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Abstract: Water shortages around the world have intensified the search for substitute sources. Grey-
water can serve as a solution for water requirements. Compared to two-dimensional electrochemical
processes for water treatment, the addition of particle activated carbon enhances the conductivity
and mass transfer or the adsorption of pollutants in a three-dimensional (3D) electrochemical process.
The large specific surface areas of these particles can provide more reactive sites, resulting in a higher
removal efficiency. In this study, the treatment of greywater by the electro-Fenton (E-Fenton) method
was carried out in a 3D electrolytic reactor. The effects of the operating conditions, such as electrode
spacing, applied voltage, treatment time, and activated carbon loading, on the efficacy of the E-Fenton
process were investigated, and the corresponding optimum conditions were found to be 7 cm, 9 V, 2 h,
and 10 g. The results showed that CODCr removal of greywater treated using the 3D electrochemical
process was 85%. With the help of the Box–Behnken experiment design and the response surface
methodology, the parameters were optimized to determine the optimal conditions. The results of the
response surface analysis were consistent with the experimental results. The above findings illustrate
that the proposed three-phase 3D electrochemical process is feasible for the efficient treatment of
greywater.

Keywords: three-dimensional electrode; CODCr; greywater; response surface methodology

1. Introduction

With the ongoing global progress in social and economic development, the problem
of water shortages is becoming increasingly alarming, especially due to the unwise and
inefficient use of water resources [1–3]. The World Water Council projects that global
water consumption will increase by approximately 50% by 2034 [4]. In China, greywater
accounts for approximately 30% of urban domestic wastewater [5]. Since it is moderately
polluted, it can be recycled and reused. From an environmental perspective, it is wiser to
recycle greywater than further pollute urban wastewaters [6]. Draining greywater directly
(i.e., without treatment) into a drainage system will cause pollution of natural water
system [7–9]. Moreover, it will produce destructive and cumulative biological diseases and
have a greater impact on human health [10,11]. For example, most cases of enteric virus
infections originate from contaminated drinking water resources, recreational waters, and
foods contaminated by sewage and sewage effluent waters [12,13].

Within this context, conventional biological treatment does not always achieve sat-
isfactory results, and traditional physicochemical methods are relatively expensive, inef-
fective, or may lead to secondary contamination. For example, the dissolved air flotation
method [14–16] involves injection of a large number of dense bubbles into treated wastewa-
ter, whereupon impurities adhere to the bubbles, effectively forming a liquid with a density
less than that of water. The primary disadvantage of this treatment method is that it is diffi-
cult to directly contact the suspended sludge, which results in secondary sludge formation.
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In coagulation–flocculation treatment methods [17,18], colloidal particles in contaminated
water collide and agglomerate, thus forming larger particles or flocs. However, these
methods are expensive and ineffective at removing anionic detergents and pathogenic
pollutants from greywater [19].

Advancements in water treatment technologies enable efficient treatment of wastewa-
ter [20–22]. Electrochemical technologies are a huge improvement in the field of wastewater
treatment because of their high efficiency, environmental protection, and versatility. De-
spite these advantages, conventional two-dimensional (2D) electrochemical electrodes
have a mass transfer limitation, small space–time yield, and low area–volume ratio. The
development of three-dimensional (3D) electrochemical electrodes provides an outstanding
solution to the above shortcomings that limit the application of 2D electrodes. Compared
with conventional electrochemical technologies, 3D electrochemical processes can overcome
the shortcomings of plane electrode design due to the increased electrode surface area per
reactor unit volume and higher throughput. This enables high current efficiency, improved
productivity, compact design, decolorization, and efficient removal of heavy metals. More-
over, the biochemical characteristics of processed wastewater can also be improved. High
treatment capacity, lack of secondary pollution, and mild reaction conditions are among
the other advantages of this technology [23,24].

Table 1 presents a comparison of the performances of a 3D electrochemical process
and other physiochemical treatment processes for different target pollutants. It clearly
illustrates the high efficiency of the 3D electrochemical process in CODCr removal. How-
ever, the particle electrode may lose its adsorption capacity and catalytic activity due to the
accumulation of pollutants on particle surfaces over continuous runs [25]. In general, 3D
electrochemical technology stimulates the further development of electrocatalysis technol-
ogy with the aim of applying it to treatment of highly concentrated wastewaters [26–28].
This can also help solve the problem of the treatment and reuse of greywater [29–31].

