Effect of Fusidic Acid and Some Nitrogen-Containing Derivatives on Liposomal and Mitochondrial Membranes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Preparation of Liposomes
2.3. Estimation of Laurdan Generalized Polarization (GP)
2.4. Measurement of Permeabilization of Sulforhodamine B (SRB)-Loaded Liposomes
2.5. Isolation of Mitochondria from Rat Liver
2.6. Measurements of Laurdan Generalized Polarization (GP) and Fluidity of the Mitochondrial Membrane
2.7. Monitoring of Mitochondrial Swelling
2.8. Monitoring of Mitochondrial Δψ
2.9. Mitochondrial Respiration and Oxidative Phosphorylation
2.10. Mitochondrial Calcium Transport and Accumulation
2.11. H2O2 Production by Mitochondria
2.12. Statistical Analysis
3. Results
3.1. Effect of FA and Its Derivatives on the Phase State and Permeability of Liposomal Membranes
3.2. Effect of FA and Its Derivatives on the Permeability and Phase State of Mitochondrial Membranes
3.3. Effect of FA and Its Derivatives on the Δψ of Rat Liver Mitochondria and Parameters of Oxidative Phosphorylation
3.4. The Effect of FA and Its Derivatives on the Transport of Calcium Ions and Hydrogen Peroxide Production by Mitochondria
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Collignon, P.; Turnidge, J. Fusidic acid in vitro activity. Int. J. Antimicrob. Agents 1999, 12, 45–58. [Google Scholar] [CrossRef]
- Turnidge, J. Fusidic acid pharmacology, pharmacokinetics and pharmacodynamics. Int. J. Antimicrob. Agents 1999, 12, 23–34. [Google Scholar] [CrossRef]
- Skov, R.; Frimodt-Moller, N.; Espersen, F. Correlation of MIC methods and tentative interpretive criteria for disk diffusion susceptibility testing using NCCLS methodology for fusidic acid. Diagnos. Microbiol. Infect. Dis. 2001, 20, 111–116. [Google Scholar] [CrossRef]
- Falck, E.; Hautala, J.T.; Karttunen, M.P.; Kinnunen, P.K.; Patra, M.; Saaren-Seppälä, H.; Vattulainen, I.; Wiedmer, S.K.; Holopainen, J.M. Interaction of fusidic acid with lipid membranes: Implications to the mechanism of antibiotic activity. Biophys. J. 2006, 91, 1787–1799. [Google Scholar] [CrossRef]
- Chhibber, T.; Wadhwa, S.; Chadha, P.; Sharma, G.; Katare, O.P. Phospholipid structured microemulsion as effective carrier system with potential in methicillin sensitive Staphylococcus aureus (MSSA) involved burn wound infection. J. Drug Target. 2015, 23, 943–952. [Google Scholar] [CrossRef]
- Tanaka, N.; Kinoshita, T.; Masukawa, H. Mechanism of protein synthesis inhibition by fusidic acid and related antibiotics. Biochem. Biophys. Res. Commun. 1968, 30, 278–283. [Google Scholar] [CrossRef]
- Zhang, L.; Ging, N.C.; Komoda, T.; Hanada, T.; Suzuki, T.; Watanabe, K. Antibiotic susceptibility of mammalian mitochondrial translation. FEBS Lett. 2005, 579, 6423–6427. [Google Scholar] [CrossRef]
- Salimova, E.V.; Mozgovoj, O.S.; Efimova, S.S.; Ostroumova, O.S.; Parfenova, L.V. 3-Amino-Substituted Analogues of Fusidic Acid as Membrane-Active Antibacterial Compounds. Membranes 2023, 13, 309. [Google Scholar] [CrossRef]
- Lawrence, S.A. Amines: Synthesis, Properties and Applications; Cambridge University Press: Cambridge, UK, 2004; p. 371. [Google Scholar]
- Schepetkin, I.A.; Plotnikov, M.B.; Khlebnikov, A.I.; Plotnikova, T.M.; Quinn, M.T. Oximes: Novel Therapeutics with Anticancer and Anti-Inflammatory Potential. Biomolecules 2021, 11, 777. [Google Scholar] [CrossRef]
