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Abstract: The lipid membranes of living cells are composed of a large number of lipid types and
can undergo phase separation with the formation of nanometer-scale liquid-ordered lipid domains,
also called rafts. Raft coalescence, i.e., the fusion of lipid domains, is involved in important cell
processes, such as signaling and trafficking. In this work, within the framework of the theory of
elasticity of lipid membranes, we explore how amphipathic peptides adsorbed on lipid membranes
may affect the domain–domain fusion processes. We show that the elastic deformations of lipid
membranes drive amphipathic peptides to the boundary of lipid domains, which leads to an increase
in the average energy barrier of the domain–domain fusion, even if the surface concentration of
amphipathic peptides is low and the domain boundaries are only partially occupied by the peptides.
This inhibition of the fusion of lipid domains may lead to negative side effects of using amphipathic
peptides as antimicrobial agents.

Keywords: lipid membrane; theory of elasticity; liquid-ordered lipid domain; membrane-mediated
interaction; domain interaction; raft coalescence; amphipathic peptide

1. Introduction

Lipid membranes are an important structural unit of living cells, serving as a semiper-
meable barrier surrounding cells and their organelles. Lipid membranes are also involved
in functionally important processes such as endo- and exocytosis, vesicle trafficking, signal
transduction, and the assembly of viruses, etc. [1,2]. It is known that the lipid composi-
tion of lipid membranes is heterogeneous: lipid molecules can be composed of different
hydrophobic fatty acids and hydrophilic heads [3–5]. This heterogeneity may lead to phase
separation into liquid-ordered and liquid-disordered phases [6–10]. In living cells, the
liquid-ordered phase usually exists in the form of nanoscopic lipid domains, also called
rafts [8,10,11]. These lipid domains represent inhomogeneities in the membrane plane
and influence the lateral organization of biological membranes. In particular, membrane
proteins can partition differently between the two phases [12–15]. Therefore, lipid domains,
together with proteins, can form functional platforms in which certain processes are local-
ized, for example, those associated with signal transduction [16–18]. Although nanoscopic
lipid domains are difficult to observe directly, there is accumulating experimental evidence
for the existence of these domains in vivo [19].

An important mechanism by which lipid domains are involved in cellular processes is
raft coalescence, i.e., the fusion of small nanoscopic lipid domains into larger ones. Raft coa-
lescence has been proposed to be involved in the immune response [13,20], signaling [16,21],
and polarized sorting [22]. In addition, raft coalescence is indirectly observed in the endo-
cytic recycling of plasma membrane proteins through raft-mediated budding [23,24]. In
addition, experiments have shown the importance of raft coalescence in the assembly of
integrin signaling complexes [25] and neuronal polarity determination [26].

Given the importance of raft coalescence in a variety of cell processes, its mis-regulation
may have adverse effects on living cells. It is known, for example, that elevated levels of
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7-dehydrocholesterol, which occur in Smith–Lemli–Opitz syndrome [27,28], significantly
constrain the fusion of lipid domains [29]. Previously, within the framework of the theory
of elasticity of lipid membranes, we showed that the adsorption of membrane-active
antimicrobial amphipathic peptides at high concentrations onto lipid membranes with
co-existing liquid-ordered and liquid-disordered phases leads to a significant increase in
the domain–domain fusion energy barrier, due to the strong accumulation of the peptides
at the domain boundaries, so that the boundaries are fully occupied by these peptides [30].
However, lower concentrations of amphipathic peptides have not been considered, and
therefore, the natural question of to what extent low concentrations of amphipathic peptides
affect the energy barrier of domain–domain fusion remains. Amphipathic peptides are
currently considered to be promising antibiotics [31–34], and it is important to study
the potential negative side effects of their use in antibacterial therapy. In this work, we
generalize the results of Ref. [30] and consider the case of a low concentration of alpha-
helical amphipathic peptides, assuming that the boundaries of the lipid domains are only
partially occupied by the peptides.

