Impact of Hierarchical Cation-Exchange Membranes’ Chemistry and Crosslinking Level on Electrodialysis Demineralization Performances of a Complex Food Solution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Membrane Characterization and Morphology
Thickness
Microscopy
Profilometer
Ionic Conductance and Conductivity
Selectivity
Area Specific Resistance
2.2.2. Electrodialysis experiments
ED Setup and Configuration
Limiting Current Density
Performance Evaluation
Whey Demineralization
2.2.3. Statistical Analyses
3. Results and Discussion
3.1. Membrane Characterization and Morphology
3.2. Ionic Conductance and Conductivity
3.3. Area Specific Resistance and Selectivity
3.4. Electrodialysis Experiments
3.4.1. Limiting Current Density
3.4.2. Change in Membrane Properties
3.4.3. Whey Demineralization
3.4.4. Variation of pH
3.4.5. Global System Resistance
3.4.6. Energy Consumption and Current Efficiency
3.5. Global Performances
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Strathmann, H. Chapter 6 Electrodialysis and Related Processes. In Membrane Science and Technology; Noble, R.D., Stern, S.A., Eds.; Membrane Separations Technology; Elsevier: Amsterdam, The Netherlands, 1995; Volume 2, pp. 213–281. [Google Scholar]
- Bazinet, L.; Geoffroy, T.R. Electrodialytic Processes: Market Overview, Membrane Phenomena, Recent Developments and Sustainable Strategies. Membranes 2020, 10, 221. [Google Scholar] [CrossRef] [PubMed]
- Hestekin, J.; Ho, T.; Potts, T. Electrodialysis in the Food Industry. In Membrane Technology; John Wiley & Sons, Ltd.: New York, NY, USA, 2010; pp. 75–104. ISBN 978-3-527-63138-4. [Google Scholar]
- Gésan-Guiziou, G. Integrated Membrane Operations in Whey Processing; De Gruyter: Berlin, Germany, 2013; pp. 133–146. ISBN 978-3-11-028566-6. [Google Scholar]
- Fidaleo, M.; Moresi, M. Electrodialysis Applications in The Food Industry. In Advances in Food and Nutrition Research; Academic Press: New York, NY, USA, 2006; Volume 51, pp. 265–360. [Google Scholar]
- Campione, A.; Gurreri, L.; Ciofalo, M.; Micale, G.; Tamburini, A.; Cipollina, A. Electrodialysis for Water Desalination: A Critical Assessment of Recent Developments on Process Fundamentals, Models and Applications. Desalination 2018, 434, 121–160. [Google Scholar] [CrossRef]
- Strathmann, H. Ion-Exchange Membrane Separation Processes; Elsevier: Amsterdam, The Netherlands, 2004; ISBN 978-0-08-050940-2. [Google Scholar]
- Baker, R.W. Ion Exchange Membrane Processes—Electrodialysis. In Membrane Technology and Applications; John Wiley & Sons, Ltd.: New York, NY, USA, 2012; Volume 3, pp. 417–451. ISBN 978-1-118-35968-6. [Google Scholar]
- Yee, R.S.L.; Rozendal, R.A.; Zhang, K.; Ladewig, B.P. Cost Effective Cation Exchange Membranes: A Review. Chem. Eng. Res. Des. 2012, 90, 950–959. [Google Scholar] [CrossRef]
- Vyas, P.V.; Shah, B.G.; Trivedi, G.S.; Ray, P.; Adhikary, S.K.; Rangarajan, R. Characterization of Heterogeneous Anion-Exchange Membrane. J. Membr. Sci. 2001, 187, 39–46. [Google Scholar] [CrossRef]
- Villeneuve, W.; Perreault, V.; Chevallier, P.; Mikhaylin, S.; Bazinet, L. Use of Cation-Coated Filtration Membranes for Demineralization by Electrodialysis. Sep. Purif. Technol. 2019, 218, 70–80. [Google Scholar] [CrossRef]
- Kadel, S.; Deboli, F.; Perreault, V.; Donten, M.L.; Bazinet, L. Ionomer-Coated Filtration Membranes as an Alternative to Ion-Exchange Membranes for Demineralization by Electrodialysis. J. Polym. Sci. 2022, 60, 2984–2998. [Google Scholar] [CrossRef]
- Deboli, F.; Van der Bruggen, B.; Donten, M.L. A Novel Concept of Hierarchical Cation Exchange Membrane Fabricated from Commodity Precursors through an Easily Scalable Process. J. Membr. Sci. 2021, 636, 119594. [Google Scholar] [CrossRef]
- Deboli, F.; Van der Bruggen, B.; Donten, M.L. A Versatile Chemistry Platform for the Fabrication of Cost-Effective Hierarchical Cation and Anion Exchange Membranes. Desalination 2022, 535, 115794. [Google Scholar] [CrossRef]
- Lambert, U. Separator for Secondary Electrical Accumulators with Gas Recombination. U.S. Patent No. 20050158630, 18 October 2011. U.S. Patent and Trademark Office. Available online: https://patentscope.wipo.int/search/en/detail.jsf?docId=US41210557 (accessed on 16 November 2022).
