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Abstract: PyVaporation—a freely available Python package with an open-source code for modelling
and studying pervaporation processes—is introduced. The theoretical background of the solution,
its applicability and limitations are discussed. The usability of the package is evaluated using
various examples of working with and modelling experimental data. A general equation for the
representation of a component’s permeance as a function of feed composition, temperature and
initial feed composition is proposed and implemented in the developed package. The suggested
general permeance equation may be used for the description of an extremal character of permeance
as a function of process temperature and feed composition, allowing the description of processes
with a high degree of non-ideality. The application of the package allowed modelling experimental
points of various sets of hydrophilic pervaporation data and data on membrane performance from
independent sources with a relative root mean square deviation of not more than 9% for flux and
not more than 5% for a separated mixture concentration. The application of the facilitated parameter
approach allowed the prediction of the components” permeance as a function of feed concentration
at various initial feed concentrations with a relative root mean square error of 3-26%. The package
was proven useful for modelling isothermal and adiabatic time and length-dependent pervaporation
processes. The comparison of the models obtained with PyVaporation with models provided in the
literature indicated similar accuracy of the obtained results, thereby proving the applicability of the
developed package.

Keywords: permeance equation; process modelling; non-ideal transport

1. Introduction

Throughout past decades, many membrane-separation processes have proven their
efficiency and shown distinctive advantages in application to various industrial and sci-
entific challenges. Such processes are often characterized by distinguishable selectivity,
relative ease of scaling, and very low energy consumption in comparison with their prin-
cipal analogues [1]. It is for these, and not only these reasons, that the development and
investigation of membrane materials and processes based on them seem to be more and
more attractive nowadays to the scientific community and representatives of industry.

Diffusion membrane processes, which operate at a molecular scale, such as nano- and
hyperfiltration [1,2], reverse osmosis [1], gas separation [3,4], pervaporation [5], vapour
separation [6] and others, are of particular interest due to their ability to solve extremely
difficult separation tasks [7-9] while retaining advantages characteristic of membrane-based
separation. In such processes, the material of the membrane plays a deterministic role in the
overall efficiency and performance [1] due to the mechanisms underlying the realization
of selective transport. The selective layer in diffusion membranes is usually non-porous;
i.e., it does not have stationary voids (pores) through which the penetrant’s molecules are
transported—the transport rather occurs through the quasi-stationary free-volume of the
selective layer material [10].
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Among all of the membrane materials being studied and developed for diffusion-
transport applications, ones based on polymers and their composites are some of the most
abundant and are considered among the most promising in many applications [1]. The
relative ease of manufacture of membranes themselves and modules based on them, and
the ability to fine-tune the selective transport properties of the material by varying the
chemical structure and morphology of the material [11,12] provide great potential for the
design of high-performance polymeric membranes for a particular number of applications.
That is why the transport of small molecules through polymers and membranes based on
them has been a topic of great scientific and applied interest.

Transport phenomena in diffusion membranes are often described with a solution-
diffusion model (SDM) [13] and as a first-order assumption that may be represented by
three consequent steps—the adsorption of the penetrants at the feed side of the membrane,
their diffusion through the selective layer of the membrane, and desorption and removal
on the permeate side of the membrane. The diffusion of the penetrant molecule through
the bulk of the polymer matrix is believed to be the rate-limiting stage of the process,
while the adsorption stage usually plays a determining role in the realization of transport
selectivity [11]. Individual-component mass transfer rates, or fluxes (amounts of penetrants
transported through the unit area of the membrane per time unit), are considered to be one
of the most important numerical characteristics of the membrane material when applied to
the separation of a particular gaseous or liquid mixture [10]. In terms of the SDM, the flux of
the component through the dense membrane is represented as a product of the component’s
permeability coefficient (I1,—the flux of the penetrant observed in the application of the
unit driving force to the membrane of a unit length) and a gradient of the component’s
chemical potential realized on the membrane [1]. At the same time, the permeability
coefficient, in terms of the approach, is considered a product of the solubility and diffusion
coefficients of a particular component [14]. Due to the relatively small thicknesses of the
typically considered membranes, the gradient of the chemical potential is usually assumed
to be a division of a simple difference between the chemical potential of the component at
the feed and permeate sides of the membrane and the thickness of the membrane. When
dense isotropic membranes are considered, it is usually useful to know the value of the
permeability coefficient so that one could calculate the mass transfer rate of the membrane
with a particular thickness at a particular driving force value. On the other hand, when
composite or asymmetric membranes are considered [15], the permeability coefficient value
is not representative due to the effects of the support, and the significant difference between
the thickness of the selective layer and the membrane itself; thus for the description of the
transport of a particular membrane, permeance values (P; = 11;/6) are usually used.
dpi o Dp
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where J; is the molar flux, mol'm2.s~!; II; is the permeability coefficient,
mol-m-m~2-s~1-(J-mol 1)1, which, in terms of the ideal SDM case, could be presented as the
product of corresponding solubility and diffusion coefficients; ¢ is the thickness of the mem-
brane, m; and P; is the permeance, or driving force-normalized flux mol-m~2-s~1.(J-mol 1)1,

Considering the nature of a particular process, the main flux Equation (1) may be
adapted to describe it, accounting for the main factors influencing the chemical potential
values [1]. While the driving force could be relatively easily determined for a considered
diffusion process, the permeance values may behave in a complex way, which may not
be easily predictable with theoretical approaches [16]. The reasons for this lie in the
nature of the diffusion transport and the effect of the mixture on the membrane material
itself during separation. Phenomena such as penetrant-induced plasticization [17], the
coupled transport effect [18], different examples of transport facilitation [19-21], and others
have been observed in numerous diffusion membrane processes. The high complexity
of theoretical approaches applied to describe the interaction between gaseous and liquid
mixtures and a polymer matrix usually does not allow providing a comprehensive approach
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to the prediction of the mass transfer rate in terms of a particular process; hence, researchers
and engineers tend to rely on semi-empirical approaches [16,22,23]. Most problems are
associated with the fact that permeance in general may be a complex function of the process
conditions, especially the composition of the separated mixture and process temperature.
Despite the observed complex behaviour of permeance as a function of feed composition,
the dependency of permeance on the temperature at a given composition could usually
be well described by an Arrhenius-type equation [1]. However, the values of the apparent
activation energy of permeation may also significantly depend on the feed composition [24].

Sometimes, when a comparatively short composition range or a particular membrane—
mixture pair is considered, the permeance values may not show a significant dependency
on the separated mixture composition; this assumption is the easiest approach to the de-
scription of membrane performance. Such processes, where the assumption of components’
permeance independency of the particular mixture composition is relevant, may be re-
ferred to as ideal, while those where permeance depends significantly on the feed mixture
composition are considered non-ideal.

Among all of the diffusion membrane processes, pervaporation processes tend to
show one of the highest degrees of non-ideality [18]. This is usually due to the high
affinity of the membrane material to particular penetrants in a separated mixture, complex
and non-ideal behaviour between the penetrants and the specifics of the process, which
imply direct contact between the membrane and a separated mixture. Pervaporation is
defined as a diffusion membrane separation process accompanied by the phase transition
of the separated components from liquid to vapour occurring in direct contact with the
membrane [1]. The driving force in terms of pervaporation is defined as the difference
between the pressure of the saturated vapour of the component in the feed mixture and its
partial pressure in the permeate. The pervaporation process is usually implemented by the
vacuum degassing of the permeate space, with simultaneous cooling and condensation of
the permeate stream, or by the direct removal of the permeate by gas sweeping to lower
partial pressures of the permeating components on the permeate side of the membrane.
The difficulties in the description of the pervaporation processes due to the high degree of
non-ideality not only limit its commercial application, but also trouble researchers when
comparing the performance of various membranes in terms of similar processes [25,26].

A number of useful semi-empirical models are known [16,27] for the successful de-
scription and modelling of pervaporation processes. Most of them usually require the
usage of modern computational tools, have limited applicability and are not freely available
to the broad scientific community for implementation and usually need to be developed
by the researchers for their particular aims. In the past few years, along with commonly
known tools used for numerical modelling, Python [28] has become an increasingly popular
instrument within the scientific community [29,30] due to its availability, simplicity and
robustness. The possibilities provided by Python, along with the well-established culture of
open-source solutions and the availability of approaches developed for the semi-empirical
modelling of pervaporation processes, provide a perfect basis for the development of a
comprehensive tool for the description and modelling of pervaporation processes.