2. Materials and Methods
2.1. Elastic Energy

In this work, within the theory of elasticity of lipid membranes, we consider the
membrane-mediated interaction of liquid-ordered lipid domains in the presence of am-
phipathic peptides. We employ the results of the classical theory of elasticity adopted to
lipid membranes and use the following quadratic elastic energy per unit area of the neutral
surface of a lipid monolayer [35]:

w = 1
2 km(∇ · n− J0)

2 − 1
2 km J2

0

+ 1
2 ktT2 + kcT · (∇∇ · n) + kgr

2 (∇∇ · n)2

+ 1
2 kA(α− α0)

2 − 1
2 kAα2

0 − kc(∇α)2

+BT · ∇α + C∇α · (∇∇ · n) + σd(∆S).

(1)

The neutral surface is defined as the surface with respect to which the deformations of
bending and stretching compression are energetically decoupled; this surface lies approxi-
mately in the region of contact of the hydrophobic tails and hydrophilic heads of the lipid
molecules [36]. In Equation (1), n is the vector field, called the director, of the unit vectors
characterizing the average orientation of the lipid molecules; T is the tilt field, defined as
T ≡ n

n·N −N, where N is a unit normal vector to the monolayer neutral surface; α is the
stretching compression deformation mode, i.e., the relative change in the area per lipid
at the neutral surface; ∇ is the surface del operator; km is the bending modulus; kt is the
tilt modulus; kA is the stretching compression modulus; kc, kgr, B, and C are the elastic
moduli corresponding to the deformation modes of T · (∇∇ · n), (∇∇ · n)2, T · ∇α, and
∇α · (∇∇ · n), respectively; J0 and α0 are the spontaneous curvature and spontaneous
stretching compression, respectively; and σd(∆S), where d(∆S) is the local change in the
surface area, is the energy term corresponding to the energy change due to the lateral
tension of magnitude σ.

2.2. Elastic Parameters

The elastic parameters of the lipid domains and surrounding membrane are assumed
to be different, as follows from experimental data. Let us use the indices “d” and “s”
to denote the parameters of the lipid domains and surrounding membrane, respectively.
First of all, the hydrophobic thickness is larger in the liquid-ordered phase and we set
hd = 1.8 nm and hs = 1.3 nm [37,38]. For the monolayer bending modulus, which is also
larger in lipid domains, we use the following values: kms = 10 kBT and kmd = 20 kBT,
where kB is the Boltzmann constant and T ≈ 300 K is the absolute temperature [39–43].
The monolayer spontaneous curvatures are set to zero in both phases. As for the tilt
modulus, kt, we use the theoretically estimated value of 12 kBT/nm2 [44], which is
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close to experimental findings [45]. The results of Ref. [44] showed that the tilt modu-
lus should not depend on the type of the phase, and, therefore, we will use the same
value for the tilt modulus in both phases. The stretching compression modulus is also
assumed to be equal in both phases, kA = kAs = kAd = 30 kBT/nm2 [42]. Although kA
can be larger in the liquid-ordered phase, different values of kA in each phase are not
of great importance for the elastic energy calculations, as stretching compression is a
rather tough deformation mode. For kc, kgr, B, and C we use the theoretical estimates

obtained in Ref. [35]: kc = − kth2

6 , kgr = kth4

20 , B = − kth
2 , and C = kth3

8 , which leads to
kcs = −3.4 kBT, kcd = −6.5 kBT, kgrs = 1.7 kBT·nm2, kgrd = 6.3 kBT·nm2, Bs = −7.8 kBT/nm,
Bd = −10.8 kBT/nm, Cs = 3.3 kBT·nm, and Cd = 8.7 kBT·nm. The lateral tension per lipid
monolayer is set to 0.1 mN/m ≈ 0.025 kBT/nm2 and is assumed to be equal in both
phases [46,47], which leads to the spontaneous stretching compression, α0 ≡ σ

kA
, equal to

8 × 10−4. The value of the lateral tension can depend on various circumstances, such as
the cytoskeleton organization or cell motility, etc., but its exact value is not important for
the results of this work. We also take into account the possibility of the misregistration
of the opposing monolayers of the liquid-ordered domains. The energetic cost of this
misregistration is assumed to be equal to 0.016 kBT/nm2 [48,49], which is given per unit
misregistered area.

