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Abstract: Membrane fouling significantly hinders the widespread application of membrane tech-
nology. In the current study, a support vector machine (SVM) and artificial neural networks (ANN)
modelling approach was adopted to optimize the membrane permeability in a novel membrane
rotating biological contactor (MRBC). The MRBC utilizes the disk rotation mechanism to generate a
shear rate at the membrane surface to scour off the foulants. The effect of operational parameters
(disk rotational speed, hydraulic retention time (HRT), and sludge retention time (SRT)) was studied
on the membrane permeability. ANN and SVM are machine learning algorithms that aim to predict
the model based on the trained data sets. The implementation and efficacy of machine learning and
statistical approaches have been demonstrated through real-time experimental results. Feed-forward
ANN with the back-propagation algorithm and SVN regression models for various kernel functions
were trained to augment the membrane permeability. An overall comparison of predictive models for
the test data sets reveals the model’s significance. ANN modelling with 13 hidden layers gives the
highest R2 value of >0.99, and the SVM model with the Bayesian optimizer approach results in R2 val-
ues higher than 0.99. The MRBC is a promising substitute for traditional suspended growth processes,
which aligns with the stipulations of ecological evolution and environmentally friendly treatment.

Keywords: machine learning algorithm; artificial neural networks; support vector machines; membrane
fouling; biological wastewater treatment

1. Introduction

The operational parameters influencing the functioning of the rotating biological
contactor (RBC) bioreactor have extensively been reported [1–3]. Operational parameters
include disk rotational speed, hydraulic retention time (HRT), sludge retention time (SRT),
and carrier media type [4,5]. The selection and optimization of parameters strictly depend
on the influent wastewater and effluent quality requirement. Disk rotational speed is an
important parameter for acclimatizing the microorganisms and developing a full-grown
biofilm to digest the organics and nutrients at the carrier surface. It is also responsible
for maintaining sufficient dissolved oxygen (DO) levels inside the bioreactor to facilitate
degradation [6–8]. The selection of SRT and loading rates relies on the wastewater strength
and effluent requirements. A short SRT only facilitates carbon deduction, whereas a longer
SRT results in increased sludge concentration, hindering oxygen transfer [9].

Almost 90% of the global wastewater is discharged into the mainstream without any
treatment. Treating and recycling wastewater are essential for a sustainable environment
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and ecological atmosphere [10]. In recent years, membrane technology, in conjunction with
biological treatment, has improved the effluent quality and removal efficiency [11,12].

RBC is a biological process that employs attached growth bacteria for wastewater treat-
ment. Membrane-integrated RBC as post-treatment has shown great significance [11,13].
The performance of the RBC bioreactor depends on the operational parameters such as
disk rotational speed, HRT, SRT, and microbial activity [14]. The DO is provided to the mi-
croorganism through disk rotation. Hence, disk rotational speed is an important parameter
in controlling the DO levels and microbial community inside the bioreactor. The selection
of appropriate loading rates (HRT and SRT) is important for optimizing the bioreactor
function [15,16].

Membrane rotating biological contactor (MRBC)—a novel membrane-integrated RBC
bioreactor—is a hybrid process in which a membrane is placed between two rotating disks
to scour off the foulants through the generation of shear rate [17]. The disk rotation speed
generates a shear rate near the membrane surface to control the fouling. Recent studies
have revealed that higher HRT results in low hydraulic and organic loading rates and
subsequently low viscosity and sludge concentration. A higher HRT and SRT can facilitate
a higher conversion efficiency and, consequently, a higher membrane permeability [18–20].

