Advancements in Gas Separation for Energy Applications: Exploring the Potential of Polymer Membranes with Intrinsic Microporosity (PIM)
Abstract
:1. Introduction
1.1. Background
1.2. Advantages of Polymeric Membranes
1.3. Fabrication Methods
1.4. General Outlook
2. Permeability-Selectivity Trade-Off
2.1. PIM Membranes, an Alternative in CO2/CH4 and CO2/N2 Separation
2.2. PIMs
3. Recent Strategies in PIM Modification
3.1. Novel PIMs
3.2. Post-Modification of PIMs
3.2.1. Chemical Post-Modification
Carboxylate-Functionalized PIM-1 (cPIM-1)
Amidoxime-Functionalized PIMs (AO-PIM)
Heterocyclic Tetrazole-Functionalized PIMs
Amine-Functionalized PIMs
Thioamide-Functionalized PIMs
3.2.2. Crosslinking
3.3. UV and Thermal Treatment
3.3.1. Thermally Rearranged
Membrane | CO2 Permeability (Barrer) | CO2/N2 Selectivity | CO2/CH4 Selectivity | Ref. |
---|---|---|---|---|
PIM-1 ref. [45] | 3375 (@3.5 Bar, 35 °C) | 20.4 | 16.6 | [45] |
PIM-1 soaked in MeOH ref. [45] | 6957 (@3.5 Bar, 35 °C) | 20.7 | 14.8 | [45] |
PIM-300−2.0 d (Thermally cross-linked) | 4000 (@3.5 Bar, 35 °C) | 41.7 | 54.8 | [45] |
Untreated PIM | 3934 (@1 Bar, 25 °C) | 14.6 | 11.0 | [63] |
PIM-COOH-360 h | 96.43 (@1 Bar, 25 °C) | 53.6 | 25.2 | [63] |
TRIP-TR-400-30 | 840 (@2 Bar, 35 °C) | - | 21 | [81] |
TRIP-TR-460-30 aged 85 days | 444 (@2 Bar, 35 °C) | - | 23 | [81] |
6FDA-DAT1-OH | 43 (@2 Bar, 35 °C) | - | 52 | [81] |
Untreated PIM ref. [82] | 6601 (@3.5 Bar, 35 °C) | - | 15.3 | [83] |
PIM-UV 30 min | 724 (@3.5 Bar, 35 °C) | - | 31.3 | [83] |
Untreated PIM ref. [84] | 5622 (@4 Bar, 22 °C) | 17.3 | 13.5 | [82] |
PIM-1, UV in air, 5 min | 6007 (@4 Bar, 22 °C) | 20.9 | 15.8 | [82] |
PIM-1, UV in air, 60 min | 1427 (@4 Bar, 22 °C) | 30.0 | 27.0 | [82] |
PIM-1, UV in quartz, 5 min | 3410 (@4 Bar, 22 °C) | 20.7 | 18.5 | [82] |
PIM-1, UV in quartz, 60 min | 1509 (@4 Bar, 22 °C) | 27.2 | 28.6 | [82] |
Untreated PIM ref. [85] | 4868 (@2 Bar, 35 °C) | - | 15.4 | [84] |
O3-PIM-30 | 1033 (@2 Bar, 35 °C) | - | 30.9 | [84] |
O3-PIM-60 | 443 (@2 Bar, 35 °C) | - | 41.4 | [84] |
3.3.2. UV Treatment (Photo-Oxidative Modification)
4. PIM-Based Mixed Matrix Membranes (MMMs) with Nanofillers
Inorganic Nanofillers | Membrane | CO2 Permeability (Barrer) | CO2/N2 Selectivity | CO2/CH4 Selectivity | Ref. |
---|---|---|---|---|---|
Silica Nanoparticles | PIM-1 ref. [90] | 1250 | 19.8 | - | [91] |
DMBA-NP (5–25% NPs) | 2730–7930 | 16.8–20.5 | - | [91] | |
Poly(ethylene glycol)-POSS (PEG-POSS) | PIM-1 ref. [92] | 3795 | 12 | 19 | [93] |
PIM-1/PEGPOSS (1–10) | 1875–3381 | 18–31 | 13–30 | [93] | |
Graphene Oxide (GO) | PIM-1 ref. [94] | 6190 | 11.7 | [90] | |
ODAHGO-4 h (0.1–0.2%) | 5429–6146 | - | 11.8 | [90] | |
P-H24 (1–10%) | 5675–4727 | - | 12.2–12.6 | [90] | |
Aged (850) days membrane | PIM-1 ref. [95] | 2195 | - | 14.1 | [92] |
2D Reduced Holey Graphene Oxide | rHGO-TAPA (0.01–0.05–0.1) | 2453–3245 | - | 13.2–15.9 | [92] |
(rHGO) | rHGO-tetrakis (0.01–0.05–0.1) | 2738–3088 | - | 13.3–17.9 | [92] |
Organic Nanofillers | |||||
Porous Aromatic Frameworks (PAFs) | PIM-1 ref. [96] | 13,400 | 15 | - | [94] |
PIM−SAP110 | 12,300 | 16 | - | [94] | |
PIM−SAP-OP | 10,200 | 15 | - | [94] | |
Porous Organic Frameworks (POFs) | PIM-1 ref. [97] | 3694 | 18.9 | - | [95] |
MAPDA/PIM-1-5/1-8/1-12/1-15/1-20 | 3048–7861 | 19.3–23.9 | - | [95] | |
Covalent Triazine Framework (CTF) | PIM-1 ref. [98] | 5800 | - | 11.5 | [96] |
Covalent Triazine Framework (CTF) | PIM-1@FCTF-1 (1–10%) | 4700–9400 | - | 14.8–16.6 | [96] |
Beta-Cyclodextrin (β-CD) | PIM ref. [99] | 3364 | 18.5 | 15.4 | [96] |
Beta-Cyclodextrin (β-CD) | PIM-CD-0.1/0.5/1/2% | 3736–8812 | 18.3–25.4 | 12.3–17.2 | [96] |
Beta-Cyclodextrin (β-CD) | PIM-1/PDMS/PAN | 402.6 | 21.3 | - | [98] |
Beta-Cyclodextrin (β-CD) | PIM-CD/PDMS/PAN | 483.4 | 22.5–29.6 | - | [98] |
Metallic−organic Nanofillers | |||||
Metal−Organic Frameworks (MOFs) | PIM-1 ref. [100] | 274 | - | 3.44 | [99] |
PIM-1/ZIF-7 (20) | 218 | - | 5.29 | [99] | |
PIM-1/NH2-ZIF-7 (20) | 249 | - | 6.06 | [99] | |
Metal−Organic Frameworks (MOFs) | PIM-1 ref. [101] | 7826 | 16.5 | 9.6 | [102] |
NUS-8-NH2/PIM-1 (1.6/2.5/5.6/10.4/13.0/15.0%) | 10,819–14,638 | 24.7–30.7 | 6.4–9.5 | [102] |
4.1. Inorganic Nanofillers
4.2. Organic Nanofillers
4.3. Metallic-Organic Nanofillers
4.4. Multiple Fillers
5. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Lamb, W.F.; Wiedmann, T.; Pongratz, J.; Andrew, R.; Crippa, M.; Olivier, J.G.J.; Wiedenhofer, D.; Mattioli, G.; Khourdajie, A.A.; House, J.; et al. A Review of Trends and Drivers of Greenhouse Gas Emissions by Sector from 1990 to 2018. Environ. Res. Lett. 2021, 16, 073005. [Google Scholar] [CrossRef]