2.3. Parametrization of the System

We analyze the membrane deformations within the framework of a one-dimensional
approach, according to which, the boundary of the lipid domains is considered to be a
straight line, and the elastic energy is calculated per unit length along the domain boundary.
This approach is numerically justified, provided that the proper effective interaction length
is used to determine the absolute energy [50]. To describe the deformations of a lipid
membrane, we introduce a Cartesian coordinate system, xyz, the z-axis of which is pointed
upward and perpendicular to the membrane surface, while the x- and y-axes lie along the
plane of the membrane, and the y-axis is parallel to the boundary of the lipid domains. The
membrane is divided into regions of the liquid-ordered and liquid-disordered phases with
the corresponding values of the elastic parameters. Using Equation (1), the elastic energy
of each membrane region can be written as a sum of the elastic energies of the upper and
lower monolayers:
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where the indices “u” and “l” correspond to the variables of the upper and lower mono-
layers, respectively; H and M are z-coordinates of the neutral surfaces of the monolayers
and membrane mid-surface, respectively; and h is the hydrophobic thickness of the mono-
layers. To write Equation (2), the following relations are employed: Tu = nu − d

dx Hu

and Tl = nl +
d

dx Hl for the tilt field of the upper and lower monolayers, respectively,
which follow from the definition of the tilt field; αu = − hu

2
d

dx nu − Hu
hu

+ M
hu

+ 1 and

αb = − hb
2

d
dx nb +

Hb
hb
− M

hb
+ 1 for the stretching compression deformation mode of the

upper and lower monolayers, respectively, which follow from the assumption of the volu-
metric incompressibility of lipid monolayers [35], according to experimental [51–54] and

molecular dynamics [55–57] data; and d(∆S) ≈ 1
2

(
d

dx H
)2

for a local change in the surface
area [35].

As the elastic energy density given by Equation (2) is quadratic, the corresponding
Euler–Lagrange equations represent a linear system of ordinary differential equations. The
system is too bulky to be presented here; however, it can be solved analytically. The general
solutions for unknown functions, nu, nl , Hu, Hl , and M, have the form of ∑

i
Ci exp(λix),

where λi are known and Ci are arbitrary constants. Ci can be found analytically by substi-
tuting the solutions into the elastic energy and minimizing the resulting quadratic form,
taking into account the following boundary conditions: the continuity of the director field,
the continuity of the neutral surfaces of the monolayers, and the absence of the defor-
mations far from the domain boundaries at x → ±∞. The solutions for Hu, Hl , and M
provide the analytical expressions for the membrane shape, which will be used below for
the illustrations of the membrane geometry.

2.4. Deformations Induced by Amphipathic Peptides

The amphipathicity of the peptides implies that approximately half of the side surface
of the alpha-helix of the amphipathic peptides is hydrophilic, while the other half is
hydrophobic [58]. Therefore, amphipathic peptides can be partially incorporated into
lipid monolayers at the interface between the hydrophobic and hydrophilic parts of the
lipid monolayers. This incorporation induces membrane deformations in the vicinity of
the peptides [59,60]. To model these deformations, we consider amphipathic peptides as
undeformable objects that impose certain boundary conditions on membrane deformations.
We assume that there is a finite jump in the value of the director field at the boundary of
the amphipathic peptides:

∆nx = n2x − n1x =
∆L√

(∆L/2)2 + (h/2)2
, (3)

where ∆L is the diameter of the peptide alpha-helix; h is the hydrophobic thickness of
the lipid monolayer adjacent to the peptides; and n1x and n2x are the projections of the
director field onto the x-axis at the left and right boundaries of the peptides, respectively.
Equation (3) is the estimate of the director jump based on the geometric considerations: it
is assumed that the boundary director is directed towards the center of the hydrophobic
region of the monolayer in which the peptides are located. These geometric considerations
are also consistent with the membrane thinning induced by amphipathic peptides observed
in experiments and molecular dynamics [61,62], which we observe within our model in the
vicinity of the amphipathic peptides. We set ∆L to 1.3 nm, which is a typical alpha-helix
diameter [63,64]. Note that ∆nx is different in the liquid-ordered and liquid-disordered
phases, as h is larger in the liquid-ordered phase. Therefore, if the peptides are located
at the interphase between the two phases, we set ∆nx = δ∆nxs + (1− δ)∆nxd, where
∆nxs and ∆nxd are the director jumps in the liquid-disordered and liquid-ordered phases,
respectively, and δ is the fraction of the peptide located in the liquid-disordered phase. In



Membranes 2023, 13, 816 5 of 14

addition, we take into account the possibility of the rotation of the amphipathic peptides
around the axis of the alpha-helix:

Hu(X0 + (∆L/2))− Hu(X0 − (∆L/2)) = ∆L (n1x + n2x)/2, (4)

where X0 is the x-coordinate of the peptide center and Hu(x) is the shape of the neutral
surface of the monolayer adjacent to the peptides.