This work aims to introduce an open-source Python-based solution designed to as-
sist researchers in the field of pervaporation membranes and process development called
PyVaporation [31]. The solution was developed based on the evaluation of numerous
available semi-empirical models [13,16,22,23,27], which were tested during the develop-
ment of a number of pervaporation membranes [15,20,32] and laboratory- and pilot-scale
pervaporation units [15]. This article presents a detailed description of the theoretical bases
of the pervaporation process, which were used for the implementation of basic functions
supported in PyVaporation, algorithms implemented for basic computations, assumptions
and the applicability of the developed module. Descriptions of various examples of mod-
els obtained with PyVaporation and their evaluation against real experimental data are
provided to show the applicability and limitations of the framework.
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2. Theoretical Background

The most difficult task in the modelling of the pervaporation process is determining
the value of a component’s flux under particular process conditions. Most semi-empirical
approaches that are successfully applied are based on the SDM and represent the flux
as a product of permeance and a driving force. In the case of the pervaporation prin-
cipal equation of transport in diffusion membranes (1), it may be rearranged per the
process specifics: the main fraction of the chemical potential difference across the mem-
brane is represented mainly by the difference in the saturated vapour pressure of the
component across the membrane [1] (2). Permeance values are usually reported in SI

units (mol-m~2.s~1.Pa~1), gas permeance units (GPU—10’6-cmSTp’?’Cm’z-s-cmHg) or
mass-related units (kg‘m_z-h_1 kPa~1) [10,14].
Ji=PF- (pi feed — Pi permeute) 2)

where J; is the molar or mass flux, kg-m*z-hf1 or mol-m~2-h~1; P; is the permeance,
kgm~2-h~! -kPa~! or mol'm—2-s71.Pa~1; and Pi feed @nd p; pery are the partial pressure of
the component’s saturated vapours in the feed and the permeate, respectively, kPa or Pa.

The predominancy of a target component transport is usually characterized by the
selectivity (3) and separation factor (4) values. It is worth noting that the separation factor is
defined as identical to the relative volatility parameter used to characterize the evaporation
of non-ideal mixtures in the processes of distillation columns design [33], and allows one
to directly compare the advantage of pervaporation over ordinary evaporation. While
selectivity is usually defined by Equation (3), permeances or permeability coefficients
may differ significantly between experiments on the transport of individual components
and real mixture separation. Thus, two terms are distinguished—real selectivity (ratio
of permeances or permeability coefficients measured in terms of mixture separation) and
ideal selectivity (ratio of permeances or permeability coefficients measured in terms of an
individual component’s transport) [14].

P.
Si/j = 5; @)
Cip/Cjp
i/ = Cif/Cs 4)

where P;; is the molar permeance of components i and j; and Cj, (Cj,) and Cjf (Cj) represent
the concentration of component i in the permeate and feed, respectively. Sometimes, for
the evaluation of the overall process efficiency, the pervaporation separation index is
considered a useful numerical characteristic [34]:

PSI = Jg - (1—a) 5)

where J5 is the overall pervaporation flux, kg-m~2-h~! or mol-m~2-h~!

Considering the aforementioned task of the evaluation of a particular pervapora-
tion process, performance comes down to the determination of all components’ partial
fluxes under the process conditions. Equation (2) may help us to divide this task into the
determination of a driving force value and corresponding permeance values under the
considered conditions.

3. Driving Force

The estimation of driving force values usually does not cause a great deal of com-
plication. The main parameters influencing the driving force are the temperature and
composition of the feed mixture, the composition of the permeate stream and the pressure
at the permeate side of the membrane or temperature of the permeate. Even though most
of the mixtures for which separation is of interest in the field of pervaporation show sig-



Membranes 2022, 12, 784

5 of 31

nificant deviations from Raoul’s law, several useful approaches exist for the calculation of
the values of the saturated vapour pressure of the component in a non-ideal mixture. The
NRTL [35], Wilson [36], UNIFAC [37] and UNIQUAC [38] models could be successfully
applied for the calculation of the partial pressure of the component’s vapours in a broad
composition and temperature range, based on the considered mixture composition at a
given temperature and with corresponding semi-empirical parameters. These models allow
one to determine the values of the components’ activity coefficients, which can be used
to calculate the partial pressure of a component in the saturated vapour of a mixture at a
given temperature and composition using Equation (6).

Pisat m = Vi~ Pisatp (6)

where p; ¢ is the pressure of the saturated vapour, usually in kPa, and m and p stand for the
mixture and pure component, respectively; and -; is the dimensionless activity coefficient
calculated by the means of afore-described models.

The saturated pressure of the pure component usually may be assessed using semi-
empirical relations, such as the Antoine (7) and Frost (8) equations.

b
ln(Pi sat p) =ap+ T—I—ACA (7)
. bp Cr
ln(pisut p) —aF+T+ﬁ (8)

where p; 5 is the pressure of the saturated vapours over the pure component at a given
temperature; 4, b and c are empirical constants; and the A and F indexes stand for Antoine
and Frost, respectively.

The determination of a component’s partial pressure in the feed mixture is usually
assessed using the aforementioned approach. The partial pressure of the component at the
permeate side may be determined as a product of the component’s molar fraction in the
permeate and the overall pressure at the permeate side, or by using the temperature and
composition of the permeate to calculate the partial pressure of the components in a similar
way as that for the feed mixture. Usually, these assumptions of the ideality of permeate
vapours are valid and do not drastically affect the accuracy of the model.

4. Permeance

The most complicated part of the numerical description of flux values’ behaviour for a
given polymeric membrane is the determination of a particular component’s permeance
under given process conditions. Among the numerous available data on the selective trans-
port properties of various membranes, the observed type of permeance dependency on the
process conditions varies significantly. In some cases where, for example, small concentra-
tion ranges are considered or a membrane shows extreme swelling stability, it is possible to
assume component permeance as a constant over the considered range of conditions [15,32].
However, this is usually not the case. Generally, the permeances of penetrating components
vary significantly with the variation in feed concentration [12,20,22-24]. The influence of
permeating components on the selective layer material tends to alter its structural, mor-
phological and, as a result, transport characteristics [18]. Due to the complexity of existing
theoretical models used for the description of polymer-solvent interactions, most theoretical
approaches are impractical for applying to the task of permeance value determination [16].
These approaches are usually extremely specific, have significant limitations, and require
an amount of experimental data comparable to that required for semi-empirical modelling.
For these reasons, semi-empirical approaches based on the solution—diffusion model have
found widespread use among specialists in the field of pervaporation process development.
While there are a number of semi-empirical models for the description of permeance de-
pendence on process conditions [16,22], the approach suggested by Vier [39] provides the
utmost flexibility. As suggested by Vier, the permeance function of multiple process condi-
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tions is represented as a product of the permeance functions of individual conditions (9),
and provides a general approach for the description of a particular process on the basis of
obtained experimental data. Along with the great flexibility, which often occurs, this model
implies a relatively high level of uncertainty introduced by the freedom of choice of each
function type. As mentioned earlier, the main parameters that usually have a significant
impact on the permeance value are the thermodynamic activity of the components in the
feed mixture, represented by their concentrations, and feed temperature (11). Sometimes,
the activity of a component in the permeate stream may also alter its permeance value;
however, this starts to affect permeance values when the permeate pressures are relatively
high, which is usually not the case for typical pervaporation units [39]. The permeate
pressure, as a rule of thumb, may usually be considered low when its value is significantly
lower than the driving force value. Accounting for this, permeance may be represented as
a product of the temperature and feed concentration functions (10).

Pi(x1, x2, x3...%;) = Pi(x1) - Pi(x2) - Pi(x3) ... Pi(x;) ©)

Pi(xp, T) = Pi(xp) - P(T) (10)

where T is the temperature, K; xr is the feed concentration, mol or wt. %; and P; is the
permeance of component i, kg'm~2-h~1-kPa~! or mol'm~2.s~!.Pa~!.

There are a number of function types that can describe the dependency of permeance
on these parameters. The influence of temperature on the permeance value could usually
be represented with high accuracy by using an Arrhenius-type relation [1] (11). The inner
exponential factor is usually referred to as the apparent activation energy of permeation or
transport. In many cases, its value may be independent of the feed concentration; however,
a significant amount of data reported indicate that, in general, the apparent energy of
transport activation may significantly depend on the feed concentration [24].

P(T)=A- exp(—RE'”T> (11)

where A is the pre-exponential term, SI, GPU or kg~rn’2-h’1-kPa’l ; Eq is the apparent
energy of transport activation, J-mol~1; R is the gas constant, J-mol 1. K~!, and T is the
temperature, K.

