Stereoselectivity of Interaction of Nonsteroidal Anti-Inflammatory Drug S-Ketoprofen with L/D-Tryptophan in Phospholipid Membranes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. NMR Study
2.3. Molecular Dynamics Simulations
3. Results
3.1. NMR Study
3.2. KP Photolysis in Phospholipid Bicelles in the Presence of L/D-Tryptophans
3.3. MD Simulation Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tverdislov, V.A.; Yakovenko, L.V.; Zhavoronkov, A.A. Chirality as a problem of biochemical physics. Russ. J. Gen. Chem. 2007, 77, 1994–2005. [Google Scholar] [CrossRef]
- Nguyen, L.A.; He, H.; Pham-Huy, C. Chiral Drugs: An Overview. Int. J. Biomed. Sci. 2006, 2, 85. [Google Scholar] [PubMed]
- Adams, S.S.; Bresloff, P.; Mason, C.G. Pharmacological differences between the optical isomers of ibuprofen: Evidence for metabolic inversion of the (-)-isomer. J. Pharm. Pharmacol. 1976, 28, 256–257. [Google Scholar] [CrossRef]
- Kaiser, D.G.; Vangiessen, G.J.; Reischer, R.J.; Wechter, W.J. Isomeric inversion of ibuprofen (R)-enantiomer in humans. J. Pharm. Sci. 1976, 65, 269–273. [Google Scholar] [CrossRef] [PubMed]
- Aboul-Enein, H.Y.; Wainer, I.W. The Impact of Stereochemistry on Drug Development and Use; Wiley: Hoboken, NJ, USA, 1997; ISBN 978-0-471-59644-8. [Google Scholar]
- Zhou, Q.; Yu, L.S.; Zeng, S. Stereoselectivity of chiral drug transport: A focus on enantiomer–transporter interaction. Drug Metab. Rev. 2014, 46, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Penny, W.M.; Palmer, C.P. Sphingomyelin ability to act as chiral selector using nanodisc electrokinetic chromatography. Chem. Phys. Lipids 2018, 214, 11–14. [Google Scholar] [CrossRef]
- He, Y.; Zeng, S. Determination of the stereoselectivity of chiral drug transport across Caco-2 cell monolayers. Chirality 2006, 18, 64–69. [Google Scholar] [CrossRef]
- Jensen, O.; Rafehi, M.; Tzvetkov, M.V.; Brockmöller, J. Stereoselective cell uptake of adrenergic agonists and antagonists by organic cation transporters. Biochem. Pharmacol. 2020, 171, 113731. [Google Scholar] [CrossRef]
- Raskatov, J.A.; Teplow, D.B. Using chirality to probe the conformational dynamics and assembly of intrinsically disordered amyloid proteins. Sci. Rep. 2017, 7, 12433. [Google Scholar] [CrossRef] [Green Version]
- Hampel, H.; Hardy, J.; Blennow, K.; Chen, C.; Perry, G.; Kim, S.H.; Villemagne, V.L.; Aisen, P.; Vendruscolo, M.; Iwatsubo, T.; et al. The Amyloid-β Pathway in Alzheimer’s Disease. Mol. Psychiatry 2021, 26, 5481–5503. [Google Scholar] [CrossRef]
- Halim, A.; Brinkmalm, G.; Rüetschi, U.; Westman-Brinkmalm, A.; Portelius, E.; Zetterberg, H.; Blennow, K.; Larson, G.; Nilsson, J. Site-specific characterization of threonine, serine, and tyrosine glycosylations of amyloid precursor protein/amyloid β-peptides in human cerebrospinal fluid. Proc. Natl. Acad. Sci. USA 2011, 108, 11848–11853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ageeva, A.A.; Doktorov, A.B.; Polyakov, N.E.; Leshina, T.V. Chiral Linked Systems as a Model for Understanding D-Amino Acids Influence on the Structure and Properties of Amyloid Peptides. Int. J. Mol. Sci. 2022, 23, 3060. [Google Scholar] [CrossRef] [PubMed]
- Seckler, J.M.; Lewis, S.J. Advances in D-Amino Acids in Neurological Research. Int. J. Mol. Sci. 2020, 21, 7325. [Google Scholar] [CrossRef] [PubMed]
- Martin, E.B.; Williams, A.; Richey, T.; Wooliver, C.; Stuckey, A.; Foster, J.S.; Kennel, S.J.; Wall, J.S. Evaluation of the effect of d-amino acid incorporation into amyloid-reactive peptides. J. Transl. Med. 2017, 15, 247. [Google Scholar] [CrossRef] [Green Version]