- Mikhaylin, S.; Bazinet, L. Fouling on Ion-Exchange Membranes: Classification, Characterization and Strategies of Prevention and Control. Adv. Colloid Interface Sci. 2016, 229, 34–56. [Google Scholar] [CrossRef]
- Langevin, M.-E.; Bazinet, L. Ion-Exchange Membrane Fouling by Peptides: A Phenomenon Governed by Electrostatic Interactions. J. Membr. Sci. 2011, 369, 359–366. [Google Scholar] [CrossRef]
- Bdiri, M.; Larchet, C.; Dammak, L. A Review on Ion-Exchange Membranes Fouling and Antifouling During Electrodialysis Used in Food Industry: Cleanings and Strategies of Prevention. Chem. Afr. 2020, 3, 609–633. [Google Scholar] [CrossRef]
- Talebi, S.; Chen, G.Q.; Freeman, B.; Suarez, F.; Freckleton, A.; Bathurst, K.; Kentish, S.E. Fouling and In-Situ Cleaning of Ion-Exchange Membranes during the Electrodialysis of Fresh Acid and Sweet Whey. J. Food Eng. 2019, 246, 192–199. [Google Scholar] [CrossRef]
- Merino-Garcia, I.; Velizarov, S. New Insights into the Definition of Membrane Cleaning Strategies to Diminish the Fouling Impact in Ion Exchange Membrane Separation Processes. Sep. Purif. Technol. 2021, 277, 119445. [Google Scholar] [CrossRef]
- Lin, J.C.-T.; Lee, D.-J.; Huang, C. Membrane Fouling Mitigation: Membrane Cleaning. Sep. Sci. Technol. 2010, 45, 858–872. [Google Scholar] [CrossRef]
- Garcia-Vasquez, W.; Dammak, L.; Larchet, C.; Nikonenko, V.; Grande, D. Effects of Acid–Base Cleaning Procedure on Structure and Properties of Anion-Exchange Membranes Used in Electrodialysis. J. Membr. Sci. 2016, 507, 12–23. [Google Scholar] [CrossRef]
- Kadel, S.; Persico, M.; Thibodeau, J.; Lainé, C.; Bazinet, L. Use of Redundancy Analysis and Multivariate Regression Models to Select the Significant Membrane Properties Affecting Peptide Migration during Electrodialysis with Filtration Membranes. Sep. Purif. Technol. 2019, 221, 114–125. [Google Scholar] [CrossRef]
- Bazinet, L.; Araya-Farias, M. Effect of Calcium and Carbonate Concentrations on Cationic Membrane Fouling during Electrodialysis. J. Colloid Interface Sci. 2005, 281, 188–196. [Google Scholar] [CrossRef]
- Lebrun, L.; Da Silva, E.; Pourcelly, G.; Métayer, M. Elaboration and Characterisation of Ion-Exchange Films Used in the Fabrication of Bipolar Membranes. J. Membr. Sci. 2003, 227, 95–111. [Google Scholar] [CrossRef]
- Lteif, R.; Dammak, L.; Larchet, C.; Auclair, B. Conductivitéélectrique Membranaire: Étude de l’effet de La Concentration, de La Nature de l’électrolyte et de La Structure Membranaire. Eur. Polym. J. 1999, 35, 1187–1195. [Google Scholar] [CrossRef]
- Cowan, D.A.; Brown, J.H. Effect of Turbulence on Limiting Current in Electrodialysis Cells. Ind. Eng. Chem. 1959, 51, 1445–1448. [Google Scholar] [CrossRef]
- Doyen, A.; Roblet, C.; L’Archevêque-Gaudet, A.; Bazinet, L. Mathematical Sigmoid-Model Approach for the Determination of Limiting and over-Limiting Current Density Values. J. Membr. Sci. 2014, 452, 453–459. [Google Scholar] [CrossRef]
