Combining Computational Screening and Machine Learning to Predict Metal–Organic Framework Adsorbents and Membranes for Removing CH4 or H2 from Air
Abstract
:1. Introduction
2. Models and Methods
2.1. Model
2.2. Simulation Method
2.3. Machine Learning
3. Results and Discussion
3.1. Adsorption and Diffusion
3.2. Permeation
3.3. Machine Learning
3.4. Top-Performing MOFs and MOFMs
3.5. Design Strategies of MOFs and MOFMs with High Performances
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, W.; Xia, X.; Li, S. Large-scale evaluation of cascaded adsorption heat pumps based on metal/covalent–organic frameworks. J. Mater. Chem. A 2019, 7, 25010–25019. [Google Scholar] [CrossRef]
- Lin, R.-B.; Xiang, S.; Zhou, W.; Chen, B. Microporous metal-organic framework materials for gas separation. Chem 2020, 6, 337–363. [Google Scholar] [CrossRef]
- Van Vleet, M.J.; Weng, T.T.; Li, X.Y.; Schmidt, J.R. In situ, time-resolved, and mechanistic studies of metal-organic framework nucleation and growth. Chem. Rev. 2018, 118, 3681–3721. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Zhang, H.; Chan, J.Y.; Ou, R.; Zhu, H.; Forsyth, M.; Marijanovic, E.M.; Doherty, C.M.; Marriott, P.J.; Holl, M.M.B.; et al. Homochiral MOF–polymer mixed matrix membranes for efficient separation of chiral molecules. Angew. Chem. Int. Ed. 2019, 58, 16928–16935. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Wang, T.; Cai, P.; Chen, X. Nanomaterials discovery and design through machine learning. Small Methods 2019, 3, 1900025. [Google Scholar] [CrossRef]
- Shi, Z.; Liang, H.; Yang, W.; Liu, J.; Liu, Z.; Qiao, Z. Machine learning and in silico discovery of metal-organic frameworks: Methanol as a working fluid in adsorption-driven heat pumps and chillers. Chem. Eng. Sci. 2020, 214, 115430. [Google Scholar] [CrossRef]
- Yuan, X.; Li, L.; Shi, Z.; Liang, H.; Li, S.; Qiao, Z. Molecular-fingerprint machine-learning-assisted design and prediction for high-performance MOFs for capture of NMHCs from air. Adv. Powder Mater. 2022, 1, 100026. [Google Scholar] [CrossRef]
- He, T.; Pachfule, P.; Wu, H.; Xu, Q.; Chen, P. Hydrogen carriers. Nat. Rev. Mater. 2016, 1, 16059. [Google Scholar] [CrossRef]
- Feng, L.; Wang, Y.; Zhang, K.; Wang, K.-Y.; Fan, W.; Wang, X.; Powell, J.A.; Guo, B.; Dai, F.; Zhang, L.; et al. Molecular pivot-hinge installation to evolve topology in rare-earth metal-organic frameworks. Angew. Chem. Int. Ed. 2019, 58, 16682–16690. [Google Scholar] [CrossRef]
- Luo, L.; Lo, W.S.; Si, X.; Li, H.; Wu, Y.; An, Y.; Zhu, Q.; Chou, L.Y.; Li, T.; Tsung, C.K. Directional engraving within single crystalline metal-organic framework particles via oxidative linker cleaving. J. Am. Chem. Soc. 2019, 141, 20365–20370. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, Y.; Lei, J.; Wang, S.; Ji, X.; Liu, H.; Yang, Q. Metal-organic-framework-derived carbon nanostructures for site-specific dual-modality photothermal/photodynamic thrombus therapy. Adv. Sci. 2019, 6, 1901378. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Lu, K.; Poon, C.; Lin, W. Metal-organic frameworks as sensory materials and imaging agents. Inorg. Chem. 2014, 53, 1916–1924. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.; Ren, J.; Yang, Q.; Liu, D. A robust calcium-based microporous metal-organic framework for efficient CH4/N2 separation. Chem. Eng. J. 2021, 408, 127294. [Google Scholar] [CrossRef]
- Xu, G.J.; Meng, Z.S.; Liu, Y.Z.; Guo, X.J.; Deng, K.M.; Ding, L.F.; Lu, R.F. Porous MOF-205 with multiple modifications for efficiently storing hydrogen and methane as well as separating carbon dioxide from hydrogen and methane. Int. J. Energ. Res. 2019, 43, 7517–7528. [Google Scholar] [CrossRef]
- Kang, Z.; Xue, M.; Fan, L.; Huang, L.; Guo, L.; Wei, G.; Chen, B.; Qiu, S. Highly selective sieving of small gas molecules by using an ultra-microporous metal–organic framework membrane. Energ. Environ. Sci. 2014, 7, 4053–4060. [Google Scholar] [CrossRef]
- Hou, Q.; Wu, Y.; Zhou, S.; Wei, Y.; Caro, J.; Wang, H. Ultra-tuning of the aperture size in stiffened ZIF-8_Cm frameworks with mixed-linker strategy for enhanced CO2/CH4 separation. Angew. Chem. Int. Ed. 2019, 58, 327–331. [Google Scholar] [CrossRef]
- Gulbalkan, H.C.; Haslak, Z.P.; Altintas, C.; Uzun, A.; Keskin, S. Assessing CH4/N2 separation potential of MOFs, COFs, IL/MOF, MOF/Polymer, and COF/Polymer composites. Chem. Eng. J. 2022, 428, 131239. [Google Scholar] [CrossRef]
- Belmabkhout, Y.; Mouttaki, H.; Eubank, J.F.; Guillerm, V.; Eddaoudi, M. Effect of pendant isophthalic acid moieties on the adsorption properties of light hydrocarbons in HKUST-1-like tbo-MOFs: Application to methane purification and storage. RSC Adv. 2014, 4, 63855–63859. [Google Scholar] [CrossRef]
- Kang, Z.; Fan, L.; Sun, D. Recent advances and challenges of metal–organic framework membranes for gas separation. J. Mater. Chem. A 2017, 5, 10073–10091. [Google Scholar] [CrossRef]
- Fan, H.; Peng, M.; Strauss, I.; Mundstock, A.; Meng, H.; Caro, J. MOF-in-COF molecular sieving membrane for selective hydrogen separation. Nat. Commun. 2021, 12, 38. [Google Scholar] [CrossRef]
- Yang, L.; Qian, S.; Wang, X.; Cui, X.; Chen, B.; Xing, H. Energy-efficient separation alternatives: Metal-organic frameworks and membranes for hydrocarbon separation. Chem. Soc. Rev. 2020, 49, 5359–5406. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Feng, X.; Yuan, S.; Zhou, J.; Wang, B. Challenges and recent advances in MOF-polymer composite membranes for gas separation. Inorg. Chem. Front. 2016, 3, 896–909. [Google Scholar] [CrossRef]
- Liu, G.; Chernikova, V.; Liu, Y.; Zhang, K.; Belmabkhout, Y.; Shekhah, O.; Zhang, C.; Yi, S.; Eddaoudi, M.; Koros, W.J. Mixed matrix formulations with MOF molecular sieving for key energy-intensive separations. Nat. Mater. 2018, 17, 283. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Fin, H.; Ma, Q.; Mo, K.; Mao, H.; Feldhoff, A.; Cao, X.; Li, Y.; Pan, F.; Jiang, Z. A MOF glass membrane for gas separation. Angew. Chem. Int. Ed. 2020, 59, 4365–4369. [Google Scholar] [CrossRef]
