Experimental Investigations on the Performance of a Hollow Fiber Membrane Evaporative Cooler (HFMEC) in Hot–Dry Regions
Abstract
:1. Introduction
2. Experimental Setup
3. Data Reduction
3.1. Performance Parameters
3.2. Uncertainty Analysis
4. Results and Discussion
4.1. The Effect of Inlet Air Parameters on the Performance of the HFMEC
4.1.1. Inlet Air Temperature
4.1.2. Inlet Air Relative Humidity
4.2. The Effect of the Flow Rate on the Air Outlet Parameters
4.2.1. Air Flow Rate
4.2.2. Water Flow Rate
4.3. Adaptability Analysis of the HFMEC in each City
4.3.1. Effect of the Flow Rate on the Air Temperature Drop
4.3.2. Effect of the Flow Rate on the Wet-Bulb Efficiency
4.3.3. Effect of the Flow Rate on the Cooling Capacity
4.3.4. Effect of the Flow Rate on the COP
5. Conclusions
- (1)
- The HFMEC performed better under the climates of Urumqi and Karamay, which means it provides a higher level of performance in areas with higher air temperatures or lower humidity levels. Therefore, it has good applicability in hot–dry regions such as Northwest China;
- (2)
- The air outlet temperature of the HFMEC varied from 26.5 °C to 30.8 °C under the climatic conditions of Lanzhou, Xi’an, Yinchuan, Urumqi, and Karamay. For regions with high air temperatures, such as Xi’an and Karamay, employing lower inlet water temperatures or a membrane with better thermal conductivity can reduce the air outlet temperature and improve the applicability of HFMECs in hot regions;
- (3)
- The air outlet relative humidity of the HFMEC ranged from 63.5% to 82.8% in each city. The air outlet relative humidity in Lanzhou, Urumqi, and Karamay satisfied the indoor thermal comfort requirements when the air flow rate was 200 m3/h. In addition, the air outlet relative humidity of the module in Xi’an and Yinchuan required mixing with the fresh outdoor air to meet the indoor thermal comfort requirements. Hence, using a membrane with a lower diffusivity can reduce the relative humidity at the air outlet in order to improve the applicability of HFMECs;
- (4)
- The effect of the air flow rate on the performance parameters was more significant than that of the water flow rate. The maximum cooling capacity and COP of the HFMEC could reach 396.4 W and 4.81, respectively. In addition, the maximum air temperature drop and wet-bulb efficiency could reach 7.5 °C and 62.9%, respectively.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abas, N.; Kalair, A.; Khan, N. Review of fossil fuels and future energy technologies. Futures 2015, 69, 31–49. [Google Scholar] [CrossRef]
- Zhao, X.; Ma, X.W.; Chen, B.Y.; Shang, Y.P.; Song, M.L. Challenges toward carbon neutrality in China: Strategies and counter measures. Resour. Conserv. Recycl. 2022, 176, 105959. [Google Scholar] [CrossRef]
- IEA. World Energy Balances 2019 Database Documentation; International Energy Agency: Paris, France, 2019. [Google Scholar]
- Guo, S.Y.; Yan, D.; Hu, S.; Zhang, Y. Modelling building energy consumption in China under different future scenarios. Energy 2021, 214, 119063. [Google Scholar] [CrossRef]
- Yang, L.; Lam, J.C.; Tsang, C.L. Energy performance of building envelopes in different climate zones in China. Appl. Energy 2008, 85, 800–817. [Google Scholar] [CrossRef]