- Kenarsari, S.D.; Yang, D.; Jiang, G.; Zhang, S.; Wang, J.; Russell, A.G.; Wei, Q.; Fan, M. Review of Recent Advances in Carbon Dioxide Separation and Capture. RSC Adv. 2013, 3, 22739–22773. [Google Scholar] [CrossRef]
- Grassi, G.; House, J.; Kurz, W.A.; Cescatti, A.; Houghton, R.A.; Peters, G.P.; Sanz, M.J.; Viñas, R.A.; Alkama, R.; Arneth, A.; et al. Reconciling Global-Model Estimates and Country Reporting of Anthropogenic Forest CO2 Sinks. Nat. Clim. Chang. 2018, 8, 914–920. [Google Scholar] [CrossRef]
- Bui, M.; Adjiman, C.S.; Bardow, A.; Anthony, E.J.; Boston, A.; Brown, S.; Fennell, P.S.; Fuss, S.; Galindo, A.; Hackett, L.A.; et al. Carbon Capture and Storage (CCS): The Way Forward. Energy Environ. Sci. 2018, 11, 1062–1176. [Google Scholar] [CrossRef]
- Baena-Moreno, F.M.; Rodríguez-Galán, M.; Vega, F.; Alonso-Fariñas, B.; Arenas, L.F.V.; Navarrete, B. Carbon Capture and Utilization Technologies: A Literature Review and Recent Advances. Energy Sources Part A Recover. Util. Environ. Eff. 2019, 41, 1403–1433. [Google Scholar] [CrossRef]
- Global Monitoring Laboratory. Trends in Atmospheric Carbon Dioxide. In Earth System Research Laboratory; Global Monitoring Laboratory: San Francisco, CA, USA, 2020. Available online: https://www.esrl.noaa.gov/gmd/ccgg/trends/ (accessed on 27 November 2023).
- Powell, C.E.; Qiao, G.G. Polymeric CO2/N2 Gas Separation Membranes for the Capture of Carbon Dioxide from Power Plant Flue Gases. J. Memb. Sci. 2006, 279, 1–49. [Google Scholar] [CrossRef]
- Baena-Moreno, F.M.; le Saché, E.; Pastor-Pérez, L.; Reina, T.R. Membrane-Based Technologies for Biogas Upgrading: A Review. Environ. Chem. Lett. 2020, 18, 1649–1658. [Google Scholar] [CrossRef]
- Bilgen, S. Pollution Control Techniques and Technologies for Cleaner Coal. Energy Sources Part A Recover. Util. Environ. Eff. 2016, 38, 3308–3314. [Google Scholar] [CrossRef]
- Wang, Y.; Ghanem, B.S.; Han, Y.; Pinnau, I. State-of-the-Art Polymers of Intrinsic Microporosity for High-Performance Gas Separation Membranes. Curr. Opin. Chem. Eng. 2022, 35, 100755. [Google Scholar] [CrossRef]
- Rangnekar, N.; Mittal, N.; Elyassi, B.; Caro, J.; Tsapatsis, M. Zeolite Membranes—A Review and Comparison with MOFs. Chem. Soc. Rev. 2015, 44, 7128–7154. [Google Scholar] [CrossRef]
- Kosinov, N.; Gascon, J.; Kapteijn, F.; Hensen, E.J.M. Recent Developments in Zeolite Membranes for Gas Separation. J. Memb. Sci. 2016, 499, 65–79. [Google Scholar] [CrossRef]
- Gandia, L.M.; Arzamedi, G.; Diéguez, P.M. (Eds.) Renewable Hydrogen Technologies: Production, Purification, Storage, Applications and Safety; Newnes: Oxford, UK, 2013. [Google Scholar]
- Xie, K.; Fu, Q.; Qiao, G.G.; Webley, P.A. Recent Progress on Fabrication Methods of Polymeric Thin Film Gas Separation Membranes for CO2 Capture. J. Memb. Sci. 2019, 572, 38–60. [Google Scholar] [CrossRef]
- Robeson, L.M. Correlation of Separation Factor versus Permeability for Polymeric Membranes. J. Memb. Sci. 1991, 62, 165–185. [Google Scholar] [CrossRef]
- Budd, P.M.; McKeown, N.B.; Ghanem, B.S.; Msayib, K.J.; Fritsch, D.; Starannikova, L.; Belov, N.; Sanfirova, O.; Yampolskii, Y.; Shantarovich, V. Gas Permeation Parameters and Other Physicochemical Properties of a Polymer of Intrinsic Microporosity: Polybenzodioxane PIM-1. J. Memb. Sci. 2008, 325, 851–860. [Google Scholar] [CrossRef]
- Robeson, L.M.; Smith, Z.P.; Freeman, B.D.; Paul, D.R. Contributions of Diffusion and Solubility Selectivity to the Upper Bound Analysis for Glassy Gas Separation Membranes. J. Memb. Sci. 2014, 453, 71–83. [Google Scholar] [CrossRef]
- Matteucci, S.; Yampolskii, Y.; Freeman, B.D.; Pinnau, I. Transport of Gases and Vapors in Glassy and Rubbery Polymers. In Materials Science of Membranes for Gas and Vapor Separation; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006; pp. 1–47. [Google Scholar] [CrossRef]
- Park, H.B.; Kamcev, J.; Robeson, L.M.; Elimelech, M.; Freeman, B.D. Maximizing the Right Stuff: The Trade-off between Membrane Permeability and Selectivity. Science 2017, 356, 1138–1148. [Google Scholar] [CrossRef]
- Comesaña-Gándara, B.; Chen, J.; Bezzu, C.G.; Carta, M.; Rose, I.; Ferrari, M.C.; Esposito, E.; Fuoco, A.; Jansen, J.C.; McKeown, N.B. Redefining the Robeson Upper Bounds for CO2/CH4 and CO2/N2 Separations Using a Series of Ultrapermeable Benzotriptycene-Based Polymers of Intrinsic Microporosity. Energy Environ. Sci. 2019, 12, 2733–2740. [Google Scholar] [CrossRef]
- Yuan, S.; Wang, Z.; Qiao, Z.; Wang, M.; Wang, J.; Wang, S. Improvement of CO2/N2 Separation Characteristics of Polyvinylamine by Modifying with Ethylenediamine. J. Memb. Sci. 2011, 378, 425–437. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Z.; Li, N.; Liao, J.; Zhao, S.; Wang, J.; Wang, S. Relationship between Polymer–Filler Interfaces in Separation Layers and Gas Transport Properties of Mixed Matrix Composite Membranes. J. Memb. Sci. 2015, 495, 252–268. [Google Scholar] [CrossRef]