- Zhang, N.; Ma, S. Recent development of membrane-active molecules as antibacterial agents. Eur. J. Med. Chem. 2019, 184, 111743. [Google Scholar] [CrossRef]
- Pearce, A.N.; Chen, D.; Edmeades, L.R.; Cadelis, M.M.; Troudi, A.; Brunel, J.M.; Bourguet-Kondracki, M.L.; Copp, B.R. Repurposing primaquine as a polyamine conjugate to become an antibiotic adjuvant. Bioorg. Med. Chem. 2021, 38, 116110. [Google Scholar] [CrossRef]
- Troïa, T.; Siad, J.; Di Giorgio, C.; Brunel, J.M. Design and synthesis of new polyamine quinoline antibiotic enhancers to fight resistant gram-negative P. aeruginosa bacteria. Eur. J. Med. Chem. Rep. 2022, 5, 100054. [Google Scholar] [CrossRef]
- Surowiak, A.K.; Lochyński, S.; Strub, D.J. Unsubstituted Oximes as Potential Therapeutic Agents. Symmetry 2020, 12, 575. [Google Scholar] [CrossRef]
- Duvold, T. Blanched Polyamine Steroid Derivatives. U.S. Patent 20050256093A1, 10 October 2005. [Google Scholar]
- Duvold, T. Novel Fusidic Acid Derivatives. Patent WO 02/077007A2, 20 March 2002. [Google Scholar]
- Afanasyev, O.I.; Kuchuk, E.; Usanov, D.L.; Chusov, D. Reductive Amination in the Synthesis of Pharmaceuticals. Chem. Rev. 2019, 119, 11857–11911. [Google Scholar] [CrossRef]
- Salimova, E.V.; Parfenova, L.V. Synthesis and Biological Activity of Oximes, Amines, and Lactams of Fusidane Triterpenoids. Chem. Sel. 2021, 6, 8848–8854. [Google Scholar] [CrossRef]
- Muhonen, J.; Vidgren, J.; Helle, A.; Yohannes, G.; Viitala, T.; Holopainen, J.M.; Wiedmer, S.K. Interaction of lipid membranes with fusidic acid and elongation factor-G. Implications to the antibiotic activity of fusidic acid. Anal. Biochem. 2008, 374, 133–142. [Google Scholar] [CrossRef]
- Dubinin, M.V.; Semenova, A.A.; Ilzorkina, A.I.; Mikheeva, I.B.; Yashin, V.A.; Penkov, N.V.; Vydrina, V.A.; Ishmuratov, G.Y.; Sharapov, V.A.; Khoroshavina, E.I.; et al. Effect of betulin and betulonic acid on isolated rat liver mitochondria and liposomes. Biochim. Biophys. Acta Biomembr. 2020, 1862, 183383. [Google Scholar] [CrossRef]
- Li, Y.; He, K.; Huang, Y.; Zheng, D.; Gao, C.; Cui, L.; Jin, Y.H. Betulin induces mitochondrial cytochrome c release associated apoptosis in human cancer cells. Mol. Carcinog. 2010, 49, 630–640. [Google Scholar] [CrossRef]
- Siewert, B.; Pianowski, E.; Obernauer, A.; Csuk, R. Towards cytotoxic and selective derivatives of maslinic acid. Bioorg. Med. Chem. 2014, 22, 594–615. [Google Scholar] [CrossRef]
- Dubinin, M.V.; Sharapov, V.A.; Semenova, A.A.; Parfenova, L.V.; Ilzorkina, A.I.; Khoroshavina, E.I.; Belosludtseva, N.V.; Gudkov, S.V.; Belosludtsev, K.N. Effect of Modified Levopimaric Acid Diene Adducts on Mitochondrial and Liposome Membranes. Membranes 2022, 12, 866. [Google Scholar] [CrossRef]
- Salimova, E.V.; Mamaev, A.G.; Tretyakova, E.V.; Kukovinets, O.S.; Parfenova, L.V. Reductive amination of fusidane triterpenoid ketones. Mediterr. J. Chem. 2018, 7, 198–203. [Google Scholar] [CrossRef]
- Salimova, E.V.; Tretyakova, E.V.; Parfenova, L.V. Synthesis and cytotoxic activity of 3-aminosubstituted fusidane triterpenoids. Med. Chem. Res. 2019, 28, 2171–2183. [Google Scholar] [CrossRef]