- Mehrazma, B.; Opare, S.; Petoyan, A.; Rauk, A. d-Amino Acid Pseudopeptides as Potential Amyloid-Beta Aggregation Inhibitors. Molecules 2018, 23, 2387. [Google Scholar] [CrossRef] [Green Version]
- Oberley, L.W. Free radicals and diabetes. Free Radic. Biol. Med. 1988, 5, 113–124. [Google Scholar] [CrossRef]
- Tuppo, E.; Forman, L. Free radical oxidative damage and Alzheimer’s disease. J. Osteopath. Med. 2001, 101, 11–15. [Google Scholar] [CrossRef]
- Wsol, V.; Skalova, L.; Szotakova, B. Chiral inversion of drugs: Coincidence or principle? Curr. Drug Metab. 2004, 5, 517–533. [Google Scholar] [CrossRef] [Green Version]
- Pischel, U.; Abad, S.; Miranda, M.A. Stereoselective fluorescence quenching by photoinduced electron transfer in naphthalene-amine dyads. Chem. Commun. 2003, 3, 1088–1089. [Google Scholar] [CrossRef]
- Abad, S.; Pischel, U.; Miranda, M.A. Intramolecular electron transfer in diastereomeric naphthalene–amine dyads: A fluorescence and laser flash photolysis study. Photochem. Photobiol. Sci. 2005, 4, 69–74. [Google Scholar] [CrossRef]
- Vayá, I.; Andreu, I.; Jiménez, M.C.; Miranda, M.A. Photooxygenation mechanisms in naproxen–amino acid linked systems. Photochem. Photobiol. Sci. 2014, 13, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Khramtsova, E.A.; Sosnovsky, D.V.; Ageeva, A.A.; Nuin, E.; Marin, M.L.; Purtov, P.A.; Borisevich, S.S.; Khursan, S.L.; Roth, H.D.; Miranda, M.A.; et al. Impact of chirality on the photoinduced charge transfer in linked systems containing naproxen enantiomers. Phys. Chem. Chem. Phys. 2016, 18, 12733–12741. [Google Scholar] [CrossRef] [PubMed]
- Khramtsova, E.A.; Ageeva, A.A.; Stepanov, A.A.; Plyusnin, V.F.; Leshina, T.V. Photoinduced Electron Transfer in Dyads with (R)-/(S)-Naproxen and (S)-Tryptophan. Zeitschrift fur Phys. Chemie 2017, 231, 609–623. [Google Scholar] [CrossRef]
- Ageeva, A.A.; Magin, I.M.; Doktorov, A.B.; Plyusnin, V.F.; Kuznetsova, P.S.; Stepanov, A.A.; Alekseev, A.A.; Polyakov, N.E.; Leshina, T.V. Role of Chiral Configuration in the Photoinduced Interaction of D- and L-Tryptophan with Optical Isomers of Ketoprofen in Linked Systems. Int. J. Mol. Sci. 2021, 22, 6198. [Google Scholar] [CrossRef] [PubMed]
- Ageeva, A.A.; Khramtsova, E.A.; Magin, I.M.; Rychkov, D.A.; Purtov, P.A.; Miranda, M.A.; Leshina, T.V. Spin Selectivity in Chiral Linked Systems. Chem.—A Eur. J. 2018, 24, 3882–3892. [Google Scholar] [CrossRef]
- Ageeva, A.A.; Khramtsova, E.A.; Magin, I.M.; Purtov, P.A.; Miranda, M.A.; Leshina, T.V. Role of Association in Chiral Catalysis: From Asymmetric Synthesis to Spin Selectivity. Chemistry 2018, 24, 18587–18600. [Google Scholar] [CrossRef]
- Ageeva, A.A.; Babenko, S.V.; Polyakov, N.E.; Leshina, T.V. NMR investigation of photoinduced chiral inversion in (R)/(S)-naproxen–(S)-tryptophan linked system. Mendeleev Commun. 2019, 29, 260–262. [Google Scholar] [CrossRef]
- Polyakov, N.; Ageeva, A.; Kiryutin, A.; Timoshnikov, V.; Magin, I.; Babenko, S.; Kuznetsova, P.; Kruppa, A.; Purtov, P.; Stepanov, A.; et al. Spin effects as a tool to study photoinduced processes in (S/R)-ketoprofen-(S)-N-methylpyrrolidine dyads. J. Chem. Phys. 2019, 151, 245101. [Google Scholar] [CrossRef]
- Ageeva, A.A.; Babenko, S.V.; Magin, I.M.; Plyusnin, V.F.; Kuznetsova, P.S.; Stepanov, A.A.; Vasilevsky, S.F.; Polyakov, N.E.; Doktorov, A.B.; Leshina, T.V. Stereoselectivity of Electron and Energy Transfer in the Quenching of (S/R)-Ketoprofen-(S)-Tryptophan Dyad Excited State. Int. J. Mol. Sci. 2020, 21, 5370. [Google Scholar] [CrossRef]