In recent years, great emphasis has been given to the control of membrane foul-
ing using artificial neural networks (ANN) and support vector machine (SVM) [21,22].
An effective way to dampen the membrane fouling is the optimization of operational
parameters [23]. The ANN has been successfully applied in microfiltration/ultrafiltration
to predict the system performance, the relationship of different operational parameters
with membrane fouling, and the optimization of the membrane fabrication process [24,25].
Chakraborty et al. [26] predicted the membrane flux by optimizing process parameters us-
ing an ANN model for the chromium-containing aqueous solution. The predicted model is
based on the Bayesian algorithm and consists of two hidden layers. The results of the ANN
model are more precise than the conventional response surface methodology regression
analysis. Soleimani et al. [27] studied the oily wastewater to control the membrane fouling
using an ANN model. The process parameters (temperature, trans-membrane pressure, pH,
and velocity) are optimized using a feed-forward ANN model with back-propagation. The
predicted model results are in excellent agreement (R2 > 0.99) with the experimental and
trained data. Rahmanian et al. [28] studied the UF treatment of wastewater by designing an
ANN model. The operating parameters (pH, trans-membrane pressure, feed concentration,
and electrolyte concentration) were optimized using a feed-forward ANN model. The
predicted model results suggest applying ANN as an effective tool to predict complex
non-linear relationships. SVM is an empirical model technique showing promising results
for non-linear functions and limited data sets [29]. Meng et al. [29] applied SVM to analyze
membrane fouling control and predicted complex filtration behaviors. Therefore, ANN
and SVM have been applied to the current system to optimize operational parameters to
generate a higher shear rate and reduce membrane fouling [30].

Disk rotational speed, HRT, and SRT are significant parameters influencing the perfor-
mance of the MRBC bioreactor. The present study investigated the effect of disk rotational
speed, HRT, and SRT on membrane permeability. The objective of the current study is to
explore the biological performance of the RBC bioreactor treating domestic wastewater,
focusing on the effect of disk rotational speed, HRT, and SRT. The focus of the study is the
development of an ANN prediction model for membrane permeability. A feed-forward
ANN model with back-propagation was used to predict and train the data sets for the
operational parameters. This study also focuses on SVM modelling for the optimization of
operating parameters. A comparison of ANN and SVM is also demonstrated through the
assessment of R2 and various error functions.
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2. Materials and Methods
2.1. Sludge Inoculation

The sludge for the bacteria cultivation was collected from the full-scale wastewater
treatment plant. The sludge was allowed to acclimatize the biofilm atop the polyurethane
form attached to the disks. The bioreactor was fed with constant flow wastewater during
the acclimatization period. The physical observation of the biofilm was performed regularly
to see any changes. The biological performance of the bioreactor was calculated after the
biofilm acclimatization.

2.2. Wastewater Preparation

The synthetic wastewater for the experimentation was prepared by blending leftover
food (1 g/L). The prepared wastewater was left to settle for 2 h to remove the insoluble
impurities. Physical treatment of the synthetic wastewater was performed by filtering
through a 0.45-micron filter paper. The stock solution was diluted to match the municipal
wastewater concentration. The prepared wastewater was analyzed to determine the chemi-
cal oxygen demand (COD), total nitrogen (TN), ammonium, turbidity, pH, and nitrate, as
shown in Table 1.

Table 1. Influent wastewater characteristics.

Contaminant Influent

COD (mg/L) 281 ± 8.5
TN (mg/L) 2.5 ± 0.19

Ammonia (mg/L) 0.66 ± 0.03
Nitrate (mg/L) 0.49 ± 0.04

Turbidity (NTU) 14.6 ± 0.55
pH 6.28 ± 0.21

COD: chemical oxygen demand, TN: total nitrogen.

2.3. Bioreactor Set-up and Operation

The bioreactor was fabricated in-house from acrylic sheets, as shown in Figure 1. The
feed wastewater tank consists of a 45 L capacity fitted with a mechanical stirrer to keep
the concentration of the feed wastewater consistent. The bioreactor had 25 × 25 × 30 cm3

dimensions and had a working volume of 6.5 L fabricated from the acrylic sheets. The
bioreactor was fitted with a stainless-steel shaft driven by a DC motor at variable speed
(30–200 rpm). Five disks of 1 cm thickness and 18 cm diameter were attached to the
stainless-steel shaft. The disks were covered on both sides with polyurethane foam for the
inoculation of bacteria. The disks rotated inside the bioreactor at 40% disk submergence.
The wastewater from the storage tank was fed continuously to the RBC bioreactor, and
treated effluent was transferred to the settling tank. A mechanical stirrer continuously
stirred the feed wastewater at 100 rpm to keep the concentration uniform.