It is known that amphipathic peptides usually induce membrane softening [65–67],
i.e., a decrease in the bending modulus of a lipid membrane, which might be caused by
the composition–curvature coupling effect [68]. This softening is a statistical effect relevant
for large membrane patches, upon which many amphipathic peptides are adsorbed. In
this work, the scale of the considered system is several nanometers and only one or two
amphipathic peptides are considered. Therefore, we assume that the elastic parameters
of the lipid monolayers in contact with the amphipathic peptides are the same as in the
absence of amphipathic peptides.

3. Results
3.1. Interaction of Amphipathic Peptides with Lipid Domains

The interaction of amphipathic peptides with lipid domains occurs mainly at the
domain boundaries. The mismatch between the hydrophobic thickness of the lipid do-
mains and the surrounding membrane leads to elastic deformations at their boundary.
These deformations can overlap with the deformations induced by amphipathic peptides,
leading to an effective membrane-mediated interaction between the lipid domains and the
peptides. To consider this interaction, it is important to take into account that the structure
of the boundary of lipid domains is not symmetric. In Ref. [69], it was shown that the
monolayers of lipid domains are slightly shifted relative to each other, which follows from
the minimization of elastic energy. This shift has also been observed in molecular dynamics
simulations [38,70,71]. Figure 1 shows the dependence of the elastic energy on the size L of
the relative shift between the opposing monolayers.
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Figure 1. (a) The dependence of the elastic energy on the relative shift L of the monolayers of lipid
domains. (b) The theoretically calculated membrane shapes at the values of L corresponding to the
minima of the elastic energy. Lipid domains are shown in grey; the surrounding membrane is shown
in blue; lipid heads and tails are drawn for illustrative purposes; the black curves represent the shapes
of the neutral surfaces; and the dotted curves represent the shape of the mid-surface.
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For the chosen set of elastic parameters, the elastic energy was minimal at |L| ≈ 2.3 nm.
The value of the elastic energy at the minimum points was ≈0.3 kBT/nm. Note that this
energy was given per unit length along the domain boundary and thus represented the
elastic energy contribution to the line tension of the domain boundary. In general, the
chemical interactions of the lipid molecules at the domain boundary also contribute to
the line tension. We assumed that the latter contribution had some constant value and
therefore did not affect the elastic energy barrier of the domain–domain fusion, which will
be calculated below.

Notice that L could be either positive (L ≈ +2.3 nm) or negative (L ≈ −2.3 nm),
depending on the relative arrangement of the monolayers. Consequently, considering the
interaction of the amphipathic peptides with the lipid domains, we should distinguish
between the cases of positive L and negative L. The corresponding elastic energy profiles
are shown in Figure 2. There was a rather deep energy well near the domain boundary, i.e.,
the location of the peptides near the domain boundaries was energetically favorable. It
should be noted that the corresponding elastic energy profiles could be plotted at different
values of L, and it turned out that the global energy minima corresponded to L ≈ +0.9 nm
and L ≈ −2.4 nm, which were different from L ≈ +2.3 nm and L ≈ −2.3 nm, respectively, in
the case of no peptides. The locations, X, of the right boundary of the peptide at the global
minima were X ≈ 2.7 nm and X = 0 nm at L > 0 and L < 0, respectively.

Membranes 2023, 13, x FOR PEER REVIEW 7 of 15 
 

 

It should be noted that the corresponding elastic energy profiles could be plotted at dif-
ferent values of L, and it turned out that the global energy minima corresponded to L ≈ 
+0.9 nm and L ≈ −2.4 nm, which were different from L ≈ +2.3 nm and L ≈ −2.3 nm, respec-
tively, in the case of no peptides. The locations, X, of the right boundary of the peptide at 
the global minima were X ≈ 2.7 nm and X = 0 nm at L > 0 and L < 0, respectively. 