- Martin, H.S.; Podolsky, K.A.; Devaraj, N.K. Probing the Role of Chirality in Phospholipid Membranes. ChemBioChem 2021, 22, 3148–3157. [Google Scholar] [CrossRef]
- Boscá, F.; Marín, M.L.; Miranda, M.A. Photoreactivity of the Nonsteroidal Anti-inflammatory 2-Arylpropionic Acids with Photosensitizing Side Effects. Photochem. Photobiol. 2001, 74, 637–655. [Google Scholar] [CrossRef]
- Artuso, T.; Bernadou, J.; Meunier, B.; Piette, J.; Paillous, N. Mechanism of DNA cleavage mediated by photoexcited non-steroidal antiinflammatory drugs. Photochem. Photobiol. 1991, 54, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Radschuweit, A.; Rüttinger, H.-H.; Nuhn, P.; Wohlrab, W.; Huschka, C. UV-Induces Formation of Hydrogen Peroxide Based on the Photochemistry of Ketoprofen. Photochem. Photobiol. 2001, 73, 119–127. [Google Scholar] [CrossRef]
- Lhiaubet, V.; Paillous, N.; Chouini-Lalanne, N. Comparison of DNA Damage Photoinduced by Ketoprofen, Fenofibric Acid and Benzophenone via Electron and Energy Transfer. Photochem. Photobiol. 2001, 74, 670–678. [Google Scholar] [CrossRef]
- Imai, S.; Atarashi, K.; Ikesue, K.; Akiyama, K.; Tokura, Y. Establishment of murine model of allergic photocontact dermatitis to ketoprofen and characterization of pathogenic T cells. J. Dermatol. Sci. 2006, 41, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Atarashi, K.; Kabashima, K.; Akiyama, K.; Tokura, Y. Stimulation of Langerhans cells with ketoprofen plus UVA in murine photocontact dermatitis to ketoprofen. J. Dermatol. Sci. 2007, 47, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Lhiaubet, V.; Gutierrez, F.; Penaud-Berruyer, F.; Amouyal, E.; Daudey, J.P.; Poteau, R.; Chouini-Lalanne, N.; Paillous, N. Spectroscopic and theoretical studies of the excited states of fenofibric acid and ketoprofen in relation with their photosensitizing properties. New J. Chem. 2000, 24, 403–410. [Google Scholar] [CrossRef]
- Abad, S.; Boscá, F.; Domingo, L.R.; Gil, S.; Pischel, U.; Miranda, M.A. Triplet reactivity and regio/stereoselectivity in the macrocyclization of diastereomeric ketoprofen-quencher conjugates via remote hydrogen abstractions. J. Am. Chem. Soc. 2007, 129, 7407–7420. [Google Scholar] [CrossRef] [PubMed]
- Li, M.D.; Du, Y.; Chuang, Y.P.; Xue, J.; Phillips, D.L. Water concentration dependent photochemistry of ketoprofen in aqueous solutions. Phys. Chem. Chem. Phys. 2010, 12, 4800–4808. [Google Scholar] [CrossRef]
- Li, M.D.; Yeung, C.S.; Guan, X.; Ma, J.; Li, W.; Ma, C.; Phillips, D.L. Water- and acid-mediated excited-state intramolecular proton transfer and decarboxylation reactions of ketoprofen in water-rich and acidic aqueous solutions. Chemistry 2011, 17, 10935–10950. [Google Scholar] [CrossRef]
- Babenko, S.V.; Kuznetsova, P.S.; Polyakov, N.E.; Kruppa, A.I.; Leshina, T.V. New insights into the nature of short-lived paramagnetic intermediates of ketoprofen. Photo-CIDNP study. J. Photochem. Photobiol. A Chem. 2020, 392, 112383. [Google Scholar] [CrossRef]
- Li, M.D.; Ma, J.; Su, T.; Liu, M.; Yu, L.; Phillips, D.L. Direct observation of triplet state mediated decarboxylation of the neutral and anion forms of ketoprofen in water-rich, acidic, and PBS solutions. J. Phys. Chem. B 2012, 116, 5882–5887. [Google Scholar] [CrossRef] [PubMed]
