Guo, Z.; Wang, Z.; Zhou, A. Healing mechanisms induced by synergy of Graphene-CNTs and microwave focusing effect for the thermoplastic polyurethane composites. Compos. Part A Appl. Sci. Manuf. 2018, 106, 34–41. [Google Scholar] [CrossRef]
- Oh, C.R.; Lee, S.H.; Park, J.H.; Lee, D.S. Thermally self-healing graphene-nanoplate/polyurethane nanocomposites via Diels–Alder reaction through a one-shot process. Nanomaterials 2019, 9, 434. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.Y.; Tang, Z.; Tian, D.; Liu, K.Y.; Wu, W. A self-healing flexible transparent conductor made of copper nanowires and polyurethane. Mater. Res. Bull. 2017, 90, 175–181. [Google Scholar] [CrossRef]
- Huang, L.; Yi, N.; Wu, Y.; Zhang, Y.; Zhang, Q.; Huang, Y.; Ma, Y.; Chen, Y. Multichannel and repeatable self-healing of mechanical enhanced graphene-thermoplastic polyurethane composites. Adv. Mater. 2013, 25, 2224–2228. [Google Scholar] [CrossRef]
- Sarkar, S.; Bekyarova, E.; Niyogi, S.; Haddon, R.C. Diels-Alder chemistry of graphite and graphene: Graphene as Diene and Dienophile. J. Am. Chem. Soc. 2011, 133, 3324–3327. [Google Scholar] [CrossRef] [PubMed]
- Fox, D.W.; Schropp, A.A.; Joseph, T.; Azim, N.; Li Sip, Y.Y.; Zhai, L. Uniform deposition of silver nanowires and graphene oxide by superhydrophilicity for transparent conductive films. ACS Appl. Nano Mater. 2021, 4, 7628–7639. [Google Scholar] [CrossRef]
- Wang, Y.H.; Xiong, N.N.; Li, Z.L.; Xie, H.; Liu, J.Z.; Dong, J.; Li, J.Z. A comprehensive study of silver nanowires filled electrically conductive adhesives. J. Mater. Sci. Mater. Electron. 2015, 26, 7927–7935. [Google Scholar] [CrossRef]
- Wang, Y.B.; Chen, J.X.; Shen, Y.P.; Wang, T.; Ni, Y.H.; Zhang, Z.H.; Sun, L.W.; Ji, B.B.; Wang, B.B. Control of conductive and mechanical performances of poly(amide-imide) composite films utilizing synergistic effect of polyaniline and multi-walled carbon nanotube. Polym. Eng. Sci. 2019, 59, E224–E230. [Google Scholar] [CrossRef]
- Wang, Y.B.; Yu, H.; Li, Y.C.; Wang, T.; Xu, T.; Chen, J.X.; Fan, Z.C.; Wang, Y.F.; Wang, B.B. Facile preparation of highly conductive poly(amide-imide) composite films beyond 1000 S m−1 through ternary blend strategy. Polymers 2019, 11, 546. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Yang, P.; Chen, B.; Liu, G.; Qiu, J. A novel combination of graphene and silver nanowires for entirely stretchable and ultrasensitive strain sensors: Sandwich-based sensing films. Nanotechnology 2020, 31, 135501. [Google Scholar] [CrossRef]
- Huang, Y.L.; Baji, A.; Tien, H.W.; Yang, Y.K.; Yang, S.Y.; Wu, S.Y.; Ma, C.C.M.; Liu, H.Y.; Mai, Y.W.; Wang, N.H. Self-assembly of silver–graphene hybrid on electrospun polyurethane nanofibers as flexible transparent conductive thin films. Carbon 2012, 50, 3473–3481. [Google Scholar] [CrossRef]
- Choi, J.; Kim, W.; Lee, E.; Cho, G. Characterization of PU nanofiber web treated with non-oxidized graphene and silver nanowire. Fibers Polym. 2020, 21, 978–983. [Google Scholar] [CrossRef]