- Yave, W.; Car, A.; Wind, J.; Peinemann, K.-V. Nanometric Thin Film Membranes Manufactured on Square Meter Scale: Ultra-Thin Films for CO2 Capture. Nanotechnology 2010, 21, 395301. [Google Scholar] [CrossRef]
- Fu, Q.; Wong, E.H.H.; Kim, J.; Scofield, J.M.P.; Gurr, P.A.; Kentish, S.E.; Qiao, G.G. The Effect of Soft Nanoparticles Morphologies on Thin Film Composite Membrane Performance. J. Mater. Chem. A 2014, 2, 17751–17756. [Google Scholar] [CrossRef]
- Dai, Z.; Bai, L.; Hval, K.N.; Zhang, X.; Zhang, S.; Deng, L. Pebax®/TSIL Blend Thin Film Composite Membranes for CO2 Separation. Sci. China Chem. 2016, 59, 538–546. [Google Scholar] [CrossRef]
- Deng, L.; Hägg, M.-B. Carbon Nanotube Reinforced PVAm/PVA Blend FSC Nanocomposite Membrane for CO2/CH4 Separation. Int. J. Greenh. Gas Control 2014, 26, 127–134. [Google Scholar] [CrossRef]
- Chen, H.Z.; Thong, Z.; Li, P.; Chung, T.-S. High Performance Composite Hollow Fiber Membranes for CO2/H2 and CO2/N2 Separation. Int. J. Hydrogen Energy 2014, 39, 5043–5053. [Google Scholar] [CrossRef]
- Deng, L.; Kim, T.-J.; Hägg, M.-B. Facilitated Transport of CO2 in Novel PVAm/PVA Blend Membrane. J. Memb. Sci. 2009, 340, 154–163. [Google Scholar] [CrossRef]
- Yao, K.; Wang, Z.; Wang, J.; Wang, S. Biomimetic Material—Poly(N-Vinylimidazole)–Zinc Complex for CO2 Separation. Chem. Commun. 2012, 48, 1766–1768. [Google Scholar] [CrossRef] [PubMed]
- Jun Kim, B.; Wook Kang, S. Accelerated CO2 Transport on the Surface-Tuned Ag Nanoparticles by p-Benzoquinone. J. Ind. Eng. Chem. 2022, 106, 311–316. [Google Scholar] [CrossRef]
- Bondar, V.I.; Freeman, B.D.; Pinnau, I. Gas Transport Properties of Poly(Ether-b-Amide) Segmented Block Copolymers. J. Polym. Sci. Part B Polym. Phys. 2000, 38, 2051–2062. [Google Scholar] [CrossRef]
- Zhang, X.; Rong, M.; Qin, P.; Tan, T. PEO-Based CO2-Philic Mixed Matrix Membranes Compromising N-Rich Ultramicroporous Polyaminals for Superior CO2 Capture. J. Memb. Sci. 2022, 644, 120111. [Google Scholar] [CrossRef]
- Haggin, J. New Generation of Membranes Developed for Industrial Separations. Chem. Eng. News Arch. 1988, 66, 7–16. [Google Scholar] [CrossRef]
- Baker, R.W.; Lokhandwala, K. Natural Gas Processing with Membranes: An Overview. Ind. Eng. Chem. Res. 2008, 47, 2109–2121. [Google Scholar] [CrossRef]
- Vanherck, K.; Koeckelberghs, G.; Vankelecom, I.F.J. Crosslinking Polyimides for Membrane Applications: A Review. Prog. Polym. Sci. 2013, 38, 874–896. [Google Scholar] [CrossRef]
- Jiang, L.Y.; Wang, Y.; Chung, T.-S.; Qiao, X.Y.; Lai, J.-Y. Polyimides Membranes for Pervaporation and Biofuels Separation. Prog. Polym. Sci. 2009, 34, 1135–1160. [Google Scholar] [CrossRef]
- Xiao, Y.; Low, B.T.; Hosseini, S.S.; Chung, T.S.; Paul, D.R. The Strategies of Molecular Architecture and Modification of Polyimide-Based Membranes for CO2 Removal from Natural Gas—A Review. Prog. Polym. Sci. 2009, 34, 561–580. [Google Scholar] [CrossRef]
- Kim, S.; Lee, Y.M. Rigid and Microporous Polymers for Gas Separation Membranes. Prog. Polym. Sci. 2015, 43, 1–32. [Google Scholar] [CrossRef]
- Tanh Jeazet, H.B.; Staudt, C.; Janiak, C. Metal–Organic Frameworks in Mixed-Matrix Membranes for Gas Separation. Dalt. Trans. 2012, 41, 14003–14027. [Google Scholar] [CrossRef] [PubMed]
- Dong, G.; Li, H.; Chen, V. Challenges and Opportunities for Mixed-Matrix Membranes for Gas Separation. J. Mater. Chem. A 2013, 1, 4610–4630. [Google Scholar] [CrossRef]
- Qin, Z.; Ma, Y.; Wei, J.; Guo, H.; Wang, B.; Deng, J.; Yi, C.; Li, N.; Yi, S.; Deng, Y.; et al. Recent Progress in Ternary Mixed Matrix Membranes for CO2 Separation. Green Energy Environ. 2023; in press. [Google Scholar] [CrossRef]
- Arabi Shamsabadi, A.; Rezakazemi, M.; Seidi, F.; Riazi, H.; Aminabhavi, T.; Soroush, M. Next Generation Polymers of Intrinsic Microporosity with Tunable Moieties for Ultrahigh Permeation and Precise Molecular CO2 Separation. Prog. Energy Combust. Sci. 2021, 84, 100903. [Google Scholar] [CrossRef]
- Li, F.Y.; Xiao, Y.; Chung, T.-S.; Kawi, S. High-Performance Thermally Self-Cross-Linked Polymer of Intrinsic Microporosity (PIM-1) Membranes for Energy Development. Macromolecules 2012, 45, 1427–1437. [Google Scholar] [CrossRef]
- Tien-Binh, N.; Rodrigue, D.; Kaliaguine, S. In-Situ Cross Interface Linking of PIM-1 Polymer and UiO-66-NH2 for Outstanding Gas Separation and Physical Aging Control. J. Memb. Sci. 2018, 548, 429–438. [Google Scholar] [CrossRef]
- Bernardo, P.; Bazzarelli, F.; Tasselli, F.; Clarizia, G.; Mason, C.R.; Maynard-Atem, L.; Budd, P.M.; Lanč, M.; Pilnáček, K.; Vopička, O.; et al. Effect of Physical Aging on the Gas Transport and Sorption in PIM-1 Membranes. Polymer 2017, 113, 283–294. [Google Scholar] [CrossRef]