For the biofilm acclimatization, the sludge was poured on the rotating disks, and the
bioreactor was fed with a constant organic loading rate and HRT. No sludge was discharged
during the acclimatization period. The carbonaceous bacteria acclimatize in 3–5 days, while
nitrifying bacteria require 14–17 days. The biofilm was physically observed for any changes
during the acclimatization period. After completing the first phase of the experiments, the
bioreactor achieved a steady-state effluent concentration. After biofilm acclimatization, the
system was investigated for the effect of disk rotational speed, HRT, and SRT on membrane
permeability. The organic loading rates were kept constant throughout the experiments.
The disk rotational speed was increased from 30 to 50 rpm with an interval increase of 5,
while SRT was increased from 5 to 15 d with an interval increase of 2.5. The SRT was set by
wasting a calculated amount of sludge from the bioreactor daily.
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Figure 1. Schematic diagram of RBC-ME configuration.

2.4. Machine Learning Modelling

Machine learning algorithms’ main goal is to fit the model to training data with the
ultimate aim of successfully predicting unknown test data. Good training quality, on
the other hand, does not necessarily correlate to consistent test results. Overfitting is a
well-known example of this. Typically, an overfitted model has a modest training error
but a large test error. The model has acquired an excessive number of undesirable precise
information from the training data and does not fit the unknown test data. Overfitting
may develop due to insufficient training processes and internal limitations, resulting in a
more sensitive and complicated model. To solve the overfitting issue, an internal validation
procedure called cross-validation is used [31,32].

The artificial neural network and support vector machines were used in this research
to simulate the membrane permeability based on the combined influence of predictor
variables, namely disk rotational speed, HRT, and SRT (Table 2). The process flow of
the machine learning models employed in this study is shown in Figure 1. Following
appropriate data collection, the modelling procedure was carried out using MATLAB
2020b. The trained model was chosen with the greatest accuracy achievable based on the
root mean square error and R2.

Table 2. Experimental Data for the Model Development.

Run # Sr # (A) Disk Rotational Speed
(rpm)

(B) HRT
(h)

(C) SRT
(d)

Permeability
(L/m2 h bar)

49 1 40 15 10 296
16 2 50 12 15 275
25 3 23.2 15 10 245
34 4 40 20 10 302
8 5 30 18 5 272

51 6 40 15 10 296
43 7 40 15 10 295
18 8 50 12 15 274
44 9 40 15 10 296.5
33 10 40 9.95 10 291
5 11 50 12 5 269

36 12 40 20 10 303
38 13 40 15 1.6 286
35 14 40 20 10 302
10 15 50 18 5 277
19 16 30 18 15 278
48 17 40 15 10 296
41 18 40 15 18.4 304
39 19 40 15 1.6 286
14 20 30 12 15 270
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Table 2. Cont.

Run # Sr # (A) Disk Rotational Speed
(rpm)

(B) HRT
(h)

(C) SRT
(d)

Permeability
(L/m2 h bar)

30 21 56.8 15 10 245
47 22 40 15 10 295
24 23 50 18 15 281
23 24 50 18 15 280.5
28 25 56.8 15 10 244
9 26 30 18 5 272

53 27 40 15 10 296.5
11 28 50 18 5 276.5
1 29 30 12 5 268

26 30 23.2 15 10 244.5
32 31 40 9.95 10 291.5
6 32 50 12 5 270

20 33 30 18 15 279
46 34 40 15 10 297
15 35 30 12 15 271
55 36 40 15 10 296
50 37 40 15 10 296.5
22 38 50 18 15 280
4 39 50 12 5 269.5
3 40 30 12 5 268.5
2 41 30 12 5 268