- Rampazzo, M.; Lionello, M.; Beghi, A.; Sisti, E.; Cecchinato, L. A static moving boundary modelling approach for simulation of indirect evaporative free cooling systems. Appl. Energy 2019, 250, 1719–1728. [Google Scholar] [CrossRef]
- Doğramacı, P.A.; Aydın, D. Comparative experimental investigation of novel organic materials for direct evaporative cooling applications in hot-dry climate. J. Build. Eng. 2020, 30, 101240. [Google Scholar] [CrossRef]
- Xu, P.; Ma, X.L.; Zhao, X.D.; Fancey, K.S. Experimental investigation on performance of fabrics for indirect evaporative cooling applications. Build. Environ. 2016, 110, 104–114. [Google Scholar] [CrossRef]
- Dizaji, F.S.; Hu, E.J.; Chen, L. A comprehensive review of the Maisotsenko-cycle based air conditioning systems. Energy. 2018, 156, 725–749. [Google Scholar] [CrossRef]
- Choudhury, B.; Chatterjee, R.K.; Sarkar, R.P. Review paper on solar-powered air-conditioning through adsorption route. Renew. Sustain. Energy Rev. 2010, 14, 2189–2195. [Google Scholar] [CrossRef]
- Li, W.L.; Li, Y.C.; Zeng, L.Y.; Liu, J. Comparative study of vertical and horizontal indirect evaporative cooling heat recovery exchangers. Int. J. Heat Mass Transf. 2018, 124, 1245–1261. [Google Scholar] [CrossRef]
- Steeman, M.; Janssens, A.; Paepe, M.D. Performance evaluation of indirect evaporative cooling using whole-building hygrothermal simulations. Appl. Therm. Eng. 2009, 29, 2870–2875. [Google Scholar] [CrossRef]
- Fakhrabadi, F.; Kowsary, F. Optimal design of a regenerative heat and mass exchanger for indirect evaporative cooling. Appl. Therm. Eng. 2016, 102, 1384–1394. [Google Scholar] [CrossRef]
- Yang, Y.; Ren, C.Q.; Yang, C.C.; Tu, M.; Luo, B.J.; Fu, J.Q. Energy and exergy performance comparison of conventional, dew point and new external-cooling indirect evaporative coolers. Energy Convers. Manag. 2021, 230, 113824. [Google Scholar] [CrossRef]
- Guo, C.M.; Chen, T.; Zheng, B.; Liu, Q.; Lv, J. Experimental study on evaluation index of indirect evaporative cooling heat transfer performance. Energy Procedia 2019, 158, 5789–5794. [Google Scholar] [CrossRef]
- Cui, X.; Chua, K.J.; Islam, M.R.; Ng, K.C. Performance evaluation of an indirect pre-cooling evaporative heat exchanger operating in hot and humid climate. Energy Convers. Manag. 2015, 102, 140–150. [Google Scholar] [CrossRef]
- Al-Badri, A.R.; Al-Waaly, A.A.Y. The influence of chilled water on the performance of direct evaporative cooling. Energy Build. 2017, 155, 143–150. [Google Scholar] [CrossRef]
- Chiesa, G.; Huberman, N.; Pearlmutter, D.; Grosso, M. Summer discomfort reduction by direct evaporative cooling in Southern Mediterranean areas. Energy Procedia 2017, 111, 588–598. [Google Scholar] [CrossRef]
- Sheng, C.G.; Nnanna, A.G.A. Empirical correlation of cooling efficiency and transport phenomena of direct evaporative cooler. Appl. Therm. Eng. 2012, 40, 48–55. [Google Scholar] [CrossRef]
- Velasco Gómez, E.; Rey Martínez, F.J.; Varela Diez, F.; Molina Leyva, M.J.; Herrero Martín, R. Description and experimental results of a semi-indirect ceramic evaporative cooler. Int. J. Refrig. 2005, 28, 654–662. [Google Scholar] [CrossRef]
- Dhamneya, A.K.; Rajput, S.P.S.; Singh, A. Thermodynamic performance analysis of direct evaporative cooling system for increased heat and mass transfer area. Ain Shams Eng. J. 2018, 9, 2951–2960. [Google Scholar] [CrossRef]