Table 1. Comparison of CODCr
1 removal efficiency of different target pollutants by different

physiochemical treatment processes.

Treatment Process Target Pollutants Key Processing Conditions CODCr Removal (%) Reference

C–ISF 2 Greywater CS 9 = 2.97 mm,
Gravel = 8.38 mm

80 [32]

PE-MBR 3 Textile wastewater MR 10 = 462 cm2 52.0 [33]
ELA-MBR 4 Pharmaceutical wastewater MR = 40 cm2 50 [34]

DEC 5 Industrial wastewater
CC 11 = 1000 mg·L−1,

j 12 = 10 mA·cm−2,
pH = 6

79.1 [35]

2-DET 6 PSM 8 wastewater
j = 30 mA·cm−2,
HRT 13 = 60 min,

pH = 8
57.2 [36]

3-DET 7 Paper mill wastewater
j = 167 mA·cm−2,

pH = 11,
T = 20 ◦C

86.3 [27]

1 Chemical Oxygen Demand. 2 Coagulation and intermittent sand filtration. 3 Photocatalytic electrolysis mem-
brane reactor. 4 External loop airlift membrane bioreactor. 5 Divided electrolysis cell. 6 Two-dimensional
electrochemical technology. 7 Three-dimensional electrochemical technology. 8 Fish sauce manufacturing.
9 Coarse sand. 10 Membrane area. 11 Chloride concentration. 12 Current density. 13 Reaction time.

Herein, the experiments were carried out in a homemade 3D electrode reactor. The
effects of the interelectrode spacing, voltage, treatment time, and activated carbon loading
on the performance of greywater treatment were investigated. The feasibility and effi-
ciency of the 3D electrochemical process for the treatment of greywater were also verified.
Additional analysis aimed at the optimization of the process parameters was performed
using the response surface method and the Box–Behnken design [37–39]. These findings
are expected to encourage the application of 3D electrochemical technology in greywater
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treatment. A three-dimensional process can serve as a pretreatment process to increase the
biodegradability of effluent. This will be a trend in future development.

2. Materials and Methods
2.1. Materials

Cholesterol (C27H46O, BR), fatty acid (CnH2nO2, AR), calcium chloride (CaCl2, AR),
potassium dihydrogen phosphate (KH2PO4, AR), lactic acid (C3H6O3, AR), and glucose
(C6H12O6, AR) were purchased from Tianjin Guangfu Fine Chemical Research Institute
(China). Sodium chloride (NaCl, AR) was purchased from Tianjin Wind Ship Chemical
Reagent Technology Co., Ltd. (Tianjin, China). Magnesium sulfate (Mg2SO4, AR) was
purchased from Tianjin Standard Technology Co., Ltd. (Tianjin, China). Potassium chloride
(KCl, AR) was purchased from Tianjin Yingda Rare and Precious Chemical Reagent Factory
(Tianjin, China). Urea (CH4N2O, AR) was purchased from Tianjin Shentai Chemical Reagent
Co., Ltd. (Tianjin, China). The shower gel and activated carbon were purchased from a
local market. Ultrapure water was produced in laboratory.

2.2. Preparation of Simulated Greywater

According to a certain proportion (see Table 2), the reagents were weighed and dis-
solved in pure water and then mixed well under ultrasound. The simulated greywater was
characterized by a high concentration and complex composition. The characteristics of the
simulated greywater water are listed in Table 3, which was provided by Jiangsu Longmem
Environmental Technology Co., Ltd. (Changzhou, China).

Table 2. Composition of the simulated greywater.

Components Concentration (g/L) Components Concentration (g/L)

Glucose 1.8 Lactic acid 0.7
Urea 1.7 KH2PO4 0.4
NaCl 2.1 Fatty acids 8.0
KCl 0.8 Mg2SO4 0.2

CaCl2 0.1 Shower gel 1.0
Cholesterol 0.5 - -

Table 3. Characteristics of the simulated greywater.

pH Turbidity (NTU 1) CODCr
2 (mg/L) TDS 3 (µS/cm)

3–3.5 189–227 420–995 3904–6389
1 Nephelometric turbidity unit. 2 Chemical oxygen demand. 3 Total inorganic carbon.

2.3. The Electrolysis System

The mechanism of the electro-Fenton (E-Fenton) method [40] involves the reduction
of O2 to H2O2 at the cathode, which produces •OH radicals via the subsequent Fenton
reaction involving Fe2+. These radicals then oxidize organic matter to CO2 and H2O or
small organic molecules [41,42].