 
Figure 2. The membrane-mediated interaction between amphipathic peptides and liquid-ordered 
lipid domains. (a,b) The elastic energy profiles as a function of the coordinate X of the right 
boundary of the amphipathic peptide at the relative shift of the liquid-ordered monolayers equal to 
(a) L0 = 2.3 nm and (b) L0 = −2.3 nm. The insets show the top view of the membrane. The liq-
uid-disordered (Ld) and liquid-ordered (Lo) phases are shown in blue and grey, respectively; am-
phipathic peptides are shown in purple. (c,d) The theoretically calculated membrane shapes at the 
values of X corresponding to the global energy minima of the energy profiles shown in panels (a,b). 

3.2. Domain–Domain Fusion Energy Barrier at a Low Concentration of Amphipathic Peptides 
The membrane elastic deformations at the boundaries of lipid domains are inde-

pendent when these domains are located far from each other. However, at a sufficiently 
small distance between the domains, these deformations overlap, which leads to an ef-
fective lateral interaction between the domains. This interaction was previously consid-
ered in Refs. [29,72], and it was shown that there was an energy barrier of approximately 
0.1 kBT/nm that was necessary to overcome to bring two domains into close contact. In 
Ref. [30], we considered the membrane-mediated interaction of lipid domains in the 
presence of amphipathic peptides under the assumption that the boundaries of lipid 
domains are completely occupied by these peptides. The corresponding configurations of 
the boundaries are shown in Figure 3b–d. The results showed that the domain–domain 
fusion energy barrier significantly increases due to the presence of amphipathic peptides 
at the domain boundaries. 

Figure 2. The membrane-mediated interaction between amphipathic peptides and liquid-ordered
lipid domains. (a,b) The elastic energy profiles as a function of the coordinate X of the right
boundary of the amphipathic peptide at the relative shift of the liquid-ordered monolayers equal to
(a) L0 = 2.3 nm and (b) L0 = −2.3 nm. The insets show the top view of the membrane. The liquid-
disordered (Ld) and liquid-ordered (Lo) phases are shown in blue and grey, respectively; amphipathic
peptides are shown in purple. (c,d) The theoretically calculated membrane shapes at the values of X
corresponding to the global energy minima of the energy profiles shown in panels (a,b).

3.2. Domain–Domain Fusion Energy Barrier at a Low Concentration of Amphipathic Peptides

The membrane elastic deformations at the boundaries of lipid domains are inde-
pendent when these domains are located far from each other. However, at a sufficiently
small distance between the domains, these deformations overlap, which leads to an effec-
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tive lateral interaction between the domains. This interaction was previously considered
in Refs. [29,72], and it was shown that there was an energy barrier of approximately
0.1 kBT/nm that was necessary to overcome to bring two domains into close contact. In
Ref. [30], we considered the membrane-mediated interaction of lipid domains in the pres-
ence of amphipathic peptides under the assumption that the boundaries of lipid domains
are completely occupied by these peptides. The corresponding configurations of the
boundaries are shown in Figure 3b–d. The results showed that the domain–domain fusion
energy barrier significantly increases due to the presence of amphipathic peptides at the
domain boundaries.
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energy barrier was slightly higher when the domain with the peptide was larger in the 
upper leaflet. In general, the energy barrier in the case of one amphipathic peptide was 

Figure 3. The theoretically calculated shapes of the lipid membrane with coexisting liquid-ordered
(grey) and liquid-disordered (blue) phases at different amounts of amphipathic peptides (colored
ellipses). (a) No amphipathic peptides. (b–d) Two amphipathic peptides. (e–h) One amphipathic
peptide. The membrane shapes are calculated for different configurations of the domain boundaries,
corresponding to different relative shifts of the opposing monolayers of the lipid domains. Only
those shapes are shown which are not equivalent in terms of the elastic energy. The distance between
the domains is equal to 10 nm in all panels.