45 42 40 15 10 296
17 43 50 12 15 274.5
42 44 40 15 18.4 304.5
29 45 56.8 15 10 245.5
12 46 50 18 5 275
40 47 40 15 18.4 304
54 48 40 15 10 296
31 49 40 9.95 10 291
27 50 23.2 15 10 245
13 51 30 12 15 271
37 52 40 15 1.6 286.5
52 53 40 15 10 295.5
21 54 30 18 15 280
7 55 30 18 5 272

2.5. Artificial Neural Network

Machine learning is the technology that is largely used for prediction modelling by sev-
eral recent research in the field of engineering [33,34]. In regard to machine learning, ANN
is specialized computational algorithms whose application is inspired by the human central
nervous system. Multilayer feed-forward neural network (MLFNN) is the commonest type
of ANN, extensively used in predictive modelling and analyses. It is a back-propagation
learning algorithm that, in this study, is based on the Lavenberg–Marquardt model that
uses the Guass–Newton approach. This typical MLFNN network consists of an input layer
of neurons interconnected by weights to the succeeding hidden layers, where the input
data is processed through an activation function. Finally, this processed information is
transmitted to the output layer. An illustration of a typical neural network is shown in
Figure 2. The number of hidden layers, the corresponding neurons, and activation functions
are iteratively varied to obtain an optimized ANN model.
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2.6. Support Vector Machine

SVM is a recent statistical machine learning technique based on an optimization algo-
rithm invented by Wang et al. [35]. Initially, this method was only utilized for classification
tasks. It has recently been developed to tackle regression problems [35]. It has been ac-
cepted as a successful strategy for QSPR investigations due to its simplicity in dealing
with complicated non-linear problems, given that the outputs are real values rather than
1 or −1 [36]. This may be accomplished by mapping the non-linear characteristics of the
experimental data x in a high dimensional domain with an equally efficient alternative loss
function and then using linear regression in the feature space [37].

SVM is an algorithm that is based on the principles of machine learning. SVM is
based on structural risk minimization (SRM), which reduces over-fitting and increases
generalization by minimizing the learning model’s projected error [38]. SVM does not
provide a pre-determined structure, since the training samples’ contributions judge the
training data sets’ contributions. Only chosen data samples are used for the final model
development, known as “support vectors.” Figure 3 depicts the modelling process and data
shifting into a chosen dimensional space. The SVM uses the objective function presented in
Equation (1).

min
1
2
‖w‖2 + C

n

∑
i=1

(ξi + ξ∗i ) (1)

Given,
(wφ(xi) + b)− yi ≤ ε + ξi

yi − (wφ(xi) + b) ≤ ε + ξ∗i

where w represents the direction vector, and C denotes the adjustment factor, which is a
trade-off between training error and the flatness of the model. ξ∗i and ξi are known as slack
variables, and φ(xi) accounts for the higher dimensional hyperspace for the input vector xi.
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There are two components to Equation (1). The first is the goal function, and the
second compensates for the fitting error. To accomplish its goodness of fit, the SVM model
employs the notion of minimizing of summation of errors. SVMs employ kernel functions
to convert data from a lower-dimensional space to a higher-dimensional domain. The
most often-utilized kernel functions are the radial basis function (RBF), linear, Gaussian,
polynomial, and non-linear functions [31].

3. Results and Discussion
3.1. Artificial Neural Networks

The data are divided into three categories in the ANN modeling process: 70% training,
15% validation, and 15% testing. The MLFNN equipped with the Lavenberg–Marquardt
algorithm adjusts the weights using back-propagation to reduce the error function value.
This cycle is repeated until the error function reaches the minimal value and stabilizes; thus,
the network is declared trained. MLFNN is not only simple but is faster in the training
process and, at the same time, is capable of learning non-linear models in real-time. In
this research, the sigmoid function “tansig” and the linear activation function “purlin”
are used in the hidden and output layers. The “tansig” activation function is given in
Equations (2) and (3) [39].

f (x) =
ex − e−x

ex + e−x (2)

Given

xj =
N

∑
i=1

wijyi + bj (3)

where x in Equation (2) is the weighted sum of the inputs, which is calculated in terms of
weights (w), biases (b), and output (y) according to Equation (3).

