Mini-Review of Biofilm Interactions with Surface Materials in Industrial Piping System
Abstract
:1. Introduction
2. Mechanisms Study of Biofilm and Surface Interaction
2.1. Cell Attachment Mechanisms
2.1.1. Reversible Attachment
2.1.2. Irreversible Attachment
2.2. Experimental Technologies of Industrial Biofilm Interaction Observation
2.2.1. Bacterium Attachment to Hydrocarbons (MATH) Analysis
2.2.2. Atomic Force Microscopy (AFM)
2.2.3. Total Internal Reflection Microscopy (TIRM) Illuminator
2.2.4. Quartz Crystal Microbalance (QCM)
3. Cell Attachments to Different Surface Materials in the Industrial Piping System
3.1. Biofilm Stress Response
3.1.1. Thermodynamics and Convection
3.1.2. Surface Energy and Wettability
3.1.3. Physical Constraints for the Attached Cell
3.2. Bacterial Surface Sensing and Adhesion
3.2.1. EPS Production and Formation of Conditioning Layer
3.2.2. DLVO Theory
3.3. Phenotypes Change and Bio-Communication
3.3.1. Bacteria Motility
3.3.2. Quorum Sensing (e.g., E. coli)
3.3.3. Catalysing c-di-GMP
3.3.4. Changes in Swarming and Biofilm Community Structure
4. Practice for the Biofilm Removal of Industrial Piping Systems
4.1. Strategic Mechanism of Biofilm Removal
4.2. Oxidizing Biocides
4.3. Detergent and Enzymes Cleaner
4.4. Anti-Adhesion Coating
- Trimethylsilane plasma nanocoatings can be used with low-temperature plasma covering technology to coat faces of titanium and stainless steel to reduce the formation of adherence of S. epidermidis biofilm. The hindrance of such biofilm could be due to the covering coating’s smoothness, low surface energy, chemical inertness, and surface-bound methyl groups. The changed face characteristics could cause less protein adsorption to the covered surfaces.
- A mixture of both low surface energy fluorinated silane xerogel and nanostructured silica colloids were used to form a superhydrophobic covering on glass. According to the findings, the rate of adsorption of fibrinogen was low on the superhydrophobic surface, thus resulting in weak attachment of S. aureus. However, to achieve reduced bacterial attachment and protein adsorption levels, a low nano-textured shape and facet energy chemistry of the superhydrophobic coating can be used.
- The surface roughness compared to smooth surfaces featured significantly increased development and adherence of biomaterials. On the contrary, S. aureus cells were strongly attached to mechanical titanium that had been chemically polished as compared to the titanium that had just been received despite the polished surfaces being smoother [16].
5. Conclusions and Positions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Goo, E.; An, J.H.; Kang, Y.; Hwang, I. Control of bacterial metabolism by quorum sensing. Trends Microbiol. 2015, 23, 567–576. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Alam, A.; Rani, M.; Ehtesham, N.Z.; Hasnain, S.E. Biofilms: Survival and defense strategy for pathogens. Int. J. Med. Microbiol. 2017, 307, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Bohinc, K.; Dražić, G.; Fink, R.; Oder, M.; Jevšnik, M.; Nipič, D.; Godič-Torkar, K.; Raspor, P. Available surface dictates microbial adhesion capacity. Int. J. Adhes. Adhes. 2014, 50, 265–272. [Google Scholar] [CrossRef]
- Scutera, S.; Zucca, M.; Savoia, D. Novel Approaches for The Design Anddiscovery of Quorum-Sensing Inhibitors. Expert Opin. Drug Discov. 2014, 9, 353–366. [Google Scholar] [CrossRef]
- Satpathy, S.; Sen, S.K.; Pattanaik, S.; Raut, S. Review on bacterial biofilm: An universal cause of contamination. Biocatal. Agric. Biotechnol. 2016, 7, 56–66. [Google Scholar] [CrossRef]
- Blackledge, M.S.; Worthington, R.J.; Melander, C. Biologically inspired strategies for combating bacterial biofilms. Curr. Opin. Pharmacol. 2013, 13, 699–706. [Google Scholar] [CrossRef] [Green Version]
- England, M.W.; Sato, T.; Yagihashi, M.; Hozumi, A.; Gorb, S.N.; Gorb, E.V. Surface roughness rather than surface chemistry essentially affects insect adhesion. Beilstein J. Nanotechnol. 2016, 7, 1471–1479. [Google Scholar] [CrossRef] [Green Version]
- Garrett, T.R.; Bhakoo, M.; Zhang, Z. Bacterial adhesion and biofilms on surfaces. Prog. Nat. Sci. 2008, 18, 1049–1056. [Google Scholar] [CrossRef]
- Floyd, K.; Eberly, A.; Hadjifrangiskou, M. Adhesion of bacteria to surfaces and biofilm formation on medical devices. In Biofilms and Implantable Medical Devices; Elsevier: Amsterdam, The Netherlands, 2016; pp. 47–95. [Google Scholar] [CrossRef]