- Guiver, M.D.; Lee, Y.M. Polymer Rigidity Improves Microporous Membranes. Science 2013, 339, 284–285. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Salinas, O.; Litwiller, E.; Pinnau, I. Novel Spirobifluorene- and Dibromospirobifluorene-Based Polyimides of Intrinsic Microporosity for Gas Separation Applications. Macromolecules 2013, 46, 9618–9624. [Google Scholar] [CrossRef]
- Carta, M.; Malpass-Evans, R.; Croad, M.; Rogan, Y.; Jansen, J.C.; Bernardo, P.; Bazzarelli, F.; McKeown, N.B. An Efficient Polymer Molecular Sieve for Membrane Gas Separations. Science 2013, 339, 303–307. [Google Scholar] [CrossRef] [PubMed]
- Carta, M.; Croad, M.; Malpass-Evans, R.; Jansen, J.C.; Bernardo, P.; Clarizia, G.; Friess, K.; Lanč, M.; McKeown, N.B. Triptycene Induced Enhancement of Membrane Gas Selectivity for Microporous Tröger’s Base Polymers. Adv. Mater. 2014, 26, 3526–3531. [Google Scholar] [CrossRef] [PubMed]
- Ghanem, B.S.; Swaidan, R.; Ma, X.; Litwiller, E.; Pinnau, I. Energy-Efficient Hydrogen Separation by AB-Type Ladder-Polymer Molecular Sieves. Adv. Mater. 2014, 26, 6696–6700. [Google Scholar] [CrossRef] [PubMed]
- Ghanem, B.S.; Swaidan, R.; Litwiller, E.; Pinnau, I. Ultra-Microporous Triptycene-Based Polyimide Membranes for High-Performance Gas Separation. Adv. Mater. 2014, 26, 3688–3692. [Google Scholar] [CrossRef]
- Rose, I.; Carta, M.; Malpass-Evans, R.; Ferrari, M.C.; Bernardo, P.; Clarizia, G.; Jansen, J.C.; McKeown, N.B. Highly Permeable Benzotriptycene-Based Polymer of Intrinsic Microporosity. ACS Macro Lett. 2015, 4, 912–915. [Google Scholar] [CrossRef]
- Rogan, Y.; Starannikova, L.; Ryzhikh, V.; Yampolskii, Y.; Bernardo, P.; Bazzarelli, F.; Jansen, J.C.; McKeown, N.B. Synthesis and Gas Permeation Properties of Novel Spirobisindane-Based Polyimides of Intrinsic Microporosity. Polym. Chem. 2013, 4, 3813–3820. [Google Scholar] [CrossRef]
- Tocci, E.; De Lorenzo, L.; Bernardo, P.; Clarizia, G.; Bazzarelli, F.; McKeown, N.B.; Carta, M.; Malpass-Evans, R.; Friess, K.; Pilnáček, K.; et al. Molecular Modeling and Gas Permeation Properties of a Polymer of Intrinsic Microporosity Composed of Ethanoanthracene and Tröger’s Base Units. Macromolecules 2014, 47, 7900–7916. [Google Scholar] [CrossRef]
- Ma, X.; Pinnau, I. Effect of Film Thickness and Physical Aging on Intrinsic Gas Permeation Properties of Microporous Ethanoanthracene-Based Polyimides. Macromolecules 2018, 51, 1069–1076. [Google Scholar] [CrossRef]
- Williams, R.; Burt, L.A.; Esposito, E.; Jansen, J.C.; Tocci, E.; Rizzuto, C.; Lanč, M.; Carta, M.; McKeown, N.B. A Highly Rigid and Gas Selective Methanopentacene-Based Polymer of Intrinsic Microporosity Derived from Tröger’s Base Polymerization. J. Mater. Chem. A 2018, 6, 5661–5667. [Google Scholar] [CrossRef]
- Lee, W.H.; Seong, J.G.; Hu, X.; Lee, Y.M. Recent Progress in Microporous Polymers from Thermally Rearranged Polymers and Polymers of Intrinsic Microporosity for Membrane Gas Separation: Pushing Performance Limits and Revisiting Trade-off Lines. J. Polym. Sci. 2020, 58, 2450–2466. [Google Scholar] [CrossRef]
- Budd, P.M.; Ghanem, B.S.; Makhseed, S.; McKeown, N.B.; Msayib, K.J.; Tattershall, C.E. Polymers of Intrinsic Microporosity (PIMs): Robust, Solution-Processable, Organic Nanoporous Materials. Chem. Commun. 2004, 4, 230–231. [Google Scholar] [CrossRef]
- Budd, P.M.; Elabas, E.S.; Ghanem, B.S.; Makhseed, S.; McKeown, N.B.; Msayib, K.J.; Tattershall, C.E.; Wang, D. Solution-Processed, Organophilic Membrane Derived from a Polymer of Intrinsic Microporosity. Adv. Mater. 2004, 16, 456–459. [Google Scholar] [CrossRef]
- Vogiatzis, K.D.; Mavrandonakis, A.; Klopper, W.; Froudakis, G.E. Ab Initio Study of the Interactions between CO2 and N-Containing Organic Heterocycles. ChemPhysChem 2009, 10, 374–383. [Google Scholar] [CrossRef]
- Seidi, F.; Salarabadi, M.B.; Saedi, S.; Modadi, L.; Shamsabadi, A.A.; Nikravesh, B. Introduction of a Novel Amino-Agarose (AAG) Derivative as a Fixed Facilitated Transport Carrier to Prepare Newly Asymmetric PES/AAG Membranes for CO2 Removal. Greenh. Gases Sci. Technol. 2015, 5, 701–713. [Google Scholar] [CrossRef]
- Patel, H.A.; Yavuz, C.T. Noninvasive Functionalization of Polymers of Intrinsic Microporosity for Enhanced CO2 Capture. Chem. Commun. 2012, 48, 9989–9991. [Google Scholar] [CrossRef]
- Jeon, J.W.; Kim, D.-G.; Sohn, E.; Yoo, Y.; Kim, Y.S.; Kim, B.G.; Lee, J.-C. Highly Carboxylate-Functionalized Polymers of Intrinsic Microporosity for CO2-Selective Polymer Membranes. Macromolecules 2017, 50, 8019–8027. [Google Scholar] [CrossRef]