- Ruiz, B.; Sistat, P.; Huguet, P.; Pourcelly, G.; Araya-Farias, M.; Bazinet, L. Application of Relaxation Periods during Electrodialysis of a Casein Solution: Impact on Anion-Exchange Membrane Fouling. J. Membr. Sci. 2007, 287, 41–50. [Google Scholar] [CrossRef]
- Casademont, C.; Farias, M.A.; Pourcelly, G.; Bazinet, L. Impact of Electrodialytic Parameters on Cation Migration Kinetics and Fouling Nature of Ion-Exchange Membranes during Treatment of Solutions with Different Magnesium/Calcium Ratios. J. Membr. Sci. 2008, 325, 570–579. [Google Scholar] [CrossRef]
- Kadel, S.; Pellerin, G.; Thibodeau, J.; Perreault, V.; Lainé, C.; Bazinet, L. How Molecular Weight Cut-Offs and Physicochemical Properties of Polyether Sulfone Membranes Affect Peptide Migration and Selectivity during Electrodialysis with Filtration Membranes. Membranes 2019, 9, 153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yasukawa, M.; Suzuki, T.; Higa, M. Chapter 1—Salinity Gradient Processes: Thermodynamics, Applications, and Future Prospects. In Membrane-Based Salinity Gradient Processes for Water Treatment and Power Generation; Sarp, S., Hilal, N., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 3–56. ISBN 978-0-444-63961-5. [Google Scholar]
- Slade, S.; Campbell, S.A.; Ralph, T.R.; Walsh, F.C. Ionic Conductivity of an Extruded Nafion 1100 EW Series of Membranes. J. Electrochem. Soc. 2002, 149, A1556. [Google Scholar] [CrossRef] [Green Version]
- Masson, F.; Decker, C.; Jaworek, T.; Schwalm, R. UV-Radiation Curing of Waterbased Urethane–Acrylate Coatings. Prog. Org. Coat. 2000, 39, 115–126. [Google Scholar] [CrossRef]
- Pérez, A.; Andrés, L.J.; Álvarez, R.; Coca, J.; Hill, C.G., Jr. Electrodilaysis of Whey Permeates and Rententates Obtained by Ultrafiltration. J. Food Process Eng. 1994, 17, 177–190. [Google Scholar] [CrossRef]
- Aider, M.; Arul, J.; Mateescu, M.-A.; Brunet, S.; Bazinet, L. Electromigration Behavior of a Mixture of Chitosan Oligomers at Different Concentrations. J. Agric. Food Chem. 2006, 54, 10170–10176. [Google Scholar] [CrossRef]
- Tansel, B.; Sager, J.; Rector, T.; Garland, J.; Strayer, R.F.; Levine, L.; Roberts, M.; Hummerick, M.; Bauer, J. Significance of Hydrated Radius and Hydration Shells on Ionic Permeability during Nanofiltration in Dead End and Cross Flow Modes. Sep. Purif. Technol. 2006, 51, 40–47. [Google Scholar] [CrossRef]
- Delbeke, R. La déminéralisation par électrodialyse du lactosérum doux de fromagerie. Le Lait 1975, 55, 76–94. [Google Scholar] [CrossRef]
- Lemay, N.; Mikhaylin, S.; Mareev, S.; Pismenskaya, N.; Nikonenko, V.; Bazinet, L. How Demineralization Duration by Electrodialysis under High Frequency Pulsed Electric Field Can Be the Same as in Continuous Current Condition and That for Better Performances? J. Membr. Sci. 2020, 603, 117878. [Google Scholar] [CrossRef]