O2 + 2e− + 2H+ → H2O2 (1)

H2O2 + Fe2+ → Fe3+ + OH− + •OH− (2)

The dioxygen required for Reaction (1) can be supplied to the cathode of the elec-
trolysis reactor by means of external aeration or produced on the anode according to
Reactions (3) or (4).

2H2O → O2 + 4H+ + 4e− (3)

4OH− → O2 + 2H2O + 4e− (4)
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The constructed E-Fenton system with 3D electrodes is capable of degrading pollutants
in different ways [43,44]. In addition to the direct oxidation at the anode, the cathode has
strong adsorption and catalytic properties, which can reduce the dissolved oxygen present
in the system to H2O2. In the presence of H2O2 and added Fe2+ ions, •OH radicals are
generated during the Fenton reaction and oxidize the organic matter. In addition, the
electric field between the main electrodes can also cause the activated carbon particles to
be charged with positive and negative charges due to the fact of electrostatic induction,
forming an independent miniature electrolytic cell. As a result, electrochemical redox
reactions can proceed simultaneously on the surface of each particle. The mechanism of
the electrolysis reaction is presented in Figure 1.
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Figure 1. Schematic illustration of the electrocatalytic reactor.

2.4. Electro-Fenton Process for Greywater Using Three-Dimensional Electrodes
2.4.1. Pretreatment of the Particle Electrodes

In this experiment, the activated carbon particles were repeatedly washed several
times beforehand in order to avoid the adsorption effect of the activated carbon on the
effectiveness of the 3D electrodes in treating greywater. The cleaned activated carbon was
ultrasonically treated in the greywater. Each ultrasonic treatment step was carried out for
3 h. After three repeated ultrasonic treatments, the adsorption of activated carbon was
considered to have reached saturation.

2.4.2. Three-Dimensional Electrodes

In this experiment, a homemade 3D electrode reactor was used. The reactor was built
from transparent organic glass and had a usable volume of 1.5 L. A stainless-steel plate was
used as the anode, and a graphite plate with a thickness of 2 mm and an effective treatment
area of 70 cm2 was used as the cathode.

The prepared greywater was added to the catalytic reactor, followed by the addition
of the weighed quantity of granulated activated carbon. The experimental device is shown
in Figure 1.

2.5. Electro-Fenton Process for Greywater Using Three-Dimensional Electrodes

The analysis methods of water quality correlation are shown in Table 3. The CODCr of
the greywater was determined by the potassium dichromate method [45] using a CODCr
detector (HACH DR3900, Loveland, CO, USA). The conductivity of the greywater was
analyzed by a conductivity meter (HACH HQ40d, Loveland, CO, USA). The voltage in
the 3D electrode system was provided by a DC regulated power supply (GWINSTEK
GPS-3030DD).

3. Results and Discussion
3.1. The Effect of Electrode Spacing on the Degree of Greywater Treatment

The effectiveness of the proposed treatment in decreasing chemical oxygen demand
(CODCr) and other characteristics of greywater was studied by varying the process parame-
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ters within reasonable limits: voltage, 5–11 V; treatment time, 0–5 h; interelectrode spacing
of 3, 5, and 7 cm; activated carbon loading of 10 g. The results are presented in Figure 2.
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As can be seen in Figure 2, with the increase in interelectrode spacing, the CODCr
removal of greywater increased [46]. When the other variables were kept constant, this
was mainly due to the small distance between electrodes and the low energy of the elec-
trolytic system, which affected the mass transfer efficiency. With the increase in the distance
between electrodes, the mass transfer process became more intensive due to the concen-
tration gradient between organic matter and solution. This improved the efficiency of the
degradation of the organic pollutants.

3.2. Effect of Different Factors on the Degree of Greywater Treatment
3.2.1. The Treatment Time

At early stages of the treatment process, CODCr removal increased rapidly with the
increase in processing time. After a period of time, the CODCr removal basically remained
unchanged. This was mainly because the concentration of organic matter in the system
gradually decreased during electrolysis and the catalytic effect diminished. The results are
shown in Figure 3a.
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3.2.2. Applied Voltage

With the increase in voltage, the CODCr removal efficiency initially tended to increase
but then decreased. The voltage affected the amount and rate of •OH production. If the
voltage was too small, the voltage on the particle electrode was insufficient, resulting in
less •OH and a weaker catalytic effect. Thus, the voltage at the particle electrode could not
reach the anode or cathode. Contact between the particle electrode causes short circuiting,
which reduces the efficiency of the electrolytic process, and a high voltage. The electrodes
were subject to side reactions, such as hydrogen evolution reactions, which affected the
current efficiency and reduced the effectiveness of the CODCr removal.