- Watanabe, T.; Sholl, D.S. Accelerating applications of metal-organic frameworks for gas adsorption and separation by computational screening of materials. Langmuir 2012, 28, 14114–14128. [Google Scholar] [CrossRef]
- Qiao, Z.; Peng, C.; Zhou, J.; Jiang, J. High-throughput computational screening of 137953 metal–organic frameworks for membrane separation of a CO2/N2/CH4 mixture. J. Mater. Chem. A 2016, 4, 15904–15912. [Google Scholar] [CrossRef]
- Qiao, Z.; Xu, Q.; Jiang, J. Computational screening of hydrophobic metal–organic frameworks for the separation of H2S and CO2 from natural gas. J. Mater. Chem. A 2018, 6, 18898–18905. [Google Scholar] [CrossRef]
- McIntyre, S.M.; Shan, B.; Wang, R.; Zhong, C.; Liu, J.; Mu, B. Monte carlo simulations to examine the role of pore structure on ambient air separation in metal–organic frameworks. Ind. Eng. Chem. Res. 2018, 57, 9240–9253. [Google Scholar] [CrossRef]
- Qiao, Z.; Li, L.; Li, S.; Liang, H.; Zhou, J.; Snurr, R.Q. Molecular fingerprint and machine learning to accelerate design of high-performance homochiral metal-organic frameworks. AIChE J. 2021, 67, e17352. [Google Scholar] [CrossRef]
- Shi, Z.; Yuan, X.; Yan, Y.; Tang, Y.; Li, J.; Liang, H.; Tong, L.; Qiao, Z. Techno-economic analysis of metal–organic frameworks for adsorption heat pumps/chillers: From directional computational screening, machine learning to experiment. J. Mater. Chem. A 2021, 9, 7656–7666. [Google Scholar] [CrossRef]
- Anderson, R.; Rodgers, J.; Argueta, E.; Biong, A.; Gómez-Gualdrón, D.A. Role of pore chemistry and topology in the CO2 capture capabilities of MOFs: From molecular simulation to machine learning. Chem. Mater. 2018, 30, 6325–6337. [Google Scholar] [CrossRef]
- Moosavi, S.M.; Nandy, A.; Jablonka, K.M.; Ongari, D.; Janet, J.P.; Boyd, P.G.; Lee, Y.; Smit, B.; Kulik, H.J. Understanding the diversity of the metal-organic framework ecosystem. Nat. Commun. 2020, 11, 4068. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, L.; Lin, R.-B.; Zhou, W.; Zhang, Z.; Xiang, S.; Chen, B. Porous metal-organic frameworks for gas storage and separation: Status and challenges. EnergyChem 2019, 1, 100006. [Google Scholar] [CrossRef]
- Yan, Y.; Shi, Z.; Li, H.; Li, L.; Yang, X.; Li, S.; Liang, H.; Qiao, Z. Machine learning and in-silico screening of metal–organic frameworks for O2/N2 dynamic adsorption and separation. Chem. Eng. J. 2022, 427, 131604. [Google Scholar] [CrossRef]
- Tang, H.; Xu, Q.; Wang, M.; Jiang, J. Rapid screening of metal-organic frameworks for propane/propylene separation by synergizing molecular simulation and machine learning. ACS Appl. Mater. Inter. 2021, 13, 53454–53467. [Google Scholar] [CrossRef]