- Du, N.; Robertson, G.P.; Song, J.; Pinnau, I.; Guiver, M.D. High-Performance Carboxylated Polymers of Intrinsic Microporosity (PIMs) with Tunable Gas Transport Properties. Macromolecules 2009, 42, 6038–6043. [Google Scholar] [CrossRef]
- Wu, W.-H.; Thomas, P.; Hume, P.; Jin, J. Effective Conversion of Amide to Carboxylic Acid on Polymers of Intrinsic Microporosity (PIM-1) with Nitrous Acid. Membranes 2018, 8, 20. [Google Scholar] [CrossRef] [PubMed]
- Satilmis, B.; Budd, P.M. Base-Catalysed Hydrolysis of PIM-1: Amide versus Carboxylate Formation. RSC Adv. 2014, 4, 52189–52198. [Google Scholar] [CrossRef]
- Swaidan, R.; Ghanem, B.S.; Litwiller, E.; Pinnau, I. Pure- and Mixed-Gas CO2/CH4 Separation Properties of PIM-1 and an Amidoxime-Functionalized PIM-1. J. Memb. Sci. 2014, 457, 95–102. [Google Scholar] [CrossRef]
- Du, N.; Robertson, G.P.; Dal-Cin, M.M.; Scoles, L.; Guiver, M.D. Polymers of Intrinsic Microporosity (PIMs) Substituted with Methyl Tetrazole. Polymer 2012, 53, 4367–4372. [Google Scholar] [CrossRef]
- Mason, C.R.; Maynard-Atem, L.; Al-Harbi, N.M.; Budd, P.M.; Bernardo, P.; Bazzarelli, F.; Clarizia, G.; Jansen, J.C. Polymer of Intrinsic Microporosity Incorporating Thioamide Functionality: Preparation and Gas Transport Properties. Macromolecules 2011, 44, 6471–6479. [Google Scholar] [CrossRef]
- Miles, A.; Wilfong, W.C.; Hopkinson, D.; Sekizkardes, A.K. Alkylamine Incorporation in Amidoxime Functionalized Polymers of Intrinsic Microporosity for Gas Capture and Separation. Energy Technol. 2020, 8, 2000419. [Google Scholar] [CrossRef]
- Gao, Z.; Wang, Y.; Wu, H.; Ren, Y.; Guo, Z.; Liang, X.; Wu, Y.; Liu, Y.; Jiang, Z. Surface Functionalization of Polymers of Intrinsic Microporosity (PIMs) Membrane by Polyphenol for Efficient CO2 Separation. Green Chem. Eng. 2021, 2, 70–76. [Google Scholar] [CrossRef]
- Mason, C.R.; Maynard-Atem, L.; Heard, K.W.J.; Satilmis, B.; Budd, P.M.; Friess, K.; Lanč, M.; Bernardo, P.; Clarizia, G.; Jansen, J.C. Enhancement of CO2 Affinity in a Polymer of Intrinsic Microporosity by Amine Modification. Macromolecules 2014, 47, 1021–1029. [Google Scholar] [CrossRef]
- Chen, L.; Su, P.; Liu, J.; Chen, S.; Huang, J.; Huang, X.; Zhang, H.; Ye, B.; Yang, W.; Li, W. Post-Synthesis Amination of Polymer of Intrinsic Microporosity Membranes for CO2 Separation. AIChE J. 2023, 69, e18050. [Google Scholar] [CrossRef]
- Mizrahi Rodriguez, K.; Benedetti, F.M.; Roy, N.; Wu, A.X.; Smith, Z.P. Sorption-Enhanced Mixed-Gas Transport in Amine Functionalized Polymers of Intrinsic Microporosity (PIMs). J. Mater. Chem. A 2021, 9, 23631–23642. [Google Scholar] [CrossRef]
- Sekizkardes, A.K.; Hammache, S.; Hoffman, J.S.; Hopkinson, D. Polymers of Intrinsic Microporosity Chemical Sorbents Utilizing Primary Amine Appendance through Acid-Base and Hydrogen-Bonding Interactions. ACS Appl. Mater. Interfaces 2019, 11, 30987–30991. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Cao, S.; Pritchard, R.H.; Ghalei, B.; Al-Muhtaseb, S.A.; Terentjev, E.M.; Cheetham, A.K.; Sivaniah, E. Controlled Thermal Oxidative Crosslinking of Polymers of Intrinsic Microporosity towards Tunable Molecular Sieve Membranes. Nat. Commun. 2014, 5, 4813. [Google Scholar] [CrossRef] [PubMed]
- Du, N.; Dal-Cin, M.M.; Robertson, G.P.; Guiver, M.D. Decarboxylation-Induced Cross-Linking of Polymers of Intrinsic Microporosity (PIMs) for Membrane Gas Separation. Macromolecules 2012, 45, 5134–5139. [Google Scholar] [CrossRef]
- Neumann, S.; Bengtson, G.; Meis, D.; Filiz, V. Thermal Cross Linking of Novel Azide Modified Polymers of Intrinsic Microporosity-Effect of Distribution and the Gas Separation Performance. Polymers 2019, 11, 1241. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Rayer, C.; Antonangelo, A.R.; Hawkins, N.; Carta, M. Adjustable Functionalization of Hyper-Cross-Linked Polymers of Intrinsic Microporosity for Enhanced CO2 Adsorption and Selectivity over N2 and CH4. ACS Appl. Mater. Interfaces 2022, 14, 20997–21006. [Google Scholar] [CrossRef]
- Li, S.; Jo, H.J.; Han, S.H.; Park, C.H.; Kim, S.; Budd, P.M.; Lee, Y.M. Mechanically Robust Thermally Rearranged (TR) Polymer Membranes with Spirobisindane for Gas Separation. J. Memb. Sci. 2013, 434, 137–147. [Google Scholar] [CrossRef]
- Yerzhankyzy, A.; Ghanem, B.S.; Wang, Y.; Alaslai, N.; Pinnau, I. Gas Separation Performance and Mechanical Properties of Thermally-Rearranged Polybenzoxazoles Derived from an Intrinsically Microporous Dihydroxyl-Functionalized Triptycene Diamine-Based Polyimide. J. Memb. Sci. 2020, 595, 117512. [Google Scholar] [CrossRef]
- Li, F.Y.; Xiao, Y.; Ong, Y.K.; Chung, T.-S. UV-Rearranged PIM-1 Polymeric Membranes for Advanced Hydrogen Purification and Production. Adv. Energy Mater. 2012, 2, 1456–1466. [Google Scholar] [CrossRef]