Now, we consider a more general case of the partial occupation of domain boundaries
by peptides. To model this within the one-dimensional approach, we considered the
case of when the boundary of only one of the domains was occupied by an amphipathic
peptide. We assumed that the peptide was located at the boundary of the right domain
(see Figure 3e–h) and calculated the elastic energy as a function of the distance between
the domains. The choice between the left or right domain for the peptide location was
arbitrary: due to random diffusion, the peptide would eventually end up in the potential
well at the boundary of the right or left domain, but, due to the symmetry of the system, the
domain–domain fusion energy barrier did not depend on whether the considered peptide
was located at the boundary of the right or left domain. To accomplish this, we considered
all four possible configurations of the domain boundaries. At a given distance D between
the domains, we minimized the elastic energy with respect to the peptide position and
relative shifts L of the monolayers of the left and right lipid domains. Note that, in the case
of one amphipathic peptide, four different configurations of the domain boundaries should
be considered (Figure 3e–h), while in the case of two amphipathic peptides, only three
configurations were possible (Figure 3b–d), as the elastic energy of the configuration (c) in
Figure 3 did not change upon reflection in the plane x = 0. Additionally, the elastic energy
in the case of no peptides (Figure 3a) did not depend on the particular configuration of the
domain boundaries [30].

The results are shown in Figure 4. The dashed curves represent the dependence of
the elastic energy of the membrane on the distance D between the lipid domains, in the
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case when both domain boundaries were occupied by the peptides. The dotted cyan curve
corresponds to the case of no peptides [30]. The remaining solid curves correspond to the
case when only one domain boundary was occupied by the amphipathic peptide. The
colors of the solid curves correspond to the configurations and colors of the peptides shown
in Figure 3e–h. All the curves represent the elastic energy minus the energy at an infinite
distance between the domains, D = +∞. It can be seen that the energy barriers in the
case of one amphipathic peptide had intermediate values between the energy barriers in
the case of no peptides and two peptides. In the case of one amphipathic peptide, the
energy barrier was slightly higher when the domain with the peptide was larger in the
upper leaflet. In general, the energy barrier in the case of one amphipathic peptide was
approximately 0.2–0.3 kBT/nm, which was about 3–4 times larger than the energy barrier
of approximately 0.08 kBT/nm in the case of no peptides. The values of 0.2–0.3 kBT/nm
were, however, smaller than the energy barrier in the case of two peptides, which ranged
approximately from 0.6 to 0.9 kBT/nm.
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Figure 4. The elastic energy of the interaction of liquid-ordered lipid domains as a function of the
distance between the domains. The dotted cyan curve shows the interaction energy between domains
in the case of no amphipathic peptides. The solid curves correspond to the case of one amphipathic
peptide located at the boundary of one of the domains. The dashed curves correspond to the case
when both domain boundaries are occupied by amphipathic peptides. The colors of the curves
correspond to the colors of amphipathic peptides in Figure 3, depending on the configuration of the
domain boundaries. The insets illustrate the top view of the considered cases. The liquid-ordered lipid
domains (Lo) are shown in grey, the liquid-disordered phase (Ld) is shown in blue, and amphipathic
peptides are shown in purple.

4. Discussion

In this work, within the classical theory of elasticity of lipid membranes, we considered
the membrane-mediated interaction of liquid-ordered lipid domains, the boundaries of
which were partially occupied by amphipathic peptides. The obtained results generalized
the study of Ref. [30], in which the domain–domain fusion energy barrier was calculated un-
der the assumption that the domain boundaries were completely occupied by amphipathic
peptides. In Ref. [30], it was shown that the amphipathic peptides significantly increased
the fusion energy barrier of the lipid domains from approximately 0.1 kBT/nm in the case
of no peptides to approximately 0.6–0.9 kBT/nm in the case when the domain boundaries
were completely occupied by the peptides. The results of the present study show that the
domain–domain fusion energy barrier increased not only when the boundaries of lipid
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domains were completely occupied by amphipathic peptides, but also when the domain
boundaries were only partially occupied by these peptides.

We employed a one-dimensional approach to the calculation of the domain–domain
fusion energy barrier. Within this approach, it was assumed that the domain boundary
represented a straight line and the energy of the system was calculated per unit length
along the domain boundary. This approach was justified by the small characteristic length,
λ ≈ 1 nm, of the spatial propagation of the amplitude of the elastic deformations of the
lipid membranes [30]. This one-dimensional approach can be also successfully applied to
the analysis of the membrane-mediated interaction between membrane inclusions [50]. To
obtain the absolute value of the elastic energy, the energy per unit length of the domain
boundary should be multiplied by the effective length of the domain–domain interaction,
which can be estimated as 2

√
2λR [30,73], where R is the domain radius.