- Rosen, A.S.; Iyer, S.M.; Ray, D.; Yao, Z.; Aspuru-Guzik, A.; Gagliardi, L.; Notestein, J.M.; Snurr, R.Q. Machine learning the quantum-chemical properties of metal–organic frameworks for accelerated materials discovery. Matter 2021, 4, 1578–1597. [Google Scholar] [CrossRef]
- Moosavi, S.M.; Chidambaram, A.; Talirz, L.; Haranczyk, M.; Stylianou, K.C.; Smit, B. Capturing chemical intuition in synthesis of metal-organic frameworks. Nat. Commun. 2019, 10, 539. [Google Scholar] [CrossRef]
- Azar, A.N.V.; Velioglu, S.; Keskin, S. Large-scale computational screening of metal organic framework (MOF) membranes and MOF-based polymer membranes for H2/N2 separations. ACS Sustain. Chem. Eng. 2019, 7, 9525–9536. [Google Scholar] [CrossRef]
- Qiao, Z.; Xu, Q.; Jiang, J. High-throughput computational screening of metal-organic framework membranes for upgrading of natural gas. J. Membr. Sci. 2018, 551, 47–54. [Google Scholar] [CrossRef]
- Bai, X.; Shi, Z.; Xia, H.; Li, S.; Liu, Z.; Liang, H.; Liu, Z.; Wang, B.; Qiao, Z. Machine-Learning-Assisted High-Throughput computational screening of Metal-Organic framework membranes for hydrogen separation. Chem. Eng. J. 2022, 446, 136783. [Google Scholar] [CrossRef]
- Skoulidas, A.I.; Sholl, D.S. Self-diffusion and transport diffusion of light gases in metal-organic framework materials assessed using molecular dynamics simulations. J. Phys. Chem. B 2005, 109, 15760–15768. [Google Scholar] [CrossRef] [PubMed]
- Erucar, I.; Keskin, S. Computational assessment of MOF membranes for CH4/H2 separations. J. Membr. Sci. 2016, 514, 313–321. [Google Scholar] [CrossRef]
- Adatoz, E.; Avci, A.K.; Keskin, S. Opportunities and challenges of MOF-based membranes in gas separations. Sep. Purif. Technol. 2015, 152, 207–237. [Google Scholar] [CrossRef]
- Avci, G.; Velioglu, S.; Keskin, S. High-throughput screening of MOF adsorbents and membranes for H2 purification and CO2 capture. ACS Appl. Mater. Inter. 2018, 10, 33693–33706. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.G.; Camp, J.; Haranczyk, M.; Sikora, B.J.; Bury, W.; Krungleviciute, V.; Yildirim, T.; Farha, O.K.; Sholl, D.S.; Snurr, R.Q. Computation-ready, experimental metal–organic frameworks: A tool to enable high-throughput screening of nanoporous crystals. Chem. Mater. 2014, 26, 6185–6192. [Google Scholar] [CrossRef]
- Willems, T.F.; Rycroft, C.H.; Kazi, M.; Meza, J.C.; Haranczyk, M. Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials. Micropor. Mesopor. Mat. 2012, 149, 134–141. [Google Scholar] [CrossRef]
- Zhou, Y.P.; Wei, L.F.; Yang, J.; Sun, Y.; Zhou, L. Adsorption of oxygen on superactivated carbon. J. Chem. Eng. Data 2005, 50, 1068–1072. [Google Scholar] [CrossRef]
- Potoff, J.J.; Siepmann, J.I. Vapor-liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen. AIChE J. 2001, 47, 1676–1682. [Google Scholar] [CrossRef]
- Garberoglio, G.; Skoulidas, A.I.; Johnson, J.K. Adsorption of gases in metal organic materials: Comparison of simulations and experiments. J. Phys. Chem. B 2005, 109, 13094–13103. [Google Scholar] [CrossRef]