The dependency of permeance on the feed concentration is usually more challenging
to establish. The function proposed by Vier for the description of permeance dependence
on the feed composition based on Freundlich’s sorption theory [39], as well as common
exponential representations [23], may be found to be inapplicable to cases where permeance
shows local maxima and/or minima throughout the considered composition range [20].
This phenomenon may usually be explained by the superposition and/or transition be-
tween transport mechanisms occurring in the membrane at various feed concentrations. In
these cases, describing the complexity of the dependency of permeance on the feed concen-
tration exponential-polynomial representation, as suggested by Wijmans and Baker [22], is
very useful. Even though the authors used this approach for the approximation of flux, they
were able to account for the complex behaviour of the parameter with the variation in the
feed composition. Considering the aforementioned information, representing permeance
with the following general function (12) was proposed to account for the possible extremal
character of permeance as a function of the feed concentration, and the influence of the
feed concentration on the apparent activation energy of permeation. This approach for
the representation of permeance was considered useful and was proven to achieve a high
level of accuracy (low relative root-mean-square deviation (RMSD, % = root mean square
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deviation normalized to an average parameter value) when modelling the performance of
various membranes (Figure 1).
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Figure 1. Illustration of experimental data approximation with Equation (13); solid lines represent
fits and dots are experimental data from corresponding sources: (a) HO/EtOH, SPI at 40 °C [20];

(b) HyO/EtOH, Pervap 4101 at 95 °C [24]; (c) H,O/iPOH, Pervap 2510 at 80 °C [23].
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The fits illustrated in Figure 1 show the ability of Equation (12) to describe not only
typical diffusion curves (Pervap 4101, b; Pervap 2510, c), but also those of a more complex
nature (a). The superposition of two transport mechanisms throughout the considered
composition range in the case of SPI membranes [20] leads to the extremal character of each
component’s permeance being a function of the feed composition, which definitely should
be considered when modelling a process based on these membranes.

Another problem with the modelling of real pervaporation processes is associated
with the fact that permeance values rely drastically on the initial feed concentration of
the separated mixture [24]. The membrane’s “swelling history” may affect the selective-
transport characteristics due to the complex swelling equilibrium occurring in one or
multicomponent—polymer systems. In other words, if the membrane is exposed to the
mixture where the thermodynamic activity of a high-affinity component is high, it may be
plasticized irreversibly by retaining some quantities of this swollen penetrant, which affects
the transport mechanisms and selective-transport properties. This is a usual occurrence
for commonly used pervaporation membranes based on poly(vinyl alcohol) [24]. Hence,
it is extremely important to account for the membrane’s swelling history. This could be
achieved while conducting a set of pervaporation experiments at various concentrations
and temperatures of interest without the intermediate drying of the membrane to obtain
“wet” diffusion curves, and a similar set of experiments with a thorough intermediate
drying of the membrane to obtain “dry” diffusion curves. In this work, the authors will
refer to permeance as a function of the feed concentration at a fixed temperature as a
diffusion curve (it must be noted that, when applied to gas separation, the term diffusion
curve may represent the overall quantity transported over a membrane as a function of
the processing time [40] and is used in time-lag methods for the determination of diffusion
coefficients in polymeric systems [41]).

To consider the effect of the membrane swelling history, the facilitation rate parameter
(FR) [12] may be introduced to account for the change in permeance with variations in
membrane swelling. As a first-order assumption, the FR parameter may be represented
as a function of the initial feed concentration only. In terms of the transport mechanism,
this assumption is interpreted as the constancy of the membrane swelling degree over a
considered concentration range, while the swelling degree value is dependent only on
the concentration of the initial feed mixture being separated. The permeance value could
then be calculated using Equation (13), where FR represents the ratio of the permeance
values obtained during the experiments with the intermediate drying of the membrane
(Pary, permeance on a “dry” membrane) and without the thorough intermediate drying of
the membrane (Pgj5.4, permeance on a previously swollen membrane) (15).

P; = Pi(xr) - FR(xFo) (13)

This approach has proven useful for the prediction of real selectivity values in terms
of highly non-ideal pervaporation processes [12], and, despite its roughness, leads to
results with acceptable accuracy (Figure 2). For the successful practical application of
this assumption, a researcher needs to only measure two diffusion curves throughout a
concentration range of interest: one with a thorough intermediate drying of the membrane
between each experimental point (“dry”), and the other without the intermediate drying
of the membrane (“real” /“wet”). Then, the facilitation rate for each initial concentration
may be calculated using Equation (14), given that the considered “dry” point lies inside
the “wet” curve’s concentration range. For the opposite case, the FR should be inverted
accordingly. The FR for a particular membrane, in some cases, may be correlated with
the relative energy distance between the separated penetrants in the Hansen Space (RED)
utilizing an Arrhenius-type relation.

Pary(xF)

FR(xp) = ———
( F) Pswelled(xl:)

(14)
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Figure 2. Illustration of the Pervap 4100™ [24] diffusion curve fit (a) with Equation (13) (initial water
content 47.4 wt%) and modelled curves obtained by the introduction of the FR parameter (b—d).

For the illustration of the accuracy of the proposed strategy, the data for Pervap
4100™ membranes [24] in terms of water/ethanol mixture separation with various initial
feed concentrations (625 wt% water) at 95 °C were modelled. An experimental “wet”
curve obtained in the range from an initial feed concentration of 47.4 wt% to a feed
concentration of 2.4 wt% water was approximated using Equation (12) and tuned to
represent each real curve with varying initial feed concentrations by the introduction of
a corresponding FR parameter. The obtained curves, FR parameter and RMSD % values
along with experimental data calculated from [24] are illustrated in Figure 2. It should
be noted that there are some cases where swelling may cause irreversible changes to the
membrane material, which may not be eliminated after drying; for these reasons, the
aforementioned assumptions should be validated prior to usage in a particular case. The
relatively low values of RMSD illustrated in Figure 2 for each of the modelled curves (b—d)
favour the suggestion of the applicability of the FR parameter approach.

5. Heat Balance in the Pervaporation Process

Despite the fact that the heat balance does not directly participate in the general trans-
port equations, it plays an important role in the overall process performance. Given that
the temperature influences the pervaporation process drastically, the cooling of the heat
mixture or energy required for maintaining its temperature. Along with the heat amount
to be withdrawn from permeate vapours for condensation, are important factors to be
considered when modelling the pervaporation process. In general, for the determination of
key process parameters, such as the feed temperature and energy consumption, four pa-
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rameters need to be determined: evaporation heat of the feed mixture, heat capacity of the
feed and permeate mixtures and condensation heat of the mixture at the permeate side.
Assuming that components during the process are evaporated and condensed individually,
the overall evaporation/condensation heats may be obtained using Equation (15):

n
AHypixture = Z v; - AH; (15)
i=1

where AH iyt is the evaporation/condensation heat of the mixture, kJ-mol~%; v; is the
molar fraction of component i; and AH; is the evaporation/condensation heat of pure
component i, kJ-mol 1.

The corresponding heats of individual components at a temperature of interest may be
obtained using the Clapeyron—Clausius equation from corresponding equations describing
a component’s saturated vapour pressure behaviour (Equations (16) and (17)).

2
AH; = by; - R-In(10) - ( ) —for Antoine equation (16)

T+cy;

2'CF1‘

AH; = —R - (bpi + )—for Frost equation (17)
where AH; is the evaporation/condensation heat of pure component i, k]-mol~!; T is the
temperature, K; b; and ¢; are constants of the saturated vapour equation of component i;
and the A and F indexes correspond to the Antoine and Frost equations.

The heat capacity of a multicomponent mixture as a first-order assumption may
be represented similarly to the evaporation heat (18). Unlike the case of the driving
force calculation, the non-ideality of the mixtures in terms of heat capacity determination
generally does not lead to great inaccuracy in the model; however, this fact must be
verified when applying the model to a particular case. The dependency of the heat capacity
of an individual liquid component may often, with high accuracy, be represented by a
polynomial function (19) [32]. In the assumption that the cooling of the vapours, as well
as their condensation, occurs on the condenser, the liquid isobaric heat capacities may be
used for the estimation of the heat needed for the cooling of the permeate stream with
acceptable accuracy. This assumption is only applicable if the permeate remains liquid at
the condenser temperature. A general equation for the determination of the heat required
for the mixture’s temperature change may be obtained from the differential form of the
heat capacity definition (20).

Using these general and widely accepted engineering principles and assumptions [33],
one can successfully apply them for modelling non-isothermal pervaporation processes and
for the evaluation of the general energy consumption of a particular considered process.

n
Cp mixture = Z Vi Cpi (18)

i=1
Cpi:ac+bc'T+Cc'T2+dc'T3 (19)

Qi = Tle n;- Cpi(T) -dT

2 72 3_3 44 (20)
:”i'(ﬂc'(Tz—Tﬂ-i—bc'(TzziTl)—Fcc- (T23T1> +dc- (T24T1))

where Cp jyixpure is the isobaric heat capacity of the mixture, kJ-mol~1.K~1; v; is the mo-
lar fraction of component i; AC,; is the isobaric heat capacity of the pure component i,
kJ-mol~1.K~1; 4, b, c and d are semi-empirical constants of the heat capacity equation; the C
index stands for heat capacity; #; is the quantity of the component, mol; and Q; is heat of
cooling or heating KJ.
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6. PyVaporation Package

PyVaporation (v 1.1.4) is a freely available Python library with an open-source code [31]
included in the python package index (PyPi) [42], which allows a user to model basic per-
vaporation separation processes. Key areas of modelling include the modelling of diffusion
curves and the modelling of isothermal and adiabatic (non-isothermal) processes. The
general modelling process requires information on the components, mixture and mem-
brane involved. The package allows either the use of pre-defined data or user-created data
for the description of components, mixtures and membranes. The solution was intended
to be designed in a way that encourages the storage and exchange of the pervaporation
experimental and modelling data in a unified and convenient way.