As can be seen from Figure 2, after adsorption, the amphipathic peptides were localized
mainly at the boundaries of the lipid domains. Therefore, a natural question to consider is
how the amphipathic peptides affected the energy barrier of the domain–domain fusion.
Within the one-dimensional approach, the membrane-mediated interaction of the lipid
domains with different amounts of amphipathic peptides at their boundaries could be
modeled by considering three different cases: (1) no peptides at the boundaries of the
lipid domains, (2) one peptide at the boundary of one of the domains and no peptide
at the boundary of the other domain, and (3) two peptides with one peptide at each
boundary. The first and third cases were previously considered in Ref. [30], where it was
shown that the energy barrier of the domain–domain fusion increased from approximately
0.1 kBT/nm in the case of no peptides to 0.6–0.9 kBT/nm when both domain boundaries
were occupied by the peptides. In this work, we additionally considered the second case,
when only one boundary was occupied by a peptide. The energy barrier, in this case,
turned out to be approximately 0.2–0.3 kBT/nm, which was an intermediate value between
the energy barriers for the cases of no peptides and two peptides. Among the considered
configurations of the domain boundaries, the most physiologically relevant ones were
those in which the lipid domains were larger in the upper leaflet, as the outer leaflet
of plasma membranes is usually more enriched with saturated lipids than the cytosolic
leaflet [74,75]. For this configuration, the energy barriers of the domain–domain fusion
were approximately 0.9 and 0.3 kBT/nm in the cases of two peptides and one peptide,
respectively (see Figure 4).

It was pointed out in Ref. [30] that the observed increase in the energy barrier was
largely caused by the peptide–peptide repulsion at a close distance between the pep-
tides, which followed from the elastic energy of the membrane-mediated interaction be-
tween the amphipathic peptides [30,50,76]. In this sense, it is not obvious whether the
domain–domain fusion energy barrier would increase if only one peptide at the boundary
of one of the domains is considered. Notice, however, that, as followed from the analysis of
the membrane-mediated interaction between the amphipathic peptides and the lipid do-
mains (Figure 2), there was a nonzero energy barrier of approximately 0.6–0.8 kBT/nm that
the peptides had to overcome to pass from the liquid-disordered phase to the liquid-ordered
phase. Therefore, the amphipathic peptides experienced repulsion from the domain bound-
aries when they were located in the liquid-disordered phase near the domain boundaries,
and it was this repulsion that led to the increase in the domain–domain fusion energy bar-
rier when the domain boundaries were partially occupied by the peptides. This means that,
at a low surface concentration of amphipathic peptides, the increase in the energy barrier
is mainly due to the peptide–domain repulsion, and not the peptide–peptide repulsion,
the probability of which is small at a low concentration of amphipathic peptides. Thus,
the energy barrier of the domain–domain fusion increases faster with an increase in the
surface concentration of the amphipathic peptides compared to if only the peptide–peptide
repulsion is taken into account.

The number of amphipathic peptides at the boundaries of the lipid domains depended
on the concentration of the peptides on the surface of the membrane. Let us estimate the
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peptide concertation, P/L (the number of peptides per lipid), at which the boundary of the
lipid domains appeared to be fully occupied by the peptides. If the area fraction of the lipid
domains is ϕd and the total membrane area is A0, then the total number of lipid domains
of a mean radius R is Nd = ϕd A0

πR2 and the total length of the domain boundaries is 2πRNd.
Therefore, the total number of amphipathic peptides required to completely occupy the
boundaries of the lipid domains can be estimated as 2πRNd