- Qiao, Z.; Xu, Q.; Cheetham, A.K.; Jiang, J. High-throughput computational screening of metal–organic frameworks for thiol capture. J. Phys. Chem. C 2017, 121, 22208–22215. [Google Scholar] [CrossRef]
- Ewald, P.P. Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann. Phys. 1921, 369, 253–287. [Google Scholar] [CrossRef]
- Hantal, G.; Jedlovszky, P.; Hoang, P.N.M.; Picaud, S. Calculation of the adsorption isotherm of formaldehyde on ice by grand canonical Monte Carlo simulation. J. Phys. Chem. C 2007, 111, 14170–14178. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Wilmer, C.E.; Farha, O.K.; Bae, Y.-S.; Hupp, J.T.; Snurr, R.Q. Structure-property relationships of porous materials for carbon dioxide separation and capture. Energ. Environ. Sci. 2012, 5, 9849–9856. [Google Scholar] [CrossRef]
- Keskin, S.; Sholl, D.S. Efficient methods for screening of metal organic framework membranes for gas separations using atomically detailed models. Langmuir 2009, 25, 11786–11795. [Google Scholar] [CrossRef]
- Yuan, X.; Deng, X.; Cai, C.; Shi, Z.; Liang, H.; Li, S.; Qiao, Z. Machine learning and high-throughput computational screening of hydrophobic metal-organic frameworks for capture of formaldehyde from air. Green Energy Environ. 2021, 6, 759–770. [Google Scholar] [CrossRef]
- Deng, X.; Yang, W.; Li, S.; Liang, H.; Shi, Z.; Qiao, Z. Large-scale screening and machine learning to predict the computation-ready, experimental metal-organic frameworks for CO2 capture from air. Appl. Sci. 2020, 10, 569. [Google Scholar] [CrossRef]
- Wu, X.; Xiang, S.; Su, J.; Cai, W. Understanding quantitative relationship between methane storage capacities and characteristic properties of metal-organic frameworks based on machine learning. J. Phys. Chem. C 2019, 123, 8550–8559. [Google Scholar] [CrossRef]
- Cai, C.; Li, L.; Deng, X.; Li, S.; Liang, H.; Qiao, Z. Machine learning and high-throughput computational screening of metal-organic framework for separation of methane/ethane/propane. Acta Chim. Sin. 2020, 78, 427–436. [Google Scholar] [CrossRef]
- Yang, W.; Liang, H.; Peng, F.; Liu, Z.; Liu, J.; Qiao, Z. Computational screening of metal-organic framework membranes for the separation of 15 gas mixtures. Nanomaterials 2019, 9, 467. [Google Scholar] [CrossRef]
- Sumer, Z.; Keskin, S. Adsorption- and membrane-based CH4/N2 separation performances of MOFs. Ind. Eng. Chem. Res. 2017, 56, 8713–8722. [Google Scholar] [CrossRef]
- Tang, H.; Jiang, J. In silico screening and design strategies of ethane-selective metal-organic frameworks for ethane/ethylene separation. AIChE J. 2021, 67, e17025. [Google Scholar] [CrossRef]
- Rappé, A.K.; Casewit, C.J.; Colwell, K.S.; Goddard, W.A., III; Skiff, W.M. Uff a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 1992, 114, 10024–10035. [Google Scholar] [CrossRef]