- Bazinet, L.; Castaigne, F.; Castaigne, F. Concepts de Génie Alimentaire: Procédés Associés et Applications à la Conservation et Transformation des Aliments; Deuxième édition mise à jour et enrichie; Presses Polytechniques: Montreal, QC, Canada, 2019; ISBN 978-2-553-01721-6. [Google Scholar]
- Lin Teng Shee, F.; Bazinet, L. Cationic Balance and Current Efficiency of a Three-Compartment Bipolar Membrane Electrodialysis System during the Preparation of Chitosan Oligomers. J. Membr. Sci. 2009, 341, 46–50. [Google Scholar] [CrossRef]
- Sadrzadeh, M.; Mohammadi, T. Treatment of Sea Water Using Electrodialysis: Current Efficiency Evaluation. Desalination 2009, 249, 279–285. [Google Scholar] [CrossRef]
- Al-Amshawee, S.; Yunus, M.Y.B.M.; Azoddein, A.A.M.; Hassell, D.G.; Dakhil, I.H.; Hasan, H.A. Electrodialysis Desalination for Water and Wastewater: A Review. Chem. Eng. J. 2020, 380, 122231. [Google Scholar] [CrossRef]
- Mafart, P.; Béliard, E. Génie Industriel Alimentaire. Tome 2: Techniques Séparatives, 2nd ed.; Technique & Documentation: Paris, France, 2004. [Google Scholar]
- Greiter, M.; Novalin, S.; Wendland, M.; Kulbe, K.-D.; Fischer, J. Desalination of Whey by Electrodialysis and Ion Exchange Resins: Analysis of Both Processes with Regard to Sustainability by Calculating Their Cumulative Energy Demand. J. Membr. Sci. 2002, 210, 91–102. [Google Scholar] [CrossRef]
- Chen, G.Q.; Eschbach, F.I.I.; Weeks, M.; Gras, S.L.; Kentish, S.E. Removal of Lactic Acid from Acid Whey Using Electrodialysis. Sep. Purif. Technol. 2016, 158, 230–237. [Google Scholar] [CrossRef]
- Talebi, S.; Kee, E.; Chen, G.Q.; Bathurst, K.; Kentish, S.E. Utilisation of Salty Whey Ultrafiltration Permeate with Electrodialysis. Int. Dairy J. 2019, 99, 104549. [Google Scholar] [CrossRef]
- Dufton, G.; Mikhaylin, S.; Gaaloul, S.; Bazinet, L. How Electrodialysis Configuration Influences Acid Whey Deacidification and Membrane Scaling. J. Dairy Sci. 2018, 101, 7833–7850. [Google Scholar] [CrossRef]
- Diblíková, L.; Čurda, L.; Homolová, K. Electrodialysis in Whey Desalting Process. Desalination Water Treat. 2010, 14, 208–213. [Google Scholar] [CrossRef]
- Šímová, H.; Kysela, V.; Černín, A. Demineralization of Natural Sweet Whey by Electrodialysis at Pilot-Plant Scale. Desalination Water Treat. 2010, 14, 170–173. [Google Scholar] [CrossRef]
- Merkel, A.; Ashrafi, A.M. An Investigation on the Application of Pulsed Electrodialysis Reversal in Whey Desalination. Int. J. Mol. Sci. 2019, 20, 1918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, E.N.; Skibsted, L.H.; Yazdi, S.R.; Merkel, A.; Ahrné, L.M. Improving Electrodialysis Separation Efficiency of Minerals from Acid Whey by Nano-Filtration Pre-Processing. Int. J. Dairy Technol. 2022, 75, 820–830. [Google Scholar] [CrossRef]