7. Main Classes and Methods

To provide a comprehensive understanding of the package’s applicability, limitations
and possibilities, a representation of its architecture is presented in Figure 3 in the form of
a high-level UML class diagram. A brief description of the main classes, which represent
physical and theoretical objects required for modelling the pervaporation experiment
employing the PyVaporation package, is provided to increase the transparency of the
theoretical background of implementation and provide clarity, which are necessary for a
specialist to use the developed solution.

Permeance

VaporPressureConstants

1

1
1 ;‘ Component
PRy
HeatCapacityConstants /_’ 1 1
1

2 IdealExperiment

NRTLParameters
| i
o o=
1

T
1A IdealExperiments.
1
\_l 1 f

T
Conditions Mixture
1
— .

Membrane

Jlﬁ j— | ]

urve J

9—10&\:1 ]
. =
enerate: l l Lo,.'
1
1

Measurments 1
o*

Ol DiffusionCurveSet
1

1

jenerate:

T
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| |
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Figure 3. A schematical representation of PyVaporation’s architecture.

used as input
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7.1. Component

Real compounds are represented within the package as instances of the Component
class. Components are defined with a name, molecular weight, a corresponding set of
constants for the calculation of their individual saturated vapour pressure with Equation (7)
or Equation (8) and a set of constants for the calculation of their molar heat capacity with
Equation (19). Thus, the system may calculate their saturated vapour pressures, enthalpy of
vaporization (Equations (16) and (17)) and heat capacity at a given process temperature by
calling corresponding methods. A user may specify the type of the equation intended for
the calculation of saturated vapour pressures and evaporation heats by filling a string-type
parameter of the VapourPressureConstants object used for the creation of the component.
Although the Frost equation may, in some cases, provide a better fitting for the vapour
pressure data, due to the data’s abundance, the Antoine type of calculation is set as default.

There are several pre-defined components that are commonly separated through per-
vaporation, and are stated directly as attributes of the Components class. The corresponding
parameters of these components were validated against experimental data prior to inclu-
sion in the package. An example of a new component’s creation from pre-defined and
user-specified parameters and the calculation of some of its properties is presented below
(Scheme 1):

methanol = Components.MeOH

mtbe = Component (

name="MTBE",

molecular weight=88.15,

vapour_pressure_ constants=VaporPressureConstants (
a=6.050931522,
b=-1139.816725,
c=-46.15171,

).

heat_capacity constants=HeatCapacityConstants(
a=147.329712,
b=-9.7850807e-2,
c=9.216480e-4,
d=-4.75200e-7,

)y

)

methanol.get vapor_ pressure(323.15) # Output: 55.574 in kPa
mtbe.get vapor pressure(323.15) # Output: 86.307 in kPa
methanol.get_specific heat (323.15) # Output: 86.657 in J/(mol*K)

mtbe.get specific heat(323.15) # Output: 195.917 in J/(mol*K)

Scheme 1. Creation of the Component object and calculation of some of the components’ properties.

7.2. Mixture

Mixtures in PyVaparation are binary and defined with a name, a set of NRTL pa-
rameters and two associated components. The order of components in the mixture is
significant as it affects the calculation of their saturated vapour pressure throughout the
mixture [35]. The Composition class is used for specifying the composition of the mixture,
and a Composition object is defined by the weight or molar fraction of the first component
of the mixture and its type (weight or molar). Given a mixture, the type of the Composition
object can be mutually converted, which makes it easier for researchers to work with data of
different types. Some of the most abundant mixtures, the separation of which is of interest
to researchers in the field of pervaporation membranes, and processes’ development are
also pre-defined in PyVaporation, and are accessible as methods of the Mixtures class. The
calculation of the VLE equilibrium at 333.15 °K for a water/ethanol mixture, along with its
definition, is provided in Scheme 2. Despite the fact that there are several tools available for
similar calculations, to create a robust and easy-to-use solution for a researcher, the NRTL
model’s calculation was implemented directly in the package.
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h2o0 etoh = Mixtures.H20 EtOH

composition_range = [
Composition(p=1/10, type=CompositionType.weight) for i in range(11)
]

for composition in composition range:
get nrtl partial pressures(
temperature=333.15,
mixture=h2o_etoh,
composition=composition

)

# Output:
saturated vapour pressures of (water, ethanol) in kPa:
(0.0, 46.898)
(8.891, 37.467)
(13.245, 31.660)
(15:397; 27:959)
(1.6, -2.5.{443))
(17.164, 23.478)
(17.645,; -21.,532)
(18.102, 19.046)
(18.:61:0,, 15..324)
(19.211, 9.420)
(19.928, 0.0)

Scheme 2. Creation of a Mixture object and calculation of the saturated vapour pressure of the
components at 333.15 °K under a stated composition range.

7.3. Membrane

PyVaporation aims to provide a possibility for a researcher to perform semi-empirical
modelling of the process; thus, the membranes, as instances of the Membrane class, are
defined with experimental data. There are two types of objects used for the representation
of experimental data for a considered membrane—IdealExperiment and DiffusionCuroe.

IdealExperiment objects are purposed to store information on the transport properties
of the membrane in relation to the individual component in terms of the modelled process,
assuming its ideality, including the name of the component, temperature of the experiment,
permeance value and apparent activation energy of the component’s permeation. While
being optional, the apparent activation energy of a component may be calculated if data on
the component at two or more different temperatures are provided based on linear least-
squares regression. IdealExperiment objects are used for modelling ideal processes, where
the permeance values for components do not change significantly over the concentration
range considered. To provide a comfortable way of working with different permeance
units (SI, GPU or kg:m~2-h~!.kPa~!), permeance values are represented as instances of
the Permeance class defined with a value and units. The class allows conversion between
the supported units by calling the convert() method, with the corresponding parameters
(Scheme 3). IdealExperiment objects are associated with the object of the Ideal Experiments

class, which could be used to define a membrane and is loaded froma .csv file.

permeance = Permeance (value=3568, units=Units.GPU)
permeance.convert (to_units=Units.kg m2_h kPa, component=Components.H20)

# Output: Permeance (value=0.07754, units='kg/(m2*h*kPa)"')
Scheme 3. Creation of a Permeance object, with conversion between permeance units.

To provide a system with information about the dependence of permeance values on
both the feed mixture composition and temperature, a DiffusionCurve object for a membrane
must be specified. As mentioned earlier, in terms of the present work, a diffusion curve is
defined as a function of component permeances on the separated mixture feed composition
at a constant temperature. Following this definition, a DiffusionCurve object is created based
on the information regarding the separated mixture, the name of the membrane that was
used in the experiment, the temperature at which the curve was obtained, a list of feed
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concentrations in the curve and the corresponding components” permeances and/or partial
fluxes. A user may specify only a list of the components’ partial fluxes or permeances, and
the corresponding parameters will then be automatically calculated based on the specified
curve temperature using the NRTL model and Equation (2) under the assumption of zero
permeate pressure. It must be noted that, to obtain accurate modelling results, a user
should consider the type (“wet” or “dry”) of the curve provided, as permeance values
may depend significantly on membrane swelling induced by contact with a feed mixture
with a particular composition. Process parameters such as the permeate temperature and
pressure may also be included to increase the accuracy of the permeance calculation from
corresponding partial flux values. The parameters stored within DiffusionCurve objects may
be plotted as a function of the feed composition utilizing the plot() method. Some methods
for the calculation of derived parameters, such as PSI or the separation factor, are defined
for DiffusionCurve objects directly. The diffusion curves obtained under similar conditions
with variable process temperatures are united inside a DiffusionCurveSet object, a list of
which may be used to define the membrane. DiffusionCurveSet objects, as Ideal Experiments
objects, may be loaded into the system from .csv files.

Overall, a Membrane within the PyVaporation package may be defined with either
an IdealExperiments object, a list of DiffusionCurveSet objects or their combination and a
name. The package allows loading experimental data provided in the appropriate format
to create a Membrane object for further use from a directory with a stated structure. This
approach provides a researcher with the possibility to store and accumulate experimental
data associated with a particular membrane in a single organized file, which could be easily
used to model the membrane’s performance.