- Stoll, J.; Vrabec, J.; Hasse, H. Vapor-liquid equilibria of mixtures containing nitrogen, oxygen, carbon dioxide, and ethane. AIChE J. 2003, 49, 2187–2198. [Google Scholar] [CrossRef]
- Martin, M.G.; Siepmann, J.I. Transferable Potentials for Phase Equilibria. 1. United-Atom Description of n-Alkanes. J. Phys. Chem. B 1998, 102, 2569–2577. [Google Scholar] [CrossRef]
- Shah, M.S.; Tsapatsis, M.; Siepmann, J.I. Development of the Transferable Potentials for Phase Equilibria Model for Hydrogen Sulfide. J. Phys. Chem. B 2015, 119, 7041–7052. [Google Scholar] [CrossRef]
System | Performance Indicators | Machine Learning Methods | Training Set | Test Set | ||||
---|---|---|---|---|---|---|---|---|
R | MAE | RMSE | R | MAE | RMSE | |||
CH4/(O2 + N2) | DCH4 | TPOT | 0.93 | 1.20 | 3.44 | 0.88 | 1.48 | 3.15 |
DT | 0.86 | 1.98 | 4.70 | 0.80 | 1.87 | 3.96 | ||
RF | 0.91 | 1.46 | 3.87 | 0.85 | 2.08 | 4.42 | ||
Sads(CH4/O2+N2) | TPOT | 0.98 | 0.21 | 0.56 | 0.95 | 0.39 | 0.72 | |
DT | 0.96 | 0.39 | 0.72 | 0.93 | 0.52 | 0.86 | ||
RF | 0.99 | 0.15 | 0.42 | 0.96 | 0.36 | 0.64 | ||
Sdiff(CH4/O2+N2) | TPOT | 0.90 | 0.10 | 0.19 | 0.84 | 0.14 | 0.22 | |
DT | 0.85 | 0.15 | 0.23 | 0.78 | 0.16 | 0.25 | ||
RF | 0.91 | 0.10 | 0.18 | 0.85 | 0.14 | 0.21 | ||
log(PCH4) | TPOT | 0.98 | 0.35 | 0.47 | 0.97 | 0.37 | 0.52 | |
DT | 0.99 | 0.14 | 0.37 | 0.98 | 0.29 | 0.47 | ||
RF | 0.99 | 0.21 | 0.32 | 0.99 | 0.26 | 0.36 | ||
log(Sperm(CH4/O2+N2)) | TPOT | 0.97 | 0.19 | 0.34 | 0.96 | 0.21 | 0.38 | |
DT | 0.97 | 0.19 | 0.37 | 0.95 | 0.21 | 0.36 | ||
RF | 0.98 | 0.14 | 0.29 | 0.97 | 0.17 | 0.31 | ||
H2/(O2 + N2) | DH2 | TPOT | 0.98 | 4.58 | 9.36 | 0.95 | 6.36 | 10.81 |
DT | 0.96 | 8.01 | 12.94 | 0.92 | 8.25 | 13.81 | ||
RF | 0.99 | 3.03 | 5.50 | 0.95 | 6.30 | 10.73 | ||
log(Sads(H2/O2+N2)) | TPOT | 0.97 | 0.03 | 0.10 | 0.95 | 0.06 | 0.14 | |
DT | 0.97 | 0.06 | 0.11 | 0.92 | 0.08 | 0.17 | ||
RF | 0.98 | 0.03 | 0.08 | 0.95 | 0.06 | 0.13 | ||
log(Sdiff(H2/O2+N2)) | TPOT | 0.76 | 0.12 | 0.18 | 0.71 | 0.13 | 0.19 | |
DT | 0.71 | 0.13 | 0.20 | 0.65 | 0.13 | 0.21 | ||
RF | 0.78 | 0.12 | 0.17 | 0.73 | 0.12 | 0.19 | ||
PH2 | TPOT | 0.98 | 556.09 | 1226.85 | 0.94 | 1179.56 | 2367.19 | |
DT | 0.97 | 961.07 | 1862.85 | 0.91 | 1497.22 | 2896.62 | ||
RF | 0.98 | 694.80 | 1418.32 | 0.93 | 1245.29 | 2498.44 | ||
Sperm(H2/O2+N2) | TPOT | 0.97 | 0.13 | 0.19 | 0.96 | 0.17 | 0.25 | |
DT | 0.97 | 0.13 | 0.20 | 0.94 | 0.19 | 0.29 | ||
RF | 0.99 | 0.07 | 0.11 | 0.96 | 0.15 | 0.23 |
Application | Systems | CSD Code | LCD (Å) | ϕ | VSA (m2/cm3) | PLD (Å) | ρ (kg/m3) | Qst (kJ/mol) | K (mol/kg/Pa) | DCH4 (10−6 cm2/s) | Sads | Sdiff |
---|---|---|---|---|---|---|---|---|---|---|---|---|
MOFs | CH4/N2 + O2 | ITAHEQ | 4.67 | 0.15 | 105.10 | 4.13 | 1774.31 | 25.29 | 1.26 × 10−5 | 4.84 | 7.61 | 6.79 |
QATLEE | 4.25 | 0.31 | 289.95 | 4.04 | 2185.04 | 25.25 | 2.28 × 10−5 | 19.58 | 5.57 | 6.88 | ||
XEJVOZ | 5.05 | 0.16 | 274.91 | 4.70 | 2255.03 | 24.01 | 1.35 × 10−5 | 14.76 | 7.05 | 4.93 | ||