Sample | UA02 | UA06 |
UL5 | 0.12 | 0.31 |
UL6 | 0.00 | 0.42 |
UL7 | 0.00 | 0.5 |
Sample | EBE3105 | EBE830 |
EbS-1 | 0.30 | 0.15 |
EbS-2 | 0.15 | 0.30 |
EbS-3 | 0.00 | 0.45 |
Sample | Membrane Thickness (mm) | Coating Thickness (µm) | Ra (µm) | Rz (µm) |
---|---|---|---|---|
CMX | 0.145 ± 0.005 b * | - | 0.47 ± 0.15 a | 3.22 ± 1.09 a |
UL5 | 0.408 ± 0.007 a | 30.1 ± 0.9 c | 0.61 ± 0.13 a | 7.01 ± 0.92 a |
UL6 | 0.433 ± 0.028 a | 26.7 ± 2.6 c | 0.64 ± 0.15 a | 4.84 ± 0.55 a |
UL7 | 0.448 ± 0.025 a | 30.8 ± 0.8 c | 0.40 ± 0.15 a | 5.37 ± 3.54 a |
EbS-1 | 0.430 ± 0.015 a | 45.0 ± 1.8 b | 0.67 ± 0.07 a | 4.34 ± 0.18 a |
EbS-2 | 0.425 ± 0.005 a | 53.5 ± 1.8 a | 0.59 ± 0.15 a | 5.95 ± 1.84 a |
EbS-3 | 0.411 ± 0.013 a | 43.9 ± 3.2 b | 0.73 ± 0.31 a | 6.66 ± 3.66 a |
Sample | Conductance (mS) | Conductivity (mS·m−1) | ASR (Ω·cm2) | Selectivity (%) |
---|---|---|---|---|
CMX | 46.05 ± 0.27 a * | 8.42 ± 1.11 b | 2.81 ± 0.21 f | 91 ± 0 c |
UL5 | 42.76 ± 0.30 b | 12.96 ± 0.45 a | 4.19 ± 0.31 e | 63 ± 0 g |
UL6 | 42.54 ± 0.15 b | 11.96 ± 0.45 a | 5.13 ± 0.31 d | 74 ± 0 f |
UL7 | 42.09 ± 0.15 b | 11.43 ± 0.72 a | 6.37 ± 0.35 c | 81 ± 0 e |
EbS-1 | 38.54 ± 0.31 c | 8.54 ± 0.72 b | 6.75 ± 0.45 c | 89 ± 0 d |
EbS-2 | 38.36 ± 0.04 c | 7.18 ± 0.45 b | 8.49 ± 0.32 b | 92 ± 0 b |
EbS-3 | 33.56 ± 1.61 d | 4.55 ± 0.45 c | 10.53 ± 0.26 a | 95 ± 0 a |
Sample | Limiting Current Density (mA·cm−2) | Associated Voltage (V) |
---|---|---|
CMX | 17.0 ± 4.3 a * | 20.11 ± 2.03 a |
UL5 | 18.4 ± 0.9 a | 21.15 ± 2.55 a |
UL6 | 18.0 ± 0.3 a | 20.83 ± 2.56 a |
UL7 | 17.3 ± 3.6 a | 20.43 ± 0.83 a |
EbS-1 | 18.0 ± 1.6 a | 21.57 ± 0.49 a |
EbS-2 | 14.5 ± 0.7 a | 18.81 ± 1.58 a |
EbS-3 | 13.9 ± 1.5 a | 17.16 ± 0.31 a |
Sample | Thickness before (mm) | Thickness after (mm) | Conductivity before (mS·cm−1) | Conductivity after (mS·cm−1) |
---|---|---|---|---|
CMX | 0.144 ± 0.001 A ** | 0.152 ± 0.004 A | 8.42 ± 1.11 b,*,A | 5.90 ± 0.00 b,c,A |
UL5 | 0.421 ± 0.002 A | 0.427 ± 0.002 A | 12.96 ± 0.45 a,A | 11.70 ± 0.42 a,B |
UL6 | 0.406 ± 0.002 A | 0.406 ± 0.013 A | 11.96 ± 0.45 a,A | 10.25 ± 1.20 a,A |
UL7 | 0.389 ± 0.012 A | 0.393 ± 0.013 A | 11.43 ± 0.72 a,A | 10.15 ± 0.35 a,B |
EbS-1 | 0.462 ± 0.012 A | 0.465 ± 0.020 A | 8.54 ± 0.72 b,A | 10.6 ± 0.14 a,B |
EbS-2 | 0.423 ± 0.005 A | 0.438 ± 0.011 A | 7.18 ± 0.45 b,A | 7.4 ± 0.57 b,A |
EbS-3 | 0.428 ± 0.005 A | 0.407 ± 0.009 A | 4.55 ± 0.45 c,A | 4.65 ± 0.63 c,A |
Sample | Energy Consumption (Wh) | Current Efficiency (%) |
---|---|---|
CMX | 13.31 ± 0.24 b,c,* | 44.28 ± 3.45 a |
UL5 | 14.16 ± 0.22 a,+** | 40.92 ± 1.90 a,b |
UL6 | 13.45 ± 0.51 a,b | 38.81 ± 7.00 a,b |
UL7 | 14.04 ± 0.19 a,b,+ | 33.24 ± 2.53 b,+ |
EbS-1 | 13.73 ± 0.19 a,b | 41.31 ± 2.06 a,b |
EbS-2 | 13.24 ± 0.18 c | 43.61 ± 4.28 a |
EbS-3 | 13.48 ± 0.19 a,b | 42.79 ± 3.56 a |