3.2.3. Activated Carbon Loading

With the increase in activated carbon loading, the CODCr removal from the greywater
by the 3D electrodes showed a trend of first increasing and then decreasing but basically
remained above 60%. The highest CODCr removal of 85.7% was achieved at 10 g of
activated carbon. This was mainly because the amount of particle electrodes added affects
the electrolysis efficiency of the system. The lower the activated carbon loading, the fewer
reaction sites are involved in the reaction, resulting in a lower electrolysis efficiency of the
system. When the activated carbon loading increased, there were more reaction sites in
the system, shortening the mass transfer distance between pollutants. However, when the
activated carbon loading was excessive, the increased resistance caused the system to have
side effects, resulting in a higher temperature of the system, thus reducing the electrolysis
rate.

From Table 4, it can be seen that the 3D electrochemical process had a higher CODCr
removal efficiency than the conventional 2D electrochemical process in the treatment
of wastewater.
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Table 4. Comparison of CODCr removal efficiency between 2D and 3D electrode reactors.

Reactor Types Wastewaters Conditions CODCr
Removal (%) Reference

2D 1 HOR 3 wastewater j 4 = 30 mA·cm−2, T = 60 ◦C, HRT 5 = 100 min 30.8 [47]
2D Indigo wastewater U = 9 V, HRT = 60 min, NC 6 = 5 g/L 60.3 [48]
2D Dairy wastewater j = 2730 mA·cm−2, pH = 7, HRT = 50 min 70 [49]
2D Textile wastewater j = 15 mA·cm−2, pH = 5, HRT = 120 min 77.7 [50]

3D 2 Greywater U = 9 V, GAC 7 = 10 g, ES 8 = 7 cm, HRT = 120 min 85 This work
1 Two-dimensional electrochemical reactor. 2 Three-dimensional electrochemical reactor. 3 Heavy oil refinery.
4 Current density. 5 Reaction time. 6 NaCl concentration. 7 Granular activated carbon. 8 Electrode spacing.

3.3. Changes in the Electrical Conductivity of Greywater during Treatment

The conductivity of greywater changes depending on its salt content. As the electrocat-
alytic process proceeded, more of the solute in solution was ionized, and the conductivity in-
creased. However, in general, the change in conductivity is small and negligible (Figure 4).
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3.4. Changes in the Turbidity of Greywater during Treatment

As can be seen in Figure 5, the turbidity of the treated water decreased rapidly during
the first 1–2 h of treatment. However, it started to decrease more gradually during the
subsequent 3 h of treatment (i.e., 2–5 h since the beginning of the process). The greywater
turbidity was significantly reduced during the electrocatalytic process due to the loose and
porous structure of activated carbon [51] (Figure 1). The atomic force field on its surface was
not saturated with surface energy and, thus, the surface energy was reduced via adsorption
of molecules. As the treatment time increased, the turbidity of treated water decreased,
and the adsorption capacity of activated carbon gradually reached saturation.
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3.5. Box–Behnken Design and Response Surface Methodology

Through previous experiments, it is found that when the interelectrode spacing was
7 cm, the voltage was 9 V, the activated carbon loading was 10 g, and the process period
was 2 h, the CODCr of greywater treated using the 3D electrode decreased by 85%. Further
optimization of the process parameters—voltage, treatment time, and activated carbon
loading—was performed using the Box–Behnken experimental design and the response
surface methodology (RSM). The values for these three factors in run 3, as obtained from
the steepest ascent path (Table 5), were taken as the central points. The respective low and
high levels for each factor were coded as shown in Table 6. Fitting the experimental data
using regression analysis gave the following second-order polynomial equation:

Y = 85.68− 5.42A + 8.81B + 2.41C + 0.57AB + 0.53AC + 2.05BC− 15.82A2 − 8.94B2 − 11.64C2 (5)

where Y is the predicted CODCr removal; A, B, and C are the code variables for voltage,
time, and activated carbon loading, respectively.

Table 5. Factors and levels in the response surface experiment.