- Parasassi, T.; Krasnowska, E.K.; Bagatolli, L.; Gratton, E. Laurdan and Prodan as polarity-sensitive fluorescent membrane probes. J. Fluoresc. 1998, 8, 365–373. [Google Scholar] [CrossRef]
- Parasassi, T.; Stasio, G.; d’Ubaldo, A.; Gratton, E. Phase fluctuation in phospholipid membranes revealed by Laurdan Fluorescence. Biophys. J. 1990, 57, 1179–1186. [Google Scholar] [CrossRef]
- Vedernikov, A.A.; Dubinin, M.V.; Zabiakin, V.A.; Samartsev, V.N. Ca2+-dependent nonspecific permeability of the inner membrane of liver mitochondria in the guinea fowl (Numida meleagris). J. Bioenerg. Biomembr. 2015, 47, 235–242. [Google Scholar] [CrossRef]
- Chance, B.; Williams, G.R. Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization. J. Biol. Chem. 1955, 217, 383–393. [Google Scholar] [CrossRef]
- Dubinin, M.V.; Starinets, V.S.; Belosludtseva, N.V.; Mikheeva, I.B.; Chelyadnikova, Y.A.; Igoshkina, A.D.; Vafina, A.B.; Vedernikov, A.A.; Belosludtsev, K.N. BKCa Activator NS1619 Improves the Structure and Function of Skeletal Muscle Mitochondria in Duchenne Dystrophy. Pharmaceutics 2022, 14, 2336. [Google Scholar] [CrossRef]
- Panov, A.; Dikalov, S.; Shalbuyeva, N.; Taylor, G.; Sherer, T.; Greenamyre, J.T. Rotenone model of Parkinson disease: Multiple brain mitochondria dysfunctions after short term systemic rotenone intoxication. J. Biol. Chem. 2005, 280, 42026–42035. [Google Scholar] [CrossRef]
- Dubinin, M.V.; Semenova, A.A.; Ilzorkina, A.I.; Markelova, N.Y.; Penkov, N.V.; Shakurova, E.R.; Belosludtsev, K.N.; Parfenova, L.V. New quaternized pyridinium derivatives of betulin: Synthesis and evaluation of membranotropic properties on liposomes, pro- and eukaryotic cells, and isolated mitochondria. Chem. Biol. Interact. 2021, 349, 109678. [Google Scholar] [CrossRef]
- Tedeschi, H.; Harris, D.I. Some observations on the photometric estimation of mitochondrial volume. Biochim. Biophys. Acta 1958, 28, 392–402. [Google Scholar] [CrossRef]
- Beavis, A.D.; Brannan, R.D.; Garlid, K.D. Swelling and contraction of the mitochondrial matrix. I. A structural interpretation of the relationship between light scattering and matrix volume. J. Biol. Chem. 1985, 260, 13424–13433. [Google Scholar] [CrossRef] [PubMed]
- Zorov, D.B.; Juhaszova, M.; Sollott, S.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 2014, 94, 909–950. [Google Scholar] [CrossRef] [PubMed]
- Curbete, M.M.; Nunes Salgado, H.R. A critical review of the properties of fusidic acid and analytical methods for its determination. Crit. Rev. Anal. Chem. 2016, 46, 352–360. [Google Scholar] [CrossRef]
- Chen, H.J.; Hung, W.C.; Tseng, S.P.; Tsai, J.C.; Hsueh, P.R.; Teng, L.J. Fusidic acid resistance determinants in Staphylococcus aureus clinical isolates. Antimicrob. Agents Chemother. 2010, 54, 4985–4991. [Google Scholar] [CrossRef] [PubMed]
- Moriyama, Y.; Nelson, N. Inhibition of vacuolar H+-ATPases by fusidic acid and suramin. FEBS Lett. 1988, 234, 383–386. [Google Scholar] [CrossRef]
- Mammucari, C.; Raffaello, A.; Vecellio Reane, D.; Gherardi, G.; De Mario, A.; Rizzuto, R. Mitochondrial calcium uptake in organ physiology: From molecular mechanism to animal models. Pflugers Arch. 2018, 470, 1165–1179. [Google Scholar] [CrossRef]
- MarvinSketch 19.17.0, ChemAxon. 2019. Available online: http://www.chemaxon.com (accessed on 2 August 2023).