CEM (Manufacturer) | Solution | ED Unit | Duration (min) | Deminera- lization Rate (%) | Energy Consumption | Current Efficiency (%) | Reference |
---|---|---|---|---|---|---|---|
SC-1 | WPC (10.0 wt%) | 10 cell pairs 100 cm2/membrane | 60 | 64.2 | 640 kWh/eq removed | 84.2 | Pérez et al. [35] |
Neosepta CMX — homogeneous (Astom) | 1.50 L nanofiltered whey (18.0–20.0 wt%) | 8 cell pairs 37 cm2/membrane | 260 | 90.0 | 26.5 kJ | 70.0 | Greiter et al. [45] |
Neosepta CMB — homogeneous (Astom) | 1.20 L acid whey (5.2 wt%) | 2 cell pairs 36 cm2/membrane | 180 | 90.0 | 0.014 kWh/g | 80.0–90.0 | Chen et al. [46] |
Neosepta CMB — homogeneous (Astom) | 2.00 L sweet whey (6.5 wt%) | 2 cell pairs 36 cm2/membrane | 180 | 75.0 | 5.9 kWh/ton of whey | Talebi et al. [47] | |
Neosepta CMX-fg—homogeneous (Astom) | 2.00 L acid whey | 2 cell pairs 100 cm2/membrane | 180 | 67.0 | Dufton et al. [48] | ||
Neosepta CMX-fg—homogeneous (Astom) | 0.35 L sweet whey (6.5 wt%) | 2 cell pairs 10 cm2/membrane | 210 | 70.0 | 9.375 kWh | Lemay et al. [39] | |
Ralex— heterogeneous (MEGA) | 1.00 L sweet whey (7.0 wt%) | 10 cell pairs 64 cm2/membrane | 60 | 95.0 | Diblíková et al. [49] | ||
Ralex CMH-PES—heterogeneous (MEGA) | Sweet whey (5.5 wt%) | 50 cell pairs 400 cm2/membrane | 140–270 | 90.0 | Šímonvá et al. [50] | ||
CEM-PES—heterogeneous (MemBrain) | 30.00 kg acid whey (20.0% wt%) | 50 cell pairs 400 cm2/membrane | 195 | 89.3 | 8.8 Wh/kg | Merkel et al. [51] | |
Ralex CM-PES TR I—heterogeneous (MEGA) | 2.00 kg evaporated sweet whey (15.7 wt%) | 10 cell pairs 64 cm2/membrane | 180 | 98.0 | 4.4 Wh/kg | Nielsen et al. [52] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khetsomphou, E.; Deboli, F.; Donten, M.L.; Bazinet, L. Impact of Hierarchical Cation-Exchange Membranes’ Chemistry and Crosslinking Level on Electrodialysis Demineralization Performances of a Complex Food Solution. Membranes 2023, 13, 107. https://doi.org/10.3390/membranes13010107
Khetsomphou E, Deboli F, Donten ML, Bazinet L. Impact of Hierarchical Cation-Exchange Membranes’ Chemistry and Crosslinking Level on Electrodialysis Demineralization Performances of a Complex Food Solution. Membranes. 2023; 13(1):107. https://doi.org/10.3390/membranes13010107
Chicago/Turabian StyleKhetsomphou, Elodie, Francesco Deboli, Mateusz L. Donten, and Laurent Bazinet. 2023. "Impact of Hierarchical Cation-Exchange Membranes’ Chemistry and Crosslinking Level on Electrodialysis Demineralization Performances of a Complex Food Solution" Membranes 13, no. 1: 107. https://doi.org/10.3390/membranes13010107
APA StyleKhetsomphou, E., Deboli, F., Donten, M. L., & Bazinet, L. (2023). Impact of Hierarchical Cation-Exchange Membranes’ Chemistry and Crosslinking Level on Electrodialysis Demineralization Performances of a Complex Food Solution. Membranes, 13(1), 107. https://doi.org/10.3390/membranes13010107