There are some useful methods defined for the Membrane class purposed for the
calculation of the apparent activation energy of a particular component, permeance of a
particular component at a specified temperature (Equation (11)), based on Ideal Experiments
object, calculation of ideal selectivity values (Equation (3)) of two components at a given
temperature and the estimation of a pure component flux of the component at a given
temperature (Equation (2)). An example of loading and working with a Membrane object is
provided below (Scheme 4). Pervap 4101, along with Pervap 4100 [24], Pervap 2510 [23] and
Romakon PM 102 [15], were added as default membranes to the PyVaporation package in
order to provide a researcher with a reference for the correct format of a Membrane directory.

romakon pm 102 = Mcmbranc.load("tests/default membranes/RomakonPM 102")

h20 = Components.II20
etoh = Components.EtOI

romakon_pm_102.calculalLe_aclivalion_energy (componenl h20)
romakon_pm_102.calculate_activation_energy (component=etoh)
romakon pm 102.gel permeance (

ten ature=323.15,

Com ent=Components.H20

romakon pm 102.get ideal selectivity(
eralure 333,15,
mponent=h2o,

nent=etoh

romakon _pm 102.get_estimated pure component flux(
temperature=313.15,
nponent=h2o,

permeate pressure=l

)

Scheme 4. Loading of a Membrane object from a directory and calculation of some parameters based
on a loaded IdealExperiments object. Data for Romakon-PM 102 membranes were taken from [15].
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7.4. Pervaporation Function
The information regarding the functions used to fit experimental diffusion curves (2D

data) or diffusion curve sets (3D data) is stored in PervaporationFunction objects. To include
the complex behaviour of permeance with the variation in the feed mixture composition
and process temperature, Equation (12) is used to fit the experimental permeance data.
The fits may be obtained for each component by using the fit() and find_best_fit() functions,
which take a Measurements object as one of the arguments. Measurements objects, in turn,
may be generated from DiffusionCurve or DiffusionCurveSet objects by calling corresponding
Measurements methods. A detailed description of the fitting principles implemented in the
package is given in the Approximation of Permeance functions section of the article. Pervapora-
tionFunctions may be saved as binaries and plotted, and are callable with composition and
temperature as floats to calculate a corresponding permeance value. Obtained fits may be
visualized with or without experimental data by using the plot() method. An example of
creation and working with a PervaporationFunction object is presented in Scheme 5.

pervap_2510 - Membrane.load('tests/default membranes/Pervap_2510')

curve_sel — pervap 2510.diffusion_curve sels[0]

dala h20 = Measuremenls.from diffusion curves [irsL(curve sel)
data ipoh = Measurements.from diffusion curves second(curve set)
fit hZo = find best fit(data hZo) # Output: PervapeorationFunction for H20
fit ipoh = find best fit(data ipoh) # Output: PervaporationFunction for iPOH
5 # Output: 0.0534 in kg/(m2*h*kPa)

Lil hZo(0.15, 323.15)

fit_hZo.plot(cxperimental data=data h2o)

# Oulput:
it llustration it llustration
Fit llustration
|
006 1
f 08 Zoost 8
005 & o Sooat ¥
. 5 & E :
- * H ] & 0.06 B o003 [T
e 3 ooe § = i ’ o%e
B B 0oz £ - N 005 0oz e
. g g |
r 002 Eoog 0.04 § -
2o, g
200 03 E 2330
- good 18 b, =
04 — 3. Soaz e T T ] 002 5 350 e
oo, -~ .-y :5:014 1 %, 370 —— 006004
<op, M0 10 30 o™ N %380 0.0 008" " L ion
o 012 310 ¥ 3 330 340 350 360 370 380 E 0.14 012 penit fractie
ac £ Temperature K First comeo
Ctiop, £ e peratus
a b c
fit ipoh.plot(experimental data=data ipoch)
# Output:
Fit lllustration it lllustration
it Illustration
0.0010]
0.0010 . 0.0008
0.0008 30.0006!
.0008 2
L 0.0006 £ _ «».Jb i onnaﬂ Eu,uum
. ° s y . = X
1. 0.0004 £ T j % 3 0.0002 PSS
P O E0.0d L] 000 0.000 .
0.0002 =008 H £ .
ety s . 000 -
. 0.0000 8012 33 -
S 008 \ . So1d ” 0.0000 % g D080
O, 008 360370%%° s 330 340 350 360 370 380 p@rdt” 511370} 012010 08" factio®
e, 012 4 ¥ # Temperature K Yo, 380 014 of
3 ,,acu.m 330 ratul & ¥
.
o
d e f

Scheme 5. Cont.
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fit hZo.plot (cxperimental data=data hZo, temperaturce=37/3.15)

# Outpul:

Temperature 373.15 K

0.06{ ® Experiment
— Fit

0.05 4

0.04 4

Permeance

0.03 4

0.02 4

T T T T T T
0.04 0.06 0.08 0.10 0.12 0.14
First component fraction in feed

9

Scheme 5. Creation, calling and plotting of a PervaporationFunction object. The data on Pervap 2510’s
performance in relation to the separation of water/isopropanol mixtures were taken from [23]. Three-
dimensional plots generated in Python are interactive; (a—c) projections of H,O permeance fitted
surface along with experimental data, (d—f) projections of iPOH permeance fitted surface along with
experimental data, (g) fitted H,O permeance as function of feed mixture concentration at 373.15 K
(cut of the permeance surface at 373.15 K).

7.5. Pervaporation

To model a diffusion curve or a process, a researcher needs to create a Pervaporation
object from Membrane and Mixture objects. Modelling may be performed by calling a
corresponding Pervaporation method. Pervaporation objects are capable of modelling either
ideal or non-ideal processes.

There are two methods available for the estimation of a diffusion curve for a membrane
at a given temperature based on IdealExperiments, DiffusionCurveSet objects or their combi-
nation. The ideal_diffussion_curve() method is designed to model a diffusion curve with the
components’” permeance values independent of feed mixture composition on the basis of
the information provided in the membrane’s IdealExperiments object. Given a composition
range and process parameters, the system calculates selective-transport properties at each
point in the assumption of permeance’s independency of feed mixture composition. The
method returns a DiffusionCurve object that may be saved or used for further evaluation
in the system. In terms of an ideal process assumption, the apparent energy of transport
activation is also considered independent of the feed mixture composition. Example of the
creation of an ideal diffusion curve with Pervaporation.ideal_diffussion_curve() is provided
below (Scheme 6):

The second method for modelling a diffusion curve at a specified temperature—
non_ideal_diffusion_curve()—accounts for the permeance and apparent permeation acti-
vation energy dependencies on feed composition and takes a DiffusionCurveSet as an
additional argument for modelling. If the DiffusionCurveSet object of a studied membrane
contains diffusion curves at various temperatures, the method will use them as a basis
for the evaluation of process dependency on temperature; however, if a single diffusion
curve is specified, the method will assume the constancy of the apparent energy of the
permeation value for a component over a considered composition range and will need an
IdealExperiments object specified for the membrane for the calculation of its values. Example
of the creation of a non-ideal diffusion curve is as follows (Scheme 7):
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romakon pm 102 = Membrane.load ("tests/default_membranes/RomakonPM_102")
h2o0_etoh = Mixtures.H20 EtOH
composition range = [ Composition (p=c, type=CompositionType.weight)
for c in numpy.linspace(0.7, 1, 20)]
pervaporation = Pervaporation (membrane=romakon pm 102, mixture=h2o etoh)

curve = pervaporation.ideal diffusion_ curve (

e=335.15,
omposition range,
perature=263.15)

curve.plot (curve.partial_fluxes, 'Partial fluxes, kg/ (m2*h*kPa) ')

# Output:

Partial flux, kg/(m2*h)
w - » o

~

—— First Component - H20
0 Second Component - EtOH, multiplied by 1e+03

0.70 0.75 0.80 0.8

5 0.90 0.95 100
H20, weight %

Scheme 6. Creation of a Pervaporation object and modelling of an ideal diffusion curve (permeance is
assumed to be independent of feed composition) of Romakon PM 102 membranes [15] at 335.15 K;
plotting of partial fluxes and the separation factor as functions of water weight fraction in the feed.

By providing the initial permeances of the components at the beginning of the consid-
ered process, which are equivalent to the “dry” measured permeances of the components
at the initial feed composition stated, a researcher may account for the influence of mem-
brane swelling on the membrane’s performance. Equations (13) and (14) are used for the
assessment of the membrane performance’s change with the change in the initial feed
concentration of the process. Such an approach must be applied with care; however, it was
proven to be able to describe real “wet” diffusion curves at various initial feed compositions
based on the reference “wet” curve and the “dry” permeance values of the components
at initial feed compositions of interest. An example of the code used for the modelling of
Pervap 4100™ diffusion curves at 95 °C and different initial feed concentrations based on
the curve fit illustrated in Figure 2a is presented below (Scheme 8).