- Cui, X.; Yan, W.C.; Liu, Y.L.; Zhao, M.; Jin, L.W. Performance analysis of a hollow fiber membrane-based heat and mass exchanger for evaporative cooling. Appl. Energy 2020, 271, 115238. [Google Scholar] [CrossRef]
- Cui, X.; Yan, W.C.; Chen, X.J.; Wan, Y.D.; Chua, K.J. Parametric study of a membrane-based semi-direct evaporative cooling system. Energy Build. 2020, 228, 110439. [Google Scholar] [CrossRef]
- Chen, X.J.; Su, Y.H.; Aydin, D.; Zhang, X.X.; Ding, Y.T.; Reay, D.; Law, R.; Riffat, S. Experimental investigations of polymer hollow fibre integrated evaporative cooling system with the fibre bundles in a spindle shape. Energy Build. 2017, 154, 166–174. [Google Scholar] [CrossRef]
- Chen, X.J.; Su, Y.H.; Aydin, D.; Ding, Y.T.; Zhang, S.H.; Reay, D.; Riffat, S. A novel evaporative cooling system with a polymer hollow fibre spindle. Appl. Therm. Eng. 2018, 132, 665–675. [Google Scholar] [CrossRef]
- Englart, S. Use of a membrane module for semi-direct air evaporative cooling. Indoor Built Environ. 2020, 29, 1346–1358. [Google Scholar] [CrossRef]
- Jradi, M.; Riffat, S. Testing and performance analysis of a hollow fiber-based core for evaporative cooling and liquid desiccant dehumidification. Int. J. Green Energy 2016, 13, 1388–1399. [Google Scholar] [CrossRef]
- Kavaklioglu, K.; Koseoglu, M.F.; Caliskan, O. Experimental investigation and radial basis function network modeling of direct evaporative cooling systems. Int. J. Heat Mass Transf. 2018, 126, 139–150. [Google Scholar] [CrossRef]
Module | Value | Unit | Membrane | Value | Unit |
---|---|---|---|---|---|
Inner diameter | 1.2 | mm | Pore size | 0.15 | μm |
Outer diameter | 1.5 | mm | PVAL skin layer thickness | 40 | μm |
Tube pitch | 3 | mm | PVDF porous layer thickness | 110 | μm |
Module size | 500 × 150 × 150 | mm | Membrane thickness | 150 | μm |
Tube number | 2500 | - | Diffusivity | 9 × 10−7 | m2/s |
Arrangement | Staggered | - | Thermal conductivity | 0.17 | W/(m·K) |
City | Name | Ta,db (°C) | Ta,wb (°C) | RHa,in (%) | ωa,in (g/kg) |
---|---|---|---|---|---|
1 | Lanzhou | 32.1 | 22.1 | 42.7 | 12.8 |
2 | Xi’an | 35.1 | 26.8 | 53.1 | 19.0 |
3 | Yinchuan | 31.3 | 22.3 | 46.7 | 13.4 |
4 | Urumqi | 33.7 | 22.7 | 39.5 | 12.9 |
5 | Karamay | 36.7 | 24.6 | 37.8 | 14.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, N.; Zhong, T.; Zhou, L.; Huang, S.; Zeng, S.; Liang, C. Experimental Investigations on the Performance of a Hollow Fiber Membrane Evaporative Cooler (HFMEC) in Hot–Dry Regions. Membranes 2022, 12, 793. https://doi.org/10.3390/membranes12080793
Li N, Zhong T, Zhou L, Huang S, Zeng S, Liang C. Experimental Investigations on the Performance of a Hollow Fiber Membrane Evaporative Cooler (HFMEC) in Hot–Dry Regions. Membranes. 2022; 12(8):793. https://doi.org/10.3390/membranes12080793
Chicago/Turabian StyleLi, Nanfeng, Tao Zhong, Lu Zhou, Simin Huang, Si Zeng, and Caihang Liang. 2022. "Experimental Investigations on the Performance of a Hollow Fiber Membrane Evaporative Cooler (HFMEC) in Hot–Dry Regions" Membranes 12, no. 8: 793. https://doi.org/10.3390/membranes12080793
APA StyleLi, N., Zhong, T., Zhou, L., Huang, S., Zeng, S., & Liang, C. (2022). Experimental Investigations on the Performance of a Hollow Fiber Membrane Evaporative Cooler (HFMEC) in Hot–Dry Regions. Membranes, 12(8), 793. https://doi.org/10.3390/membranes12080793