- Chuang, Y.P.; Xue, J.; Du, Y.; Li, M.; An, H.Y.; Phillips, D.L. Time-resolved resonance raman and density functional theory investigation of the photochemistry of (s)-ketoprofen. J. Phys. Chem. B 2009, 113, 10530–10539. [Google Scholar] [CrossRef]
- Kashihara, W.; Inoue, M.; Tanabe, S.; Miyata, S.; Sakai, K.; Isozaki, T.; Suzuki, T. Hydrogen Abstraction of Ketoprofen in the Excited Triplet State with Indole and Methylindoles. J. Phys. Chem. B 2019, 123, 9388–9394. [Google Scholar] [CrossRef] [PubMed]
- Shinoda, M.; Isozaki, T.; Suzuki, T. Photoreaction of Ketoprofen with Tryptophan and Tyrosine in Phosphate Buffer Solution. Photochem. Photobiol. 2014, 90, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Shinoda, M.; Osanai, Y.; Isozaki, T. Photochemical reaction of 2-(3-benzoylphenyl)propionic acid (ketoprofen) with basic amino acids and dipeptides. J. Phys. Chem. B 2013, 117, 9662–9668. [Google Scholar] [CrossRef] [PubMed]
- Stroet, M.; Caron, B.; Visscher, K.M.; Geerke, D.P.; Malde, A.K.; Mark, A.E. Automated Topology Builder Version 3.0: Prediction of Solvation Free Enthalpies in Water and Hexane. J. Chem. Theory Comput. 2018, 14, 5834–5845. [Google Scholar] [CrossRef]
- Poger, D.; Mark, A.E. On the validation of molecular dynamics simulations of saturated and cis-monounsaturated phosphatidylcholine lipid bilayers: A comparison with experiment. J. Chem. Theory Comput. 2010, 6, 325–336. [Google Scholar] [CrossRef] [PubMed]
- Parrinello, M.; Rahman, A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 1998, 52, 7182. [Google Scholar] [CrossRef]
- Hoover, W.G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 1985, 31, 1695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Essmann, U.; Perera, L.; Berkowitz, M.L.; Darden, T.; Lee, H.; Pedersen, L.G. A smooth particle mesh Ewald method. J. Chem. Phys. 1998, 103, 8577. [Google Scholar] [CrossRef] [Green Version]
- Mastova, A.V.; Selyutina, O.Y.; Evseenko, V.I.; Polyakov, N.E. Photoinduced Oxidation of Lipid Membranes in the Presence of the Nonsteroidal Anti-Inflammatory Drug Ketoprofen. Membranes 2022, 12, 251. [Google Scholar] [CrossRef]
- Steiner, U.K.M.; Salikhov, Y.N.; Molin, R.Z.; Sagdeev, A.L. Buchachenko: Spin Polarization and Magnetic Effects in Radical Reactions, Vol. 22 aus “Studies in Physical and Theoretical Chemistry”, Elsevier Scientific Publ. Comp., Amsterdam, Oxford, New York, Tokyo 1984. 419 Seiten, Preis: DM 225,-. Ber. Bunsenges. Phys. Chem. 1984, 88, 1168B–1169. [Google Scholar] [CrossRef]
- Goez, M. Chapter 3 Photo-CIDNP Spectroscopy. Annu. Reports NMR Spectrosc. 2009, 66, 77–147. [Google Scholar] [CrossRef]
- Morozova, O.B.; Ivanov, K.L.; Kiryutin, A.S.; Sagdeev, R.Z.; Köchling, T.; Vieth, H.M.; Yurkovskaya, A.V. Time-resolved CIDNP: An NMR way to determine the EPR parameters of elusive radicals. Phys. Chem. Chem. Phys. 2011, 13, 6619–6627. [Google Scholar] [CrossRef]
- Wang, X.Y.; Yang, D.; Gan, L.J.; Zhang, H.; Shin, J.A.; Lee, Y.H.; Jang, Y.S.; Lee, K.T. Effect of Positional Distribution of Linoleic Acid on Oxidative Stability of Triacylglycerol Molecules Determined by 1H NMR. J. Am. Oil Chem. Soc. 2015, 92, 157–165. [Google Scholar] [CrossRef]
- Morozova, O.B.; Yurkovskaya, A.V.; Sherin, P.S. Kynurenic acid and its chromophoric core 4-hydroxyquinoline react with tryptophan via proton-coupled electron transfer, and with tyrosine via H-transfer. Phys. Chem. Chem. Phys. 2021, 23, 22483–22491. [Google Scholar] [CrossRef]