The modelling of the time-dependent pervaporation processes within the package may be
performed by calling the ideal_isothermal_process(), ideal_non_isothermal(), non_ideal_isothermal()
or non_ideal_non_isothermal() methods of Pervaporation class objects. Modelling is performed
by consequent iterative calculations of the process parameters, while the process conditions
at the next calculation step are evaluated based on the results obtained in the current step.
The initial conditions necessary for the model’s obtainment, such as the initial feed amount,
initial feed concentration, membrane area, permeate temperature or pressure, initial feed
temperature or specified temperature program, are represented by InitialConditions ob-
jects. The temperature program may be specified under the initial conditions by adding
a TemperatureProgram object, which supports polynomial, exponential and logarithmic
types of temperature as a function of processing time. The parameters required to start
the calculation are determined based on the initial conditions file, while the feed mixture
amount, composition and temperature, defining the process mass balance, are determined
based on the process mass and heat fluxes obtained at the current calculation step. The
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enthalpies of evaporation—condensation, mixture heat capacities and cooling heats are
calculated according to Equations (15)—(20).

romakon _pm_102 = Membrane.load (" tests/default_membranes/RomakonPM_102 )

h20 _etoh = Mixtures.H20 EtOH
curve_set = romakon_pm 102.diffusion_curve sets[0]

pervaporation = Pervaporation(membrane=romakon pm 102, mixture=h2o_etoh)
initial feed = Composition(p=0.9, type=CompositionType.weight)

curve = pervaporation.non ideal diffusion curve(
feed temperature=335.15,
diffusion curve set=curve set,
initial feed composition=initial feed,
delta comp tion= -0.01,
number of steps= 30,
n_first=5,
)

curve.plot (curve.permeances, 'Permeance, kg/(m2*h*kPa) ')

# Output:

0.7 4 -
- First Component - H20

——— Second Component - EtOH, multiplied by 1e+02

Permeance, kg/(m2*h*kPa)
o o o o
N w > w

o
-
L

0.0

0.60 0.65 0.70 0.75 0.80 0.85 0.90
H20, weight %

a
curve.plot (curve.partial fluxes, 'Partial flux, kg/ (m2*h) ')

# Output:

2.00 1

1751
— 1501
=
x
o
E.1.25
=
2 —— First Component - H20
§ 1.00 1 —— Second Component - EtOH, multiplied by 1e+01
[~
K] ]
£ 0.75
©
a

0.50

0.25 1

0.00 1

T T T T ™ T T
0.60 0.65 0.70 0.75 0.80 0.85 0.90
H20, weight %
b

Scheme 7. Creation of a Pervaporation object and modelling of a non-ideal diffusion curve (permeance
is assumed dependent on the feed composition) for Romakon PM 102 membranes [15] at 335.15 K.
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pervap 4100 = Membrane.load(path="tests/default membranes/Pervap 4100")
pervaporation = Pervaporation(membrane=pervap 4100, mixture=Mixtures.H20 EtOH)

modelled curve 50 = pervaporation.non ideal diffusion curve(
diffusion curve set=pervaporation.membrane.diffusion curve sets[1]
feed temperature 8015
initial feced composition=Composition(p=0.47415, typc=CompositionTypc.wcight),
delta comg =
numpber of steps=90,

)

5 = pervaporation.non_ideal_diffusion_curve(

modelled_curve_ 2
i s —pervaporation.membrane.diffusion _curve sets[1],

diffu cur

feed mperature

initial feed composit

initial permeanc (
Permeance (value=3598.018023, units=Units.GPU),
Permeance (value=13.01528204, units=Units.GPU),

ion=Composition(p=0.2570, type=CompositionType.weight),

)

modelled curve 15 pervaporaltion.non ideal diffusion curve(

diffusion curve set=pervaporation.membrane.diffusion curve sets[l]

feed temperature-368.15,

initial feed composition=Composition(p=0.12686, type=CompositionType.weight),

delta_comp tion=-0.0025,

number of

initial_permear
Permeance (value=2586.349948, units=Units.GPU),
Permeance (value=1.677562465, units=Units.GPU),

) e
)

modelled curve 6 = pervaporation.non ideal diffusion curve(
diffusion curve set=pervaporation.membrane.diffusion curve sets|l],

omposilion-Composilion(p-0.05961, Lype-ComposilionType.weighl),
tion=-0.001,

2r of steps

Per%eance(vall, 133.045025, units=Units.GPU),
Permeance (value=0.2100162934, units=Units.GPU),

)y
)

’

Scheme 8. Loading of a Membrane object; modelling non-ideal diffusion curves using various “dry”
initial permeance values for a Pervap 4100 membrane [24] illustrated in Figure 2.

It should be noted that quasi-stationary processes within a pervaporation module
operating at a constant feed mixture flux, where the process parameters depend on the
dimension parameter of the module, may also be described by the implemented time-
dependent processes by interpreting time as a dimensionless length and feed mass with the
corresponding feed mass flux. It should be noted that this assumption remains valid until
the feed mass flux values differ significantly from those of the retentate flux. The methods
purposed for modelling time-dependent processes return an object of the ProcessModel
class. The objects of this class contain information about the dependency of each consid-
ered process parameter on the processing time, initial conditions file and, when applied
to non-ideal process modelling, which requires the fitting of experimental data with a
PervaporationFunction object, permeance functions for each component used for modelling.
The obtainment of a ProcessModel object for an example of an ideal isothermal process is
presented below (Scheme 9).
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romakon pm 102 = Membrane.load ("tests/default membranes/RomakonPM 102")
h2o0 _etoh = Mixtures.H20 EtOH
pervaporation = Pervaporation(membrane=romakon pm 102, mixture=h2o_etoh)

conditions = Conditions(
membrane_area=0.0048,
initial_feed temperature=335.15,
initial feed amount=0.200,
initial feed composition=
Composition (p=0.9%4, type=CompositionType.weight)
)

model = pervaporation.ideal isothermal process(
number_of_ steps=50,
delta hours=0.2,
conditions=conditions,

)

model.plot (model . feed compositions, 'Water fraction in feed, wt%')

# Output:

0.94 1 —— weight fraction of H20

0.93 4

0.92 1

0.91 1

Water fraction in feed, wt%

0.90

T T T T T T

0 2 4 6 8 10
Process time, hours

a
model.plot (model. feed mass, 'Feed amount, kg')

# Output:

0.20 —— Feed amount, kg
0.18
o
&
oy
S 0.16 4
o
€
o
°
@
@
% 0.14 4
0.12 4
(o] 2 4 6 8 10
Process time, hours
b

Scheme 9. Creation of a ProcessModel object; modelling the ideal isothermal process of H,O/EtOH
mixture separation with a Romakon PM 102 membrane [15]; (a) water concentration in feed as a
function of process time, (b) total feed amount as a function of process time.
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7.6. Process Model

The ProcessModel object contains information on the modelled time-dependent perva-
poration process. Such objects store the feed temperature, feed and permeate compositions,
feed mass, partial component fluxes and permeances, feed evaporation and permeate
condensation heats throughout the processing time. These objects may be saved in a form
of a directory with a specified structure, which contains a .csv file with all process pa-
rameters and binary PervaporationFunction and InitialConditions files. ProcessModel could
be loaded from a directory with corresponding structure and contents to the system for
further evaluation. The methods defined for the ProcessModel are similar to those defined
for DiffusionCurve objects and allow a researcher to calculate basic derivative parameters,
such as the separation factor, PSI or selectivity as functions of the processing time. Similar
to the DiffusionCurve objects, the plot() method allows one to plot a graph of a specified
process parameter as a function of the processing time.

7.7. Description of Partial Flux Calculation Algorithms

The calculation of the components” partial fluxes under given process conditions
is a vital part of modelling a pervaporation process. Partial fluxes in PyVaporation are
calculated using Equation (2), while permeance values are fitted using Equation (12), or
assumed to be constant. When the component’s partial pressure is assumed to be zero, the
component permeance value under given conditions, along with the value of the saturated
vapour pressure of the component over the separated mixture, is sufficient for partial
flux value calculation. However, in the case where the influence of permeate temperature
or pressure on the process is considered, the partial pressure of the component in the
permeate is required for the establishment of the driving force value. As a component’s
partial pressure is dependent on the permeate composition, which, on the other hand, is
defined by flux values, the partial fluxes’ calculation is recursive. Depending on the type
of the experimental setup, the partial pressure of the component may be defined with the
permeate composition and either with an absolute pressure on the permeate side of the
membrane or with the temperature of the permeate. In the case where constant pressure is
maintained on the permeate side of the membrane using a vacuum pump, gas sweeping
the permeate pressure may be picked as a defining parameter; however, when permeate is
condensed in the sealed pre-vacuumed chamber, the permeate temperature may be used
for the evaluation of a components partial pressure.