The most optimized network was obtained with one hidden layer containing 13 hidden
neurons. The performance index R-squared given in Figure 4, and MSE values for the
training testing and validation for the trained network are 0.99, 0.99, 0.99, and 0.26, 0.31, and
0.21, respectively. Error histogram and best validation performance are given in Figure 5.
Figure 6 shows the comparison with training and testing performance using predictive
permeability and actual permeability.
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3.2. Support Vector Machine

The data in this research were separated into training and external validation/testing
sets at a ratio of 85 percent and 15%, respectively. The cross-validation folds for training the
SVM models were set to k-folds = 5. Three optimization techniques were used in the training
process: Bayesian optimization, grid search, and random search. The hyperparameters
were tuned throughout the training phase until acceptable results were achieved. Various
kernel functions were tested in this research to see which was the best among them for
developing a robust model. The cubic kernel function was found suitable with the best-
optimized model, as shown in Equation (3) [40]. Figures 7–9 show the training of SVMs
with random search, Bayesian, and grid search optimizers, along with the training and
testing results.

k(x, y) = [(x · y) + 1]3 (4)
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SVM has been applied to predict the membrane permeability for the operating param-
eters (disk rotational speed, HRT, and SRT). Previous studies also show that SVM has been
applied to validate the effect of operating parameters, membrane properties, and filtrate
characteristics on membrane fouling [41–43]. SVM modelling approach outperforms other
models in terms of membrane resistance estimation in the membrane bioreactor [44]. The
database of SVM training models can be used to predict the membrane fouling behavior
for the unknown data sets. Thus, the non-linear relationship between the operational and
output parameters (membrane fouling) results in efficient and powerful perdition SVM
models compared to traditional empirical for the complex filtration processes.

3.3. Performance Comparison of Trained Models

The performance of the models developed through ANN and SVM were compared for
the correlation coefficient (R2), RMSE, MBE, MAE, and NSE. The R2 value shows whether
a linear relationship lies between the expected and observed membrane fouling values.
RSME indicates the difference between the expected vs. calculated value. Table 3 shows
the performance comparison of the trained modes through ANN and SVM for both the
trained and unseen data sets. Table 3 shows that the ANN model with 13 nodes results in
the best R2 value of 0.999 along with other error indexes for the trained data set. The R2

for the SVM Bayesian optimizer results in a 0.992 value, indicating superior performance
compared to SVM grid search and SVM random search.
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Table 3. Performance comparison of trained models.

Error Index

ANN 13 SVM Bayesian Optimizer SVM Grid Search SVM Random Search

Train
Data Unseen Data Train

Data Unseen Data Train
Data Unseen Data Train

Data Unseen Data

RMSE 0.514 5.80 2.141 6.014 2.343 5.883 1.803 6.602
MBE 0.044 1.636 −0.152 −0.75 −0.013 −0.58 0.258 −0.284
MAE 0.367 3.77 2 4.124 2.189 4.15 1.618 4.456
NSE 0.999 0.713 0.984 0.7 0.981 0.706 0.989 0.63
R2 0.999 0.74 0.992 0.798 0.983 0.793 0.989 0.805

4. Conclusions

Membrane fouling dampens the application of membrane technology for wastewater
treatment. The utilization of disk rotation to supply oxygen to microorganisms results in
higher microbial activity and subsequently higher membrane permeability. The membrane
placed in between two rotating disks results in a compact design with high removal
efficiencies. In this study, the MRBC employs shear generation through disk rotation
to reduce membrane fouling. The SVM and ANN modelling approach optimizes the
operational parameters (disk rotational speed, HRT, and SRT). A higher value for HRT
(18 h) and SRT (15 d) enables higher membrane fouling control. The SVM and ANN
modelling results showed that all three operational parameters notably affect the membrane
permeability. The SVM and ANN result in a higher R2 value (>0.99), indicating the
model’s significance. The predictive model was tested for the unknown data sets, and the
findings are in close agreement with the proposed model. The application of optimized
and decentralized MRBC can result in a sustainable and cleaner environment.
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