- Song, Q.; Cao, S.; Zavala-Rivera, P.; Ping Lu, L.; Li, W.; Ji, Y.; Al-Muhtaseb, S.A.; Cheetham, A.K.; Sivaniah, E. Photo-Oxidative Enhancement of Polymeric Molecular Sieve Membranes. Nat. Commun. 2013, 4, 1918. [Google Scholar] [CrossRef]
- Ji, W.; Geng, H.; Chen, Z.; Dong, H.; Matsuyama, H.; Wang, H.; Wang, H.; Li, J.; Shi, W.; Ma, X. Facile Tailoring Molecular Sieving Effect of PIM-1 by in-Situ O3 Treatment for High Performance Hydrogen Separation. J. Memb. Sci. 2022, 662, 120971. [Google Scholar] [CrossRef]
- Ma, X.; Swaidan, R.; Teng, B.; Tan, H.; Salinas, O.; Litwiller, E.; Han, Y.; Pinnau, I. Carbon Molecular Sieve Gas Separation Membranes Based on an Intrinsically Microporous Polyimide Precursor. Carbon N. Y. 2013, 62, 88–96. [Google Scholar] [CrossRef]
- He, S.; Jiang, X.; Li, S.; Ran, F.; Long, J.; Shao, L. Intermediate Thermal Manipulation of Polymers of Intrinsic Microporous (PIMs) Membranes for Gas Separations. AIChE J. 2020, 66, e16543. [Google Scholar] [CrossRef]
- Zhao, H.; Feng, L.; Ding, X.; Tan, X.; Zhang, Y. Gas Permeation Properties of a Metallic Ion-Cross-Linked PIM-1 Thin-Film Composite Membrane Supported on a UV-Cross-Linked Porous Substrate. Chin. J. Chem. Eng. 2018, 26, 2477–2486. [Google Scholar] [CrossRef]
- Hou, R.; Smith, S.J.D.; Konstas, K.; Doherty, C.M.; Easton, C.D.; Park, J.; Yoon, H.; Wang, H.; Freeman, B.D.; Hill, M.R. Synergistically Improved PIM-1 Membrane Gas Separation Performance by PAF-1 Incorporation and UV Irradiation. J. Mater. Chem. A 2022, 10, 10107–10119. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Z.; Zhao, S.; Wang, J.; Wang, S. Recent Advances on Mixed Matrix Membranes for CO2 Separation. Chin. J. Chem. Eng. 2017, 25, 1581–1597. [Google Scholar] [CrossRef]
- Luque-Alled, J.M.; Ameen, A.W.; Alberto, M.; Tamaddondar, M.; Foster, A.B.; Budd, P.M.; Vijayaraghavan, A.; Gorgojo, P. Gas Separation Performance of MMMs Containing (PIM-1)-Functionalized GO Derivatives. J. Memb. Sci. 2021, 623, 118902. [Google Scholar] [CrossRef]
- Sakaguchi, N.; Tanaka, M.; Yamato, M.; Kawakami, H. Superhigh CO2-Permeable Mixed Matrix Membranes Composed of a Polymer of Intrinsic Microporosity (PIM-1) and Surface-Modified Silica Nanoparticles. ACS Appl. Polym. Mater. 2019, 1, 2516–2524. [Google Scholar] [CrossRef]
- Almansour, F.; Alberto, M.; Foster, A.B.; Mohsenpour, S.; Budd, P.M.; Gorgojo, P. Thin Film Nanocomposite Membranes of Superglassy PIM-1 and Amine-Functionalised 2D Fillers for Gas Separation. J. Mater. Chem. A 2022, 47, 23341–23351. [Google Scholar] [CrossRef]
- Yang, L.; Tian, Z.; Zhang, X.; Wu, X.; Wu, Y.; Wang, Y.; Peng, D.; Wang, S.; Wu, H.; Jiang, Z. Enhanced CO2 Selectivities by Incorporating CO2-Philic PEG-POSS into Polymers of Intrinsic Microporosity Membrane. J. Memb. Sci. 2017, 543, 69–78. [Google Scholar] [CrossRef]
- Bisio, C.; Ferrari, M.C.; Begni, F.; Paul, G.; Lasseuguette, E.; Mangano, E.; Gatti, G. Synthetic Saponite Clays as Additives for Reducing Aging Effects in PIM1 Membranes. ACS Appl. Polym. Mater. 2020, 2, 3481–3490. [Google Scholar] [CrossRef]
- Yu, G.; Li, Y.; Wang, Z.; Liu, T.X.; Zhu, G.; Zou, X. Mixed Matrix Membranes Derived from Nanoscale Porous Organic Frameworks for Permeable and Selective CO2 Separation. J. Memb. Sci. 2019, 591, 117343. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, J.; Huang, T.; Xue, J.; Ren, Y.; Guo, Z.; Wang, H.; Yang, L.; Yin, Y.; Jiang, Z.; et al. Mixed-Matrix Membranes with Covalent Triazine Framework Fillers in Polymers of Intrinsic Microporosity for CO2 Separations. Ind. Eng. Chem. Res. 2020, 59, 5296–5306. [Google Scholar] [CrossRef]
- Liu, J.; Xiao, Y.; Liao, K.S.; Chung, T.S. Highly Permeable and Aging Resistant 3D Architecture from Polymers of Intrinsic Microporosity Incorporated with Beta-Cyclodextrin. J. Memb. Sci. 2017, 523, 92–102. [Google Scholar] [CrossRef]
- Liang, C.Z.; Liu, J.T.; Lai, J.Y.; Chung, T.S. High-Performance Multiple-Layer PIM Composite Hollow Fiber Membranes for Gas Separation. J. Memb. Sci. 2018, 563, 93–106. [Google Scholar] [CrossRef]
- Wang, Y.; Ren, Y.; Wu, H.; Wu, X.; Yang, H.; Yang, L.; Wang, X.; Wu, Y.; Liu, Y.; Jiang, Z. Amino-Functionalized ZIF-7 Embedded Polymers of Intrinsic Microporosity Membrane with Enhanced Selectivity for Biogas Upgrading. J. Memb. Sci. 2020, 602, 117970. [Google Scholar] [CrossRef]
- He, S.; Zhu, B.; Li, S.; Zhang, Y.; Jiang, X.; Hon Lau, C.; Shao, L. Recent Progress in PIM-1 Based Membranes for Sustainable CO2 Separations: Polymer Structure Manipulation and Mixed Matrix Membrane Design. Sep. Purif. Technol. 2022, 284, 120277. [Google Scholar] [CrossRef]
- Feizi, F.; Shamsipur, M.; Gholivand, M.B.; Taherpour, A.A.; Barati, A.; Shamsipur, H.; Mohajerani, E.; Budd, P. Harnessing the Enantiomeric Recognition Ability of Hydrophobic Polymers of Intrinsic Microporosity (PIM-1) toward Amino Acids by Converting Them into Hydrophilic Polymer Dots. J. Mater. Chem. C 2020, 8, 13827–13835. [Google Scholar] [CrossRef]