Partial flux calculation in the PyVaporation package is implemented in the calcu-
late_partial_fluxes() method of the Pervaporation class. T and composition of the feed mixture,
along with the required precision, must be specified for the calculation. The algorithm
for the calculation is simple and is schematically represented in Figure 4. The precision
parameter represents the acceptable difference between permeate compositions at consecu-
tive calculation steps if a user specified the permeate pressure or temperature parameters.
The calculation of the permeate pressure at a user-specified temperature is performed
based on the NRTL model, so it is valid only at temperatures above the mixture’s freezing
point. When the precision criterion is met, the system considers the calculation complete
and returns partial flux values as a tuple. The default precision value specified for the
calculation is 0.03%. A user may also specify the permeances of the components for the
calculation; if they are not provided, the method calculates them based on the data provided
in the IdealExperiments object of the Membrane. An illustration of the precision parameter’s
influence on the calculated partial flux values is provided in Scheme 10.

Calculate permeate Re-calculate partial

(partial_flux_1,
—YES > partial_flux_2)

p_c(i) d=lp_c(i) - p_c(i-1)|
[ NO

Figure 4. Schematic representation of the partial flux calculation algorithm.
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pai_spi = Membrane (
ideal experiments=ideal_ experiments,
name="PAI SPI 1(wt%) asym"
)

meoh mtbe = Mixtures.MeOH MTBE
pervaporation = Pervaporation(membrane=pai spi, mixture=meoh mtbe)

precision = [le-1, le-2, le-3, le-4, le-5]
composition = Composition(p=0.1, type=CompositionType.weight)

for p in precision:
print (
pervaporation.calculate partial_ fluxes(
feed temperature=313.15,

composition=composition,
permeate temperature=293.15,
precision=p

)

# Output:

(0.25079337140976277, 0.1637411760363952)
(0.255980578053858, 0.16142891854790636)

(0.255786119219273, 0.16151387957176908)

(0.2557618303846792, 0.16152450094117343)
(0.2557587951348898, 0.16152582838440846)

Scheme 10. [llustration of the influence of the precision value on the obtained flux values. Data for
PAI-SPI (1 wt%) membrane’s performance in relation to the separation of methanol/MTBE mixtures
were taken from [32].

7.8. Approximation of Permeance Functions

One of the most challenging tasks in modelling a general pervaporation process is find-
ing the type of function that could accurately describe the behaviour of the components’ per-
meance values with varying process conditions. Due to the absence of a thorough general
theoretical description of the diffusion processes in polymers, and particularly in pervapora-
tion, most of the suggested function types are based on the evaluation of experimental data.
As mentioned above, there are a number of functions that have been successfully applied to
describe permeance as a function of the feed composition [16,23,39], and temperature [1];
however, there are some cases [20,24] where the suggested approaches fail to describe the
process with acceptable accuracy. For these reasons, a new general expression was sug-
gested to fit permeance as a function of the two main process parameters—the feed mixture
temperature and composition (Equation (12)). In order to include the membrane’s swelling
history, the facilitation rate parameter [12] is introduced to adjust the form of the function
based on the “dry” permeance value. The function presented in Equation (21) is used for
fitting the component’s permeance value as a general function of the process temperature
and feed composition in PyVaporation, and is represented in the PervaporationFunction class.

n ) Zm b‘xi
Pi(xp, T) = a-FR(xpo)-exp| Y aix' — ZZO#Z (21)
i=1

The fitting with Equation (21) is a two-stage task; first of all, the order of inner-
exponential polynomials must be determined (n and m) to finalize the function form,
and then the coefficients of the function must be determined. The general fitting of the
experimental data with Equation (21) in the package is realized by the fit() function, which
requires user-specified n and m values as integers, and a set of experimental data points as
a Measurements object, which is obtained from either DiffusionCurve or DiffusionCurveSet
objects. The fitting is performed by scipy.optimize.minimize() [29] by means of the Powell
minimization algorithm [43], with the objective function for minimization determined as a
root-mean-square deviation. As a result, the fit() function returns a PervaporationFunction
object, defined with user-specified n and m values, and the coefficients obtained during
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optimization. The suggestion of n and m values is implemented in the scope of the
find_best_fit() function of the package. The function requires only a Measurements object
and suggests maximal n and m values based on the size of the fitted dataset; after the
suggestion, the function fits the data by means of the fit() function with n and m in the
range from 0 to the suggested maximal polynomial order values and, as a result, returns
the PervaporationFunction with the lowest objective function value in relation to the fitted
dataset. A user may override suggestions by specifying the n and m values directly in
find_best_fit() arguments. It should be noted that the n and m values may significantly affect
the extrapolation of the permeance values; thus, the fits should be verified by the researcher
prior to usage.

An example of fitting experimental data, illustrated in Figure 1a, using the find_best_fit()
function is provided below (Scheme 11). The facilitation rate parameter is calculated only
when modelling a non-ideal process or diffusion curve based on the provided permeances
of the component measured at the considered initial feed composition and the perme-
ances of the base diffusion curve calculated using the corresponding PervaporationFunction
(Equation (14)).

spi diffusion curve = DiffusionCurve (
mixture=Mixtures.HZ0_EtOH,
membrane_name="SPI dense",
temperature=313.15,
feed_compositions=[
Composition(p-c, Lype-ComposilionType.weighl) for c in composilions

I
partial_fluxes=|
(flux_hZo_40[i], flux_etoh_40[i]) for i in range(len(compositions))
I
)

measurements hZo - Measurements.from diffusion curve first(spi diffusion curve)
measurements etoh = Measurements.from diffusion curve second(spi diffusion curwve)

fit h2o - find best fit(measurements hZo, n-9)
fit etoh - find best fit(measurements etoh)

fit hZo = find best fit (measurements_ hZo, n=9)
fit etoh = find best fit (measurements etoh)

fit h2o.plot (measurements h2o, temperature=313.1%)

# OQutput:

Temperature 313.15 K

® Experiment
0104 — Fit

Permeance

0.0 0.2 0.4 0.6 0.8 1.0
First component fraction in feed

a

Scheme 11. Cont.
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fit etoh.plot (measurements etoh, temperature=313.15)
# Output:

Temperature 313,15 K

L] ® Experiment
0.007 4 — Fit

0.006

0.005

Permeance
e o
o =3
= =3
w -

0.002

0.001 4

0.000

T T T T T
0.0 0.2 0.4 0.6 0.8 10
First component fraction in feed

b

Scheme 11. Example of fitting experimental data with the find_best_fit() function; Experimental data
on SPI pervaporation performance were taken from [20]; (a) fitting of water permeance as a function
of feed mixture concentration along with experimental data, (b) fitting of ethanol permeance as a
function of feed mixture concentration along with experimental data.

7.9. Evaluation against Experimental Data

Several examples of applying PyVaporation to the fitting of experimental data and
modelling diffusion curves and processes provided above illustrate the suitability of the
instrument for a number of the most commonly solved tasks. In order to illustrate fur-
ther possibilities of the developed framework and the theoretical approach behind it, the
modelling of a non-ideal isothermal process and evaluation of the model against real exper-
imental data were performed. Due to the abundance of data on hydrophilic pervaporation,
the model was evaluated only for application to this pervaporation type. However, the
general theoretical approaches implemented in the package may also be applicable for the
description of hydrophobic pervaporation.

To illustrate the predictive power of PyVaporation, the experimental data provided
by Yave [24] on the performance of Pervap 4101 in relation to water/ethanol mixture
separation was used to model the isothermal process performed by Thiess et al. [44]. Using
an independent information source as a basis for modelling is one of the key advantages of
using a suitable modelling approach. Thus, by comparing the data obtained based on the
membrane performance reported by Yave and experimental data obtained by Thiess et al.,
the applicability of PyVaporation as a tool for solving a typical research task may be
evaluated. The code used to obtain the model is provided in Scheme 12. An illustration of
the modelling results along with the corresponding RMSD values is provided in Figure 5.