- Zhang, L.; Zhu, W.; Huang, Y.; Qi, S. Synergetic effects of silver nanowires and graphene oxide on thermal conductivity of epoxy composites. Nanomaterials 2019, 9, 1264. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Lu, X.L.; Wang, Z.H.; Xia, H.S. Diels–Alder dynamic crosslinked polyurethane/polydopamine composites with NIR triggered self-healing function. Polym. Chem. 2018, 9, 2166–2172. [Google Scholar] [CrossRef]
- Chen, L.; Si, L.P.; Wu, F.; Chan, S.Y.; Yu, P.Y.; Fei, B. Electrical and mechanical self-healing membrane using gold nanoparticles as localized ldquonano-heatersrdquo. J. Mater. Chem. C 2016, 4, 10018–10025. [Google Scholar] [CrossRef]
- Zhang, L.; Li, H.; Lai, X.; Gao, T.; Zeng, X. Three-dimensional binary-conductive-network silver Nanowires@Thiolated graphene foam based room-temperature self-healable strain sensor for human motion detection. ACS Appl. Mater. Interfaces 2020, 12, 4360–44370. [Google Scholar] [CrossRef]
- Kim, J.T.; Kim, B.K.; Kim, E.Y.; Kwon, S.H.; Jeong, H.M. Synthesis and properties of near Ir induced self-healable polyurethane/graphene nanocomposites. Eur. Polym. J. 2013, 49, 3889–3896. [Google Scholar] [CrossRef]
- Wang, K.; Zhou, Z.M.; Zhang, J.; Tang, J.; Wu, P.; Wang, Y.; Zhao, Y.; Leng, Y. Electrical and thermal and self-healing properties of graphene-thermopolyurethane flexible conductive films. Nanomaterials 2020, 10, 753. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Li, W.Z.; Wang, X.; Liu, W.M.; Chen, K.M.; Gan, W.J. Low effective content of reduced graphene oxide/silver nanowire hybrids in epoxy composites with enhanced conductive properties. J. Mater. Sci. Mater. Electron. 2019, 30, 7384–7392. [Google Scholar] [CrossRef]
- Ma, H.R.; Zeng, J.F.; Harrington, S.; Ma, L.; Ma, M.Z.; Guo, X.H.; Ma, Y.Q. Hydrothermal fabrication of silver nanowires-silver nanoparticles-graphene nanosheets composites in enhancing electrical conductive performance of electrically conductive adhesives. Nanomaterials 2016, 6, 119. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.K.; He, C.E.; He, W.J.; Yu, L.J.; Peng, R.G.; Xie, X.L.; Wang, X.B.; Mai, Y.W. Reduction of silver nanoparticles onto graphene oxide nanosheets with N,N-dimethylformamide and SERS activities of GO/Ag composites. J. Nanoparticle Res. 2011, 13, 5571–5581. [Google Scholar] [CrossRef]
- Wang, Y.; Bai, N.; Yang, J.; Liu, Z.; Li, G.; Cai, M.; Zhao, L.; Zhang, Y.; Zhang, J.; Li, C.; et al. Silver nanowires for anti-counterfeiting. J. Mater. 2020, 6, 152–157. [Google Scholar] [CrossRef]
- Chen, X.; Yoon, K.; Burger, C.; Sics, I.; Fang, D.; Hsiao, B.S.; Chu, B. In-situ x-ray scattering studies of a unique toughening mechanism in surface-modified carbon nanofiber/UHMWPE nanocomposite films. Macromolecules 2005, 38, 3883–3893. [Google Scholar] [CrossRef]
- Li, J.H.; Zhang, G.P.; Deng, L.B.; Zhao, S.F.; Gao, Y.J.; Jiang, K.; Sun, R.; Wong, C.P. In situ polymerization of mechanically reinforced, thermally healable graphene oxide/polyurethane composites based on Diels–Alder chemistry. J. Mater. Chem. A 2014, 2, 20642–20649. [Google Scholar] [CrossRef]