- Computational Chemistry Comparison and Benchmark DataBase, Release 22 (May 2022) Standard Reference Database 101, National Institute of Standards and Technology. Available online: https://cccbdb.nist.gov/diplistx.asp (accessed on 18 September 2023).
- Novgorodov, S.A.; Szulc, Z.M.; Luberto, C.; Jones, J.A.; Bielawski, J.; Bielawska, A.; Hannun, Y.A.; Obeid, L.M. Positively charged ceramide is a potent inducer of mitochondrial permeabilization. J. Biol. Chem. 2005, 280, 16096–16105. [Google Scholar] [CrossRef]
Additions | State 2 | State 3 | State 4 | State 3UDNP | RC |
---|---|---|---|---|---|
nmol O2 ∗ min−1 ∗ mg−1 Protein | rel. un. | ||||
Control | 15.95 ± 0.47 | 42.52 ± 0.61 | 18.22 ± 0.60 | 46.41 ± 0.76 | 2.34 ± 0.05 |
20 μM derivative 2 | 16.50 ± 0.67 | 42.95 ± 0.56 | 21.66 ± 0.33 * | 48.53 ± 0.26 | 1.99 ± 0.05 * |
30 μM derivative 2 | 18.09 ± 0.20 * | 42.47 ± 0.99 | 22.55 ± 0.31 * | 47.31 ± 0.33 | 1.92 ± 0.05 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dubinin, M.V.; Ilzorkina, A.I.; Salimova, E.V.; Landage, M.S.; Khoroshavina, E.I.; Gudkov, S.V.; Belosludtsev, K.N.; Parfenova, L.V. Effect of Fusidic Acid and Some Nitrogen-Containing Derivatives on Liposomal and Mitochondrial Membranes. Membranes 2023, 13, 835. https://doi.org/10.3390/membranes13100835
Dubinin MV, Ilzorkina AI, Salimova EV, Landage MS, Khoroshavina EI, Gudkov SV, Belosludtsev KN, Parfenova LV. Effect of Fusidic Acid and Some Nitrogen-Containing Derivatives on Liposomal and Mitochondrial Membranes. Membranes. 2023; 13(10):835. https://doi.org/10.3390/membranes13100835
Chicago/Turabian StyleDubinin, Mikhail V., Anna I. Ilzorkina, Elena V. Salimova, Manish S. Landage, Ekaterina I. Khoroshavina, Sergey V. Gudkov, Konstantin N. Belosludtsev, and Lyudmila V. Parfenova. 2023. "Effect of Fusidic Acid and Some Nitrogen-Containing Derivatives on Liposomal and Mitochondrial Membranes" Membranes 13, no. 10: 835. https://doi.org/10.3390/membranes13100835
APA StyleDubinin, M. V., Ilzorkina, A. I., Salimova, E. V., Landage, M. S., Khoroshavina, E. I., Gudkov, S. V., Belosludtsev, K. N., & Parfenova, L. V. (2023). Effect of Fusidic Acid and Some Nitrogen-Containing Derivatives on Liposomal and Mitochondrial Membranes. Membranes, 13(10), 835. https://doi.org/10.3390/membranes13100835