Factor Variable Low Level (g/L) High Level (g/L)

Voltage A 7 11
Time B 1 3

Activated carbon loading C 8 12
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Table 6. Levels of each variable and corresponding CODCr removal efficiency obtained from the
Box–Behnken design.

RUN

Coded Variable Level Real Variable Level CODCr Removal (%)

A B C Voltage (V) Time (h)
Activated
Carbon

Loading (g)
Predicted Experimental

1 0 −1 −1 9 1 8 55.93 55.60
2 0 0 0 9 2 10 86.68 85.60
3 1 1 0 11 3 10 64.89 64.60
4 0 −1 1 9 1 12 56.65 56.90
5 0 0 0 9 2 10 85.68 85.70
6 −1 1 0 7 3 10 74.59 74.80
7 0 0 0 9 2 10 86.68 85.30
8 0 1 −1 9 3 8 69.45 69.20
9 −1 −1 0 7 1 10 58.11 58.40

10 0 0 0 9 2 10 85.68 86.00
11 1 −1 0 11 1 10 46.11 45.90
12 1 0 1 11 2 12 55.74 55.70
13 1 0 −1 11 2 8 49.86 50.40
14 0 1 1 9 3 12 78.38 78.70
15 0 0 0 9 2 10 85.68 85.80
16 −1 0 1 7 2 12 65.54 65.00
17 −1 0 −1 7 2 8 61.76 61.80

The obtained F-value of 1671.80 implies that the model was significant. There was only
a 0.01% chance that such a large F-value was due to the fact of noise. Based on the F-values
for A, B, and C, the relative influence of the three factors on CODCr removal followed
the order: time > voltage > activated carbon loading. The “predicted R-squared” value
of 0.9938 was in reasonable agreement with the “adjusted R-squared” value of 0.9989”,
i.e., the difference was less than 0.2. The p-value is usually used to test the significance
of a variable. The smaller the p-value, the more significant the corresponding variable.
As shown in Table 7, the p-values for A, B, and C were much less than 0.0001, indicating
that the voltage, time, and activated carbon loading are important process parameters
influencing the removal of CODCr.

Table 7. ANOVA results for the CODCr removal.

Source Sum of
Squares df Mean

Square F-Value p-Value

Model 3096.30 9 344.03 1671.80 <0.0001
A-Voltage 235.44 1 235.44 1144.13 <0.0001

B-Time 621.28 1 621.28 3019.07 <0.0001
C-Activated carbon time 46.56 1 46.56 226.26 <0.0001

AB 1.32 1 1.32 6.43 0.0389
AC 1.10 1 1.10 5.36 0.0538
BC 16.81 1 16.81 81.69 <0.0001
A2 1053.11 1 1053.11 5117.52 <0.0001
B2 336.52 1 336.52 1635.30 <0.0001
C2 570.48 1 570.48 2772.22 <0.0001

R2 = 0.9995, R2 (adjusted) = 0.9989; R2 (predicted) = 0.9938.

3.6. Results of the Response Surface Optimization of the Proposed Greywater Treatment Method

The response surfaces are presented in Figures 6–8 in the form of 3D surfaces and
contour plots. As can be seen from the figures, the response surfaces were convex with each
plot representing an optimal condition, and the variables had maxima. In addition, Figure 8
shows a better ellipse, indicating better interaction between the variables representing
time and activated carbon loading. However, the interaction between voltage, time, and



Membranes 2022, 12, 514 10 of 13

activated carbon loading was not significant, which is consistent with the results of the
response surface analysis. The response surface analysis showed that the greywater CODCr
decreased by 88.51% at a voltage of 8.68 V, treatment duration of 2.50 h, and an activated
carbon loading of 10.28 g.
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4. Conclusions

A method for greywater treatment using 3D electrodes was developed and applied
with good results. Single-factor experiments show that the treatment duration, voltage, and
activated carbon loading are three key factors influencing the CODCr level of greywater.
The Box–Behnken design and the response surface method were used for more advanced
optimization of the three factors listed above and to determine the optimal reaction con-
ditions. Specifically, it was found that for a voltage of 8.7 V, a treatment duration of 2.5 h,
and an activated carbon loading of 10.3 g, the CODCr decreased by 88.5%. When the
interelectrode spacing, voltage, treatment duration, and activated carbon loading were
7 cm, 9 V, 2 h, and 10 g, respectively, the CODCr of treated greywater decreased by 85.6%.
The experimental values and the predicted values coincided well.
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