- Pu, Y.; Yang, Z.; Wee, V.; Wu, Z.; Jiang, Z.; Zhao, D. Amino-Functionalized NUS-8 Nanosheets as Fillers in PIM-1 Mixed Matrix Membranes for CO2 Separations. J. Memb. Sci. 2022, 641, 119912. [Google Scholar] [CrossRef]
- Lee, R.J.; Jawad, Z.A.; Chua, H.B.; Ahmad, A.L. Blend Cellulose Acetate Butyrate/Functionalised Multi-Walled Carbon Nanotubes Mixed Matrix Membrane for Enhanced CO2/N2 separation with Kinetic Sorption Study. J. Environ. Chem. Eng. 2020, 8, 104212. [Google Scholar] [CrossRef]
- Mikami, H.; Higashi, S.; Muramoto, T.; Tanaka, M.; Yamato, M.; Kawakami, H. Gas Permeable Mixed Matrix Membranes Composed of a Polymer of Intrinsic Microporosity (Pim-1) and Surface-Modified Pearl-Necklace Silica Nanoparticles: Effect of Expansion of Nano-Space on Gas Permeability. J. Photopolym. Sci. Technol. 2020, 33, 313–320. [Google Scholar] [CrossRef]
- Hasebe, S.; Aoyama, S.; Tanaka, M.; Kawakami, H. CO2 Separation of Polymer Membranes Containing Silica Nanoparticles with Gas Permeable Nano-Space. J. Memb. Sci. 2017, 536, 148–155. [Google Scholar] [CrossRef]
- Ahmad, M.Z.; Castro-Munõz, R.; Budd, P.M. Boosting Gas Separation Performance and Suppressing the Physical Aging of Polymers of Intrinsic Microporosity (PIM-1) by Nanomaterial Blending. Nanoscale 2020, 12, 23333–23370. [Google Scholar] [CrossRef]
- Kinoshita, Y.; Wakimoto, K.; Gibbons, A.H.; Isfahani, A.P.; Kusuda, H.; Sivaniah, E.; Ghalei, B. Enhanced PIM-1 Membrane Gas Separation Selectivity through Efficient Dispersion of Functionalized POSS Fillers. J. Memb. Sci. 2017, 539, 178–186. [Google Scholar] [CrossRef]
- Gonciaruk, A.; Althumayri, K.; Harrison, W.J.; Budd, P.M.; Siperstein, F.R. PIM-1/Graphene Composite: A Combined Experimental and Molecular Simulation Study. Microporous Mesoporous Mater. 2015, 209, 126–134. [Google Scholar] [CrossRef]
- Chen, M.; Soyekwo, F.; Zhang, Q.; Hu, C.; Zhu, A.; Liu, Q. Graphene Oxide Nanosheets to Improve Permeability and Selectivity of PIM-1 Membrane for Carbon Dioxide Separation. J. Ind. Eng. Chem. 2018, 63, 296–302. [Google Scholar] [CrossRef]
- Luque-Alled, J.M.; Tamaddondar, M.; Foster, A.B.; Budd, P.M.; Gorgojo, P. PIM-1/Holey Graphene Oxide Mixed Matrix Membranes for Gas Separation: Unveiling the Role of Holes. ACS Appl. Mater. Interfaces 2021, 13, 55517–55533. [Google Scholar] [CrossRef] [PubMed]
- Alberto, M.; Bhavsar, R.; Luque-Alled, J.M.; Vijayaraghavan, A.; Budd, P.M.; Gorgojo, P. Impeded Physical Aging in PIM-1 Membranes Containing Graphene-like Fillers. J. Memb. Sci. 2018, 563, 513–520. [Google Scholar] [CrossRef]
- Lau, C.H.; Nguyen, P.T.; Hill, M.R.; Thornton, A.W.; Konstas, K.; Doherty, C.M.; Mulder, R.J.; Bourgeois, L.; Liu, A.C.Y.; Sprouster, D.J.; et al. Ending Aging in Super Glassy Polymer Membranes. Angew. Chem. Int. Ed. 2014, 53, 5322–5326. [Google Scholar] [CrossRef]
- Smith, S.J.D.; Hou, R.; Konstas, K.; Akram, A.; Lau, C.H.; Hill, M.R. Control of Physical Aging in Super-Glassy Polymer Mixed Matrix Membranes. Acc. Chem. Res. 2020, 53, 1381–1388. [Google Scholar] [CrossRef]
- Davarpanah, E.; Hernández, S.; Latini, G.; Pirri, C.F.; Bocchini, S. Enhanced CO2 Absorption in Organic Solutions of Biobased Ionic Liquids. Adv. Sustain. Syst. 2020, 4, 1900067. [Google Scholar] [CrossRef]
- Lasseuguette, E.; McClements, J.; Koutsos, V.; Schäfer, T.; Ferrari, M.-C. Ionic Liquid Mediated Surface Micropatterning of Polymer Blends. J. Appl. Polym. Sci. 2018, 135, 46109. [Google Scholar] [CrossRef]
- Wang, C.; Guo, F.; Li, H.; Xu, J.; Hu, J.; Liu, H.; Wang, M. A Porous Ionic Polymer Bionic Carrier in a Mixed Matrix Membrane for Facilitating Selective CO2 Permeability. J. Memb. Sci. 2020, 598, 117677. [Google Scholar] [CrossRef]
- Ferraro, G.; Astorino, C.; Bartoli, M.; Martis, A.; Lettieri, S.; Pirri, C.F.; Bocchini, S. Ionic Liquids-Polymer of Intrinsic Microporosity (PIMs) Blend Membranes for CO2 Separation. Membranes 2022, 12, 1262. [Google Scholar] [CrossRef] [PubMed]
- Latini, G.; Signorile, M.; Rosso, F.; Fin, A.; d’Amora, M.; Giordani, S.; Pirri, F.; Crocellà, V.; Bordiga, S.; Bocchini, S. Efficient and Reversible CO2 Capture in Bio-Based Ionic Liquids Solutions. J. CO2 Util. 2022, 55, 101815. [Google Scholar] [CrossRef]
- Wu, X.; Tian, Z.; Wang, S.; Peng, D.; Yang, L.; Wu, Y.; Xin, Q.; Wu, H.; Jiang, Z. Mixed Matrix Membranes Comprising Polymers of Intrinsic Microporosity and Covalent Organic Framework for Gas Separation. J. Memb. Sci. 2017, 528, 273–283. [Google Scholar] [CrossRef]
- Wang, C.; Guo, F.; Li, H.; Xu, J.; Hu, J.; Liu, H. Porous Organic Polymer as Fillers for Fabrication of Defect-Free PIM-1 Based Mixed Matrix Membranes with Facilitating CO2-Transfer Chain. J. Memb. Sci. 2018, 564, 115–122. [Google Scholar] [CrossRef]