Lp
, where Lp is the length of

the peptide alpha-helix. In this estimate, it was implicitly assumed that the energy well
corresponding to the location of the amphipathic peptides at the boundaries of the lipid
domains was high enough to neglect the redistribution of the peptides over the membrane
surface. In fact, as follows from Figure 2, this energy well was approximately 0.8 kBT/nm.
For a peptide of length Lp, the absolute value of this energy well was ≈0.8 × 1.3Lp, where
1.3Lp is the effective length of the membrane deformations induced by a peptide [50]. For
a typical amphipathic peptide, such as magainin (Lp ≈ 3.5 nm [77]), the energy well was
approximately 3.5 kBT, which is seven times higher than the energy of the thermal motion
per degree of freedom, 0.5 kBT. Thus, it can be assumed that the amphipathic peptides were
located mainly at the boundaries of the lipid domains. Within this assumption, the ratio
of the number of amphipathic peptides to the total number of lipids, A0

aL
, where aL is the

mean area per lipid, is P/L = 2aL ϕd
LpR . For a standard, raft-forming mixture of dioleoylphos-

phatidylcholine, dipalmitoylphosphatidylcholine, and cholesterol in approximately equal
concentrations, the experimental value of the area fraction, ϕd, of the liquid-ordered phase
depends on temperature, but the mean value can be estimated as ≈30% [78]. The typical
value of the area per lipid is aL ≈ 0.6 nm2 [79]. The peptide length Lp depends on the
peptide structure. As an example, let us consider magainin: Lp ≈ 3.5 nm [77]. The mean
radius of the lipid domains, R, may depend on the lipid composition, but in practically
relevant cases, R is usually less than approximately 100 nm [80]. For these parameter values,
P/L ≈ 1/50, 1/500, and 1/1000 if R = 5, 50, or 100 nm, respectively. These concentrations
are lower than the critical pore-forming concentration (P/L ≈ 1/30) of magainin [59]. As
the results of this work showed, even if the boundaries of lipid domains are not completely
occupied by peptides, the average domain–domain fusion energy barrier nevertheless
increases. Therefore, amphipathic peptides can affect the domain–domain fusion energy
barrier at concentrations much lower than the critical concentration of the pore formation
by the peptides.

Increasing experimental evidence suggests the importance of the participation of
nanoscopic liquid-ordered lipid domains, or so-called rafts, in signal transduction and
trafficking [19]. It has been proposed that important cellular processes, such as immune
responses [13,20], signaling [16,21], and polarized sorting [22], require the coalescence of
rafts, i.e., the fusion of small, nanometer-scale domains to larger ones. There is also exper-
imental evidence that has shown the involvement of raft coalescence in neural polarity
determination [26], the assembly of integrin signaling complexes [25], and raft-dependent
endocytic sorting [23,24]. It is known that the mis-regulation of raft coalescence is asso-
ciated with Smith–Lemli–Opitz syndrome [27–29]. The results of this work showed that
amphipathic peptides, which are currently considered to be perspective antimicrobial
drugs, may have a negative impact on the normal regulation of the processes associated
with raft coalescence. Amphipathic peptides usually have a positive charge that determines
their selectivity to the negatively charged membranes of bacteria, in which the amphipathic
peptides form pores and thereby kill pathogens [81,82]. However, the amphipathic proper-
ties of these peptides can also lead to the undesirable adsorption of amphipathic peptides
to the normal cells of a human organism. As a measure of toxicity, the hemolytic activity
of these amphipathic peptides is usually considered [58]. In this work, another possible
mechanism of the toxicity of amphipathic peptides was considered, which involved the
mis-regulation of raft coalescence.
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5. Conclusions

In this work, we showed that amphipathic peptides impeded the fusion of liquid-
ordered lipid domains, even at a low concentration of amphipathic peptides on the sur-
faces of the lipid membranes. This occurred because the elastic deformations of the lipid
membranes drove the peptides towards the boundaries of the lipid domains upon the ad-
sorption of the peptides on the lipid membranes with coexisting liquid-ordered and liquid-
disordered phases, which led to an increase in the energy barrier of the domain–domain
fusion. As was shown in this work, this energy barrier increased even if the boundaries
of the lipid domains were only partially occupied by the peptides. Thus, even at a low
concentration of amphipathic peptides, which is much lower than the critical concerta-
tion for the pore formation by peptides, the mis-regulation of raft coalescence, which is
involved in important cellular processes, could occur. Thus, the undesirable binding of
amphipathic peptides to normal human cells may adversely affect the lateral organization
of lipid membranes and lead to possible negative side effects when using amphipathic
peptides as antimicrobial agents.
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