In both articles, the performance of Pervap 4101 membranes was studied thoroughly
at 95 °C in relation to the separation of water/ethanol mixtures. It should be noted that the
data provided in [24] were given for an initial feed comprised of 16 wt% water, while the
experimental process in [44] was conducted starting with 10 wt% water in the feed. Due to
the fact that the performance of Pervap 4101 is dependent on the initial feed composition,
the introduction of the FR parameter is necessary to describe the modelled process correctly.
For these reasons, initial permeance values were stated to obtain the appropriate value of
the FR parameter.
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membrane = Membrane.load (" tests/default_membranes/Pervap_Al01")

pv = Pervaporation(

)

membrane=membrane,
mixture=Mixtures.H20 EtOH,

con = Conditions (

model

)

)

membrane area=0.017,

initial feed temperature=368.15,

initial feed amount=1.5,

initial feed composition—Composition(p=0.1, type—CompositionType.weight),
permeate pressure=0,

= pv.non ideal isothermal process(

conditions=con,
diffusion_curve_ set-membrane.diffusion_curve_sets[0],
initial permeances=(

Permeance (0.0153),

Permeance (0.00000632),

) r
number_ of steps=50,
delta_hours=0.2,

Scheme 12. Modelling of the non-ideal isothermal process described in [45] using the membrane
performance data provided in [24].

Flux, kg-m2-h-!

Water fraction in feed, wt%

0.10 A

0.09

0.08

0.07

0.06 -

—— RMSD 1.03 %

0.60

0 2 4 6 8 10
Process time, hours

(a)

0.55 4

0.50 4

0.45 4

0.40 1

0.35 4

0.30 4

RMSD 8.35 %

0 2 4 6 8 10
Process time, hours

(b)

Figure 5. Comparison of experimental (dots) [45] and modelled values with PyVaporation on the
basis of literature [24] (curves) data on the water fraction in feed (a) and water flux (b) as functions of
processing time along with the corresponding RMSD values.
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A comparison of the modelling results with experimental data showed a high level
of accuracy, illustrated by low RMSD values. Lower RMSD values for the water frac-
tion (Figure 5a) in the feed may be associated with higher measurement accuracy when
compared with flux values (Figure 5b). The evaluation of the model obtained using the Py-
Vaporation package against the model proposed by Thiess et al. [44] allows the conclusion
that both models provide results of similar accuracy, while PyVaporation utilized data from
an independent source [24], with a single experimental point being required for modelling
for the calculation of the FR parameter inside the non_ideal_isothermal_process() method.

For further evaluation of the PyVaporation package’s performance, an isothermal
experiment at 68.8 °C involving the separation of the water/ethanol mixtures with an initial
ethanol concentration of 8.7 wt% was performed using Romakon-PM 102 membranes. The
effective membrane area in the cell used was 25.5 cm?, the initial feed amount was 60 g and
the absolute permeate pressure was measured to be 2 + 1 kPa. The data on the performance
of Romakon-PM 102 reported in [15] were used for modelling, and a description of the
experimental setup and methods used is provided in the Supplementary Materials. The
code used to model the experiment is given in Scheme 13, and the evaluation of the model
obtained with PyVaporation against the experimental data is illustrated in Figure 6.

membrane = Membrane. load("tests/default_membranes/RomakonPM_lOZ")

pv = Pervaporation(
membrane=membrane,
mixture=Mixtures.H20 EtOH,
)

initial_composition = Composition(p=0.9134, type=CompositionType.weight)

conditions = Conditions (
membrane_area=2.55e-3,
initial_ feed temperature=341.95,
initial feed amc

initial feed composilion=initial composition,
permeate pressure=l,

)

model = pv.non ideal isothermal process
ditions=conditions,

diffusion_c e_set=membrane.diffusion_curve_sets[0],
number of steps=50

delta hours=0.1,

)

Scheme 13. Modelling a non-ideal isothermal process of water/ethanol mixture concentration with
Romakon-PM 102 membranes.

—— Model, RMSD 5.47 % [e]
0204 @® Experiment
0.18 A
]
= 0.16 - ®
©
[
&
£ 0.14 -
T
[¢]
=
w
0.12 A °
0.10 A
0 1 2 3 4 5

Process time, hours

Figure 6. Comparison of the modelling results (curve) and experimental data (dots) regarding the
isothermal water/ethanol mixture concentration at 68.8 °C with Romakon-PM 102 membranes.
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Both methods implemented in the package for ideal and non-ideal modelling provide
similar results due to the constancy of the components” permeance values in the consid-
ered composition range. The relatively low RMSD value illustrated in Figure 6 indicates
PyVaporation’s accuracy and predictive ability.

Additionally, the modelling of a non-ideal non-isothermal process with PyVapora-
tion was evaluated against the experimental data reported by Chang et al. [45] on the
pervaporation separation of water/ethanol mixture. Time-dependent process modelling
implemented in PyVaporation was treated as quasi-stationary by interpreting the feed
amount as a mass flux and time as the corresponding linear dimension. The initial feed
mass flux was calculated from the volume flux values reported in the work by multiplying
it by the corresponding mixture density value. The experimental data on the membrane
performance reported by Chang and colleagues were used as the basis for modelling. The
feed temperature reached during interstage heating was averaged throughout the obtained
experimental values and assumed to be 95.3 °C. The code used to perform modelling is
provided in Scheme 14, while the modelling results are illustrated in Figure 7, along with
the corresponding experimental values.

membrane = Mcmbrano.load("tests/default_membranes/Chang_et_al_1998")

PV =

)

Pervaporation(

membrane=membrane,
mixture=Mixtures.H20 ELCH,

model temp = []

model area = []

model fraction = [0.062]

for i in range(4):
conditions = Conditions(

membrane area=1,

initial feed temperature=368.475,

initial feed amount=12.106,

initial feed composition=Composition (p=model fraction[i], type=CompositionType.weight),
permeate pressure=1.3,

)

model = pv.non ideal non isothermal process (

conditions=conditions,

diffusion_curve_ set=membrane.diffusion_curve_sets[0],
number of steps=11,

delta hours=0.1,

)

area=[t+i for t in model.time]

model temp.extend(model.feed temperature)

model arca.extend(area)

model fraction.append (model.feed compositions[-1].first)

Scheme 14. Modelling of a non-ideal non-isothermal process described in [45].

The comparison between the modelled and experimental temperatures within the
membrane node illustrated in Figure 7a allows us to conclude that the absolute difference
between them does not exceed 5.5 °C. The predicted concentration of the feed mixture as
a function of membrane area, illustrated in Figure 7b, indicates a good correlation with
experimental data, which is characterized by an RMSD value of 4.39%. Judging by this, the
performance of PyVaporation is not inferior to that of the original model proposed by the
authors in [45] for application to modelling adiabatic non-ideal pervaporation process.
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Figure 7. Illustration of modelling a non-isothermal non-ideal process described in [45] with PyVapo-
ration (curves), along with the corresponding experimental results (dots); (a) feed temperature as a
function of membrane area; (b) weight fraction of water in feed as a function of membrane area.

8. Conclusions

An exponential-polynomial form of the permeance equation is suggested for the de-
scription of highly non-ideal pervaporation separation and was proven to show acceptable
accuracy in the case of hydrophilic pervaporation. The polynomial characteristic of the
inner exponential term allows accounting for local minima and maxima of permeance as a
function of feed composition, which may occur due to the overlapping and/or transition
between the transport mechanisms throughout the considered composition range. The
polynomial representation of the apparent transport activation energy term allows account-
ing for its dependency on feed composition, as observed in some cases. The introduction of
the facilitation rate parameter as an instrument to describe the influence of the initial feed
composition on the form of the membrane’s diffusion curve is demonstrated to be a valid
assumption with relatively strong predictive ability. The methodology of “dry” and “wet”
diffusion curve measurement is discussed and suggested as a way to calculate the facilita-
tion rate parameters. Fitting algorithms implemented as part of the PyVaporation package
allow a researcher to fit experimental data with the suggested permeance equation and use
it for modelling hydrophilic pervaporation processes. The package was demonstrated to
model real experimental data, based on independent sources of membrane performance
data, with high accuracy (RMSD: 5-9% flux, 1-5% separated mixture concentration). A
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format for storing and sharing the information on pervaporation membranes and modelling
results is proposed for the unification of the reported data.

A comprehensive, freely available Python-based functional instrument for modelling
and studying pervaporation processes was developed and introduced. The performance
of the developed package was evaluated against a number of experimental cases of hy-
drophilic pervaporation experiments, which proved its applicability. The comparison
of PyVaporation’s modelling ability with several modelling approaches reported in the
literature indicates that, in most cases, the package may be used to obtain similar mod-
elling results with high predictive accuracy, and could have been successfully used instead
of them.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/article/
10.3390/membranes12080784/s1, Copy of the PyVaporation (v 1.1.4) source code repository;
Figure S1: Pervaporation laboratory setup: AT—air thermostat, C—condenser, CG—carrier gas,
D—digital pressure gauge, FC—flow controller, FS—flow switch, HE—heat exchanger, LP—liquid
pump, LV—liquid vessel, MC—membrane cell, PG—pressure gauge, PR—pressure regulator, TS—
temperature sensor, V—valve, VP—vacuum pump. code-examples.ipynb: Executable JupyterNote-
book file with code examples.
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