- Xiong, S.; Li, L.; Dong, L.; Tang, J.; Yu, G.; Pan, C. Covalent-Organic Frameworks (COFs)-Based Membranes for CO2 separation. J. CO2 Util. 2020, 41, 101224. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhai, L.; Ying, Y.; Wang, Y.; Liu, G.; Dong, J.; Ng, D.Z.L.; Khan, S.A.; Zhao, D. Highly Efficient CO2 Capture by Mixed Matrix Membranes Containing Three-Dimensional Covalent Organic Framework Fillers. J. Mater. Chem. A 2019, 7, 4549–4560. [Google Scholar] [CrossRef]
- Qiu, S.; Xue, M.; Zhu, G. Metal–Organic Framework Membranes: From Synthesis to Separation Application. Chem. Soc. Rev. 2014, 43, 6116–6140. [Google Scholar] [CrossRef]
- Lin, Y.S.; Duke, M.C. Recent Progress in Polycrystalline Zeolite Membrane Research. Curr. Opin. Chem. Eng. 2013, 2, 209–216. [Google Scholar] [CrossRef]
- Richter, H.; Voss, H.; Kaltenborn, N.; Kämnitz, S.; Wollbrink, A.; Feldhoff, A.; Caro, J.; Roitsch, S.; Voigt, I. High-Flux Carbon Molecular Sieve Membranes for Gas Separation. Angew. Chem. Int. Ed. 2017, 56, 7760–7763. [Google Scholar] [CrossRef]
- Benzaqui, M.; Semino, R.; Menguy, N.; Carn, F.; Kundu, T.; Guigner, J.-M.; McKeown, N.B.; Msayib, K.J.; Carta, M.; Malpass-Evans, R.; et al. Toward an Understanding of the Microstructure and Interfacial Properties of PIMs/ZIF-8 Mixed Matrix Membranes. ACS Appl. Mater. Interfaces 2016, 8, 27311–27321. [Google Scholar] [CrossRef]
- Bushell, A.F.; Attfield, M.P.; Mason, C.R.; Budd, P.M.; Yampolskii, Y.; Starannikova, L.; Rebrov, A.; Bazzarelli, F.; Bernardo, P.; Carolus Jansen, J.; et al. Gas Permeation Parameters of Mixed Matrix Membranes Based on the Polymer of Intrinsic Microporosity PIM-1 and the Zeolitic Imidazolate Framework ZIF-8. J. Memb. Sci. 2013, 427, 48–62. [Google Scholar] [CrossRef]
- Hao, L.; Liao, K.S.; Chung, T.S. Photo-Oxidative PIM-1 Based Mixed Matrix Membranes with Superior Gas Separation Performance. J. Mater. Chem. A 2015, 3, 17273–17281. [Google Scholar] [CrossRef]
- Han, J.; Bai, L.; Jiang, H.; Zeng, S.; Yang, B.; Bai, Y.; Zhang, X. Task-Specific Ionic Liquids Tuning ZIF-67/PIM-1 Mixed Matrix Membranes for Efficient CO2 Separation. Ind. Eng. Chem. Res. 2021, 60, 593–603. [Google Scholar] [CrossRef]
- Sabetghadam, A.; Liu, X.; Orsi, A.F.; Lozinska, M.M.; Johnson, T.; Jansen, K.M.B.; Wright, P.A.; Carta, M.; McKeown, N.B.; Kapteijn, F.; et al. Towards High Performance Metal–Organic Framework–Microporous Polymer Mixed Matrix Membranes: Addressing Compatibility and Limiting Aging by Polymer Doping. Chem.—A Eur. J. 2018, 24, 12796–12800. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Laínez, J.; Pardillos-Ruiz, A.; Carta, M.; Malpass-Evans, R.; McKeown, N.B.; Téllez, C.; Coronas, J. Polymer Engineering by Blending PIM-1 and 6FDA-DAM for ZIF-8 Containing Mixed Matrix Membranes Applied to CO2 Separations. Sep. Purif. Technol. 2019, 224, 456–462. [Google Scholar] [CrossRef]
Polymer | Tg of Polyether Block (°C) | Tm of Polyether Block (°C) | CO2 Permeability (Barrer) | CO2/N2 Selectivity | Ref. |
---|---|---|---|---|---|
PEBAX 4011 | −53 | 9 | 66 | 56.4 | [31] |
PEBAX 1074 | −55 | −1 | 120 | 51.4 | |
PEBAX 4033 | −78 | 11 | 113 | 20.4 | |
PEBAX 2533 | −77 | 13 | 221 | 23.4 | |
PEO1000-T6T6T | −45 | −2 | 75 | 41 | [32] |
PEO2000-T6T6T | −48 | 21 | 180 | 49 | |
(PEO600/T)2500-T6T6T | −44 | −6 | 121 | 50 | |
(PEO600/T)5000-T6T6T | −43 | −3 | 174 | 53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Astorino, C.; De Nardo, E.; Lettieri, S.; Ferraro, G.; Pirri, C.F.; Bocchini, S. Advancements in Gas Separation for Energy Applications: Exploring the Potential of Polymer Membranes with Intrinsic Microporosity (PIM). Membranes 2023, 13, 903. https://doi.org/10.3390/membranes13120903
Astorino C, De Nardo E, Lettieri S, Ferraro G, Pirri CF, Bocchini S. Advancements in Gas Separation for Energy Applications: Exploring the Potential of Polymer Membranes with Intrinsic Microporosity (PIM). Membranes. 2023; 13(12):903. https://doi.org/10.3390/membranes13120903
Chicago/Turabian StyleAstorino, Carmela, Eugenio De Nardo, Stefania Lettieri, Giuseppe Ferraro, Candido Fabrizio Pirri, and Sergio Bocchini. 2023. "Advancements in Gas Separation for Energy Applications: Exploring the Potential of Polymer Membranes with Intrinsic Microporosity (PIM)" Membranes 13, no. 12: 903. https://doi.org/10.3390/membranes13120903
APA StyleAstorino, C., De Nardo, E., Lettieri, S., Ferraro, G., Pirri, C. F., & Bocchini, S. (2023). Advancements in Gas Separation for Energy Applications: Exploring the Potential of Polymer Membranes with Intrinsic Microporosity (PIM). Membranes, 13(12), 903. https://doi.org/10.3390/membranes13120903