- Timoshnikov, V.A.; Kichigina, L.A.; Selyutina, O.Y.; Polyakov, N.E.; Kontoghiorghes, G.J. Antioxidant Activity of Deferasirox and Its Metal Complexes in Model Systems of Oxidative Damage: Comparison with Deferiprone. Molecules 2021, 26, 5064. [Google Scholar] [CrossRef]
- Selyutina, O.Y.; Kononova, P.A.; Koshman, V.E.; Shelepova, E.A.; Azad, M.G.; Afroz, R.; Dharmasivam, M.; Bernhardt, P.V.; Polyakov, N.E.; Richardson, D.R. Ascorbate-and iron-driven redox activity of Dp44mT and Emodin facilitates peroxidation of micelles and bicelles. Biochim. Biophys. Acta Gen. Subj. 2022, 1866, 130078. [Google Scholar] [CrossRef]
- Selyutina, O.Y.; Kononova, P.A.; Koshman, V.E.; Fedenok, L.G.; Polyakov, N.E. The Interplay of Ascorbic Acid with Quinones-Chelators—Influence on Lipid Peroxidation: Insight into Anticancer Activity. Antioxidants 2022, 11, 376. [Google Scholar] [CrossRef]
- Bacellar, I.O.L.; Baptista, M.S. Mechanisms of Photosensitized Lipid Oxidation and Membrane Permeabilization. ACS Omega 2019, 4, 21636–21646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okazaki, S.; Hirata, A.; Shogomori, Y.; Takemoto, M.; Nagata, T.; Hayashida, E.; Takeshita, K. Radical reactions induced by ketoprofen in phospholipid membranes under ultraviolet light irradiation. J. Photochem. Photobiol. B. 2021, 214. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Sheng, Y.; Wang, J.; Wang, W. Chirality-Dependent Adsorption between Amphipathic Peptide and POPC Membrane. Int. J. Mol. Sci. 2019, 20, 4760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishigami, T.; Suga, K.; Umakoshi, H. Chiral Recognition of l -Amino Acids on Liposomes Prepared with l -Phospholipid. ACS Appl. Mater. Interfaces 2015, 7, 21065–21072. [Google Scholar] [CrossRef]
- Hu, J.; Cochrane, W.G.; Jones, A.X.; Blackmond, D.G.; Paegel, B.M. Chiral lipid bilayers are enantioselectively permeable. Nat. Chem. 2021, 13, 786–791. [Google Scholar] [CrossRef]
Rate Constant (×10−1 s−1) | |
---|---|
L-Trp decomposition, KP + Trp, pH = 4 | 0.2 ± 0.05 |
D-Trp decomposition, KP + Trp, pH = 4 | 0.7 ± 0.01 |
KP decomposition, KP + L-Trp, pH = 7.4 | 3 ± 0.2 |
KP decomposition, KP + L-Trp, pH = 4 | 1.4 ± 0.4 |
KP decomposition, KP + D-Trp, pH = 7.4 | 3 ± 0.2 |
KP decomposition, KP + D-Trp, pH = 4 | 2.2 ± 0.3 |
Rate Constant (×10−1 s−1) | |
---|---|
1-H decay, KP + L-Trp | 2.9 ± 0.5 |
1-H decay, KP + D-Trp | 2 ± 0.2 |
2-H decay, KP + L-Trp | 2.5 ± 0.3 |
2-H decay, KP + D-Trp | 1.4 ± 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mastova, A.V.; Selyutina, O.Y.; Polyakov, N.E. Stereoselectivity of Interaction of Nonsteroidal Anti-Inflammatory Drug S-Ketoprofen with L/D-Tryptophan in Phospholipid Membranes. Membranes 2022, 12, 460. https://doi.org/10.3390/membranes12050460
Mastova AV, Selyutina OY, Polyakov NE. Stereoselectivity of Interaction of Nonsteroidal Anti-Inflammatory Drug S-Ketoprofen with L/D-Tryptophan in Phospholipid Membranes. Membranes. 2022; 12(5):460. https://doi.org/10.3390/membranes12050460
Chicago/Turabian StyleMastova, Anna V., Olga Yu. Selyutina, and Nikolay E. Polyakov. 2022. "Stereoselectivity of Interaction of Nonsteroidal Anti-Inflammatory Drug S-Ketoprofen with L/D-Tryptophan in Phospholipid Membranes" Membranes 12, no. 5: 460. https://doi.org/10.3390/membranes12050460
APA StyleMastova, A. V., Selyutina, O. Y., & Polyakov, N. E. (2022). Stereoselectivity of Interaction of Nonsteroidal Anti-Inflammatory Drug S-Ketoprofen with L/D-Tryptophan in Phospholipid Membranes. Membranes, 12(5), 460. https://doi.org/10.3390/membranes12050460