- Du, W.N.; Jin, Y.; Lai, S.Q.; Shi, L.J.; Shen, Y.C.; Yang, H. Multifunctional light-responsive graphene-based polyurethane composites with shape memory, self-healing, and flame retardancy properties. Compos. Part A 2020, 128, 105686. [Google Scholar] [CrossRef]
- Zhang, L.; Dong, X.P.; Chen, H. Study on the effects of the self-healing microcapsules on the tensile properties of polymer composite. Adv. Mater. Res. 2011, 299–300, 460–465. [Google Scholar] [CrossRef]
- Wu, S.W.; Li, J.H.; Zhang, G.P.; Yao, Y.M.; Li, G.; Sun, R.; Wong, C.P. Ultrafast self-healing nanocomposites via infrared laser and their application in flexible electronics. ACS Appl. Mater. Inter. 2017, 9, 3040–3049. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, J.; Zhang, Y.; Hu, Z.; Wu, W.; Chen, X.; Hao, Z. Flexible fiber membrane based on carbon nanotube and polyurethane with high thermal conductivity. Nanomaterials 2021, 11, 2504. [Google Scholar] [CrossRef]
- Postiglione, G.; Turri, S.; Levi, M. Effect of the plasticizer on the self-healing properties of a polymer coating based on the thermoreversible Diels–Alder reaction. Prog. Org. Coat. 2015, 78, 526–531. [Google Scholar] [CrossRef]
- Feng, L.B.; Yu, Z.Y.; Bian, Y.H.; Wang, Y.P.; Zhao, Y.H.; Gou, L. Effect of failure modes on healing behavior and multiple healing capability of self-healing polyurethanes. Constr. Build. Mater. 2018, 186, 1212–1219. [Google Scholar] [CrossRef]
AgNWs-RGO Mass Content (wt%) | Stress at Break (MPa) | Young’s Modulus (MPa) | Strain at Break (%) |
---|---|---|---|
0 wt% | 14.08 | 19.30 | 221.94 |
5 wt% | 13.27 | 26.93 | 209.26 |
10 wt% | 12.87 | 27.37 | 232.70 |
15 wt% | 11.84 | 140.62 | 138.01 |
20 wt% | 10.35 | 238.91 | 61.30 |
25 wt% | 9.05 | 192.39 | 90.38 |
30 wt% | 7.54 | 202.84 | 33.24 |
35 wt% | 6.63 | 233.07 | 15.85 |
37 wt% | 10.55 | 246.40 | 23.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhou, Z.; Chen, J.; Li, S.; Zheng, H.; Lu, J.; Wang, S.; Zhang, J.; Lin, K.; Wang, K.; et al. Self-Healing Silver Nanowires and Reduced Graphene Oxide/Polyurethane Composite Film Based on the Diels–Alder Reaction under Infrared Radiation. Membranes 2022, 12, 405. https://doi.org/10.3390/membranes12040405
Wang Y, Zhou Z, Chen J, Li S, Zheng H, Lu J, Wang S, Zhang J, Lin K, Wang K, et al. Self-Healing Silver Nanowires and Reduced Graphene Oxide/Polyurethane Composite Film Based on the Diels–Alder Reaction under Infrared Radiation. Membranes. 2022; 12(4):405. https://doi.org/10.3390/membranes12040405
Chicago/Turabian StyleWang, Yi, Zhimin Zhou, Jiali Chen, Sixing Li, Han Zheng, Jiaxin Lu, Shuyue Wang, Jiahao Zhang, Kaiwen Lin, Ke Wang, and et al. 2022. "Self-Healing Silver Nanowires and Reduced Graphene Oxide/Polyurethane Composite Film Based on the Diels–Alder Reaction under Infrared Radiation" Membranes 12, no. 4: 405. https://doi.org/10.3390/membranes12040405
APA StyleWang, Y., Zhou, Z., Chen, J., Li, S., Zheng, H., Lu, J., Wang, S., Zhang, J., Lin, K., Wang, K., & Wang, Y. (2022). Self-Healing Silver Nanowires and Reduced Graphene Oxide/Polyurethane Composite Film Based on the Diels–Alder Reaction under Infrared Radiation. Membranes, 12(4), 405. https://doi.org/10.3390/membranes12040405