FUDQIF | 4.38 | 0.37 | 261.53 | 3.86 | 1573.76 | 27.47 | 7.58 × 10−5 | 8.92 | 6.64 | 4.69 | ||
REGJIW | 4.22 | 0.30 | 239.00 | 4.03 | 2185.50 | 24.82 | 1.73 × 10−5 | 14.90 | 5.11 | 5.98 | ||
H2/N2 + O2 | ja4050828 | 2.89 | 0.04 | 0.00 | 2.41 | 1779.43 | 4.57 | 3.3 × 10−9 | 5.97 | 153.95 | 504.05 | |
ja4044642_si_002 | 2.90 | 0.04 | 0.00 | 2.43 | 1773.83 | 4.60 | 3.6 × 10−9 | 7.08 | 119.50 | 87.59 | ||
ja403810k_si_003 | 2.92 | 0.04 | 0.00 | 2.44 | 1764.65 | 4.80 | 4.2 × 10−9 | 4.14 | 91.54 | 161.42 | ||
UMEMAB | 2.97 | 0.09 | 0.00 | 2.51 | 2543.92 | 6.19 | 8.8 × 10−9 | 1.04 | 11.22 | 19.43 | ||
IFUDAO | 2.98 | 0.12 | 0.00 | 2.84 | 1772.35 | 6.11 | 1.9 × 10−9 | 1.08 | 9.03 | 17.63 | ||
Application | Systems | CSD Code | LCD (Å) | ϕ | VSA (m2/cm3) | PLD (Å) | ρ (kg/m3) | Qst (kJ/mol) | K (mol/kg/Pa) | P (barrer) a | Sperm | |
MOFMs | CH4/N2 + O2 | GOJRED | 7.79 | 0.34 | 362.41 | 2.85 | 1251.40 | 40.28 | 4.47 × 10−4 | 72177.49 | 892.96 | |
ZIHTEP | 4.35 | 0.17 | 108.53 | 3.49 | 1109.96 | 20.74 | 3.85 × 10−6 | 475.23 | 23.97 | |||
XORGUI | 4.07 | 0.35 | 58.28 | 3.22 | 1719.10 | 26.83 | 1.49 × 10−5 | 312.12 | 13.53 | |||
LULJAE | 3.65 | 0.30 | 57.51 | 3.28 | 1414.94 | 23.86 | 8.18 × 10−6 | 1038.17 | 11.98 | |||
YAYPAR | 3.81 | 0.18 | 4.86 | 3.12 | 2963.52 | 25.23 | 4.16 × 10−6 | 521.57 | 11.72 | |||
H2/N2 + O2 | WENSIS | 2.75 | 0.25 | 0.00 | 2.44 | 1625.34 | 16.23 | 9.07 × 10−7 | 8900.57 | 28.15 | ||
IDAZEU | 2.74 | 0.25 | 0.00 | 2.46 | 2245.15 | 16.40 | 6.73 × 10−7 | 9354.21 | 22.65 | |||
IQUNAJ01 | 2.83 | 0.25 | 0.00 | 2.52 | 1719.74 | 16.28 | 8.85 × 10−7 | 9726.40 | 19.04 | |||
IQUNAJ | 2.83 | 0.24 | 0.00 | 2.52 | 1726.63 | 16.44 | 8.63 × 10−7 | 8950.93 | 19.30 | |||
YAFGAP | 2.75 | 0.24 | 0.00 | 2.44 | 2321.42 | 14.40 | 3.86 × 10−7 | 6142.86 | 24.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Wang, C.; Zeng, Y.; Li, D.; Yan, Y.; Zhu, X.; Qiao, Z. Combining Computational Screening and Machine Learning to Predict Metal–Organic Framework Adsorbents and Membranes for Removing CH4 or H2 from Air. Membranes 2022, 12, 830. https://doi.org/10.3390/membranes12090830
Li H, Wang C, Zeng Y, Li D, Yan Y, Zhu X, Qiao Z. Combining Computational Screening and Machine Learning to Predict Metal–Organic Framework Adsorbents and Membranes for Removing CH4 or H2 from Air. Membranes. 2022; 12(9):830. https://doi.org/10.3390/membranes12090830
Chicago/Turabian StyleLi, Huilin, Cuimiao Wang, Yue Zeng, Dong Li, Yaling Yan, Xin Zhu, and Zhiwei Qiao. 2022. "Combining Computational Screening and Machine Learning to Predict Metal–Organic Framework Adsorbents and Membranes for Removing CH4 or H2 from Air" Membranes 12, no. 9: 830. https://doi.org/10.3390/membranes12090830
APA StyleLi, H., Wang, C., Zeng, Y., Li, D., Yan, Y., Zhu, X., & Qiao, Z. (2022). Combining Computational Screening and Machine Learning to Predict Metal–Organic Framework Adsorbents and Membranes for Removing CH4 or H2 from Air. Membranes, 12(9), 830. https://doi.org/10.3390/membranes12090830