- Nadell, C.D.; Xavier, J.B.; Foster, K.R. The sociobiology of biofilms. FEMS Microbiol. Rev. 2008, 33, 206–224. [Google Scholar] [CrossRef]
- Fulaz, S.; Vitale, S.; Quinn, L.; Casey, E. Nanoparticle—Biofilm Interactions: The Role of the EPS Matrix. Trends Microbiol. 2019, 27, 915–926. [Google Scholar] [CrossRef]
- Wang, L.; Chen, W.; Song, X.; Li, Y.; Zhang, W.; Zhang, H.; Niu, L. Cultivation substrata differentiate the properties of river biofilm EPS and their binding of heavy metals: A spectroscopic insight. Environ. Res. 2019, 182, 109052. [Google Scholar] [CrossRef]
- Sepehrnia, N.; Bachmann, J.; Hajabbasi, M.A.; Afyuni, M.; Horn, M.A. Modeling Escherichia coli and Rhodococcus erythropolis transport through wettable and water repellent porous media. Colloids Surfaces B Biointerfaces 2018, 172, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Kocot, A.M.; Olszewska, M.A. Biofilm Formation and Microscopic Analysis of Biofilms Formed by Listeria Monocytogenes in a Good Processing Context. LWT 2017, 84, 47–57. [Google Scholar] [CrossRef]
- Neethirajan, S.; Clond, M.; Vogt, A. Medical Biofilms—Nanotechnology Approaches. J. Biomed. Nanotechnol. 2014, 10, 2806–2827. [Google Scholar] [CrossRef] [PubMed]
- Castelo-Branco, D.D.S.C.M.; Amando, B.R.; Ocadaque, C.J.; de Aguiar, L.; Paiva, D.D.D.Q.; Diógenes, E.M.; Guedes, G.M.D.M.; Costa, C.L.; Santos-Filho, A.S.P.; de Andrade, A.R.C.; et al. Mini-review: From in vitro to ex vivo studies: An overview of alternative methods for the study of medical biofilms. Biofouling 2020, 36, 1129–1148. [Google Scholar] [CrossRef]
- Moreira, J.; Gomes, L.; Whitehead, K.; Lynch, S.; Tetlow, L.; Mergulhão, F. Effect of surface conditioning with cellular extracts on Escherichia coli adhesion and initial biofilm formation. Food Bioprod. Process. 2017, 104, 1–12. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Y. Genetic determinants of Salmonella enterica critical for attachment and biofilm formation. Int. J. Food Microbiol. 2020, 320, 108524. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Hao, Y.; Liu, Y.; Dong, Z.; Li, K. Biological and Physiochemical Methods of Biofilm Adhesion Resistance Control of Medical-Context Surface. Int. J. Biol. Sci. 2021, 17, 1769–1781. [Google Scholar] [CrossRef]
- Desrousseaux, C.; Sautou, V.; Descamps, S.; Traoré, O. Modification of the Surfaces of Medical Devices to Prevent Microbial Adhesion and Biofilm Formation. J. Hosp. Infect. 2013, 85, 87–93. [Google Scholar] [CrossRef]
- Jakobsen, T.H.; Warming, A.N.; Vejborg, R.M.; Moscoso, J.A.; Stegger, M.; Lorenzen, F.; Rybtke, M.; Andersen, J.B.; Petersen, R.; Andersen, P.S.; et al. A broad range quorum sensing inhibitor working through sRNA inhibition. Sci. Rep. 2017, 7, 9857. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Xiao, P.; Wang, Y.; Hao, Y. Mechanisms and Control Measures of Mature Biofilm Resistance to Antimicrobial Agents in the Clinical Contex. ACS Omega 2020, 5, 22684–22690. [Google Scholar] [CrossRef] [PubMed]
- Fei, C.; Ochsenkühn, M.A.; Shibl, A.A.; Isaac, A.; Wang, C.; Amin, S.A. Quorum sensing regulates “swim-or-stick” lifestyle in the-phycosphere. Environ. Microbiol. 2020, 22, 4761–4778. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.J.; Yu, H.H.; Kim, Y.J.; Lee, N.-K.; Paik, H.-D. Anti-Biofilm Activity of Grapefruit Seed Extract against Staphylococcus aureus and Escherichia coli. J. Microbiol. Biotechnol. 2019, 29, 1177–1183. [Google Scholar] [CrossRef] [PubMed]
- Okshevsky, M.; Regina, V.R.; Meyer, R.L. Extracellular DNA as a target for biofilm control. Curr. Opin. Biotechnol. 2015, 33, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Thomason, M.K.; Voichek, M.; Dar, D.; Addis, V.; Fitzgerald, D.; Gottesman, S.; Sorek, R.; Greenberg, E.P. A rhlI 5′ UTR-Derived sRNA Regulates RhlR-Dependent Quorum Sensing in Pseudomonas aeruginosa. Am. Soc. Microbiol. 2019, 10, e02253-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macia, M.; Rojo-Molinero, E.; Oliver, A. Antimicrobial susceptibility testing in biofilm-growing bacteria. Clin. Microbiol. Infect. 2014, 20, 981–990. [Google Scholar] [CrossRef] [Green Version]
- Cheong, W.S.; Kim, S.R.; Oh, H.S.; Lee, S.H.; Yeon, K.M.; Lee, C.H.; Lee, J.K. Design of Quorum Quenching Microbial Vessel to Enhance Cell Viability for Biofouling Control in Membrane Bioreactor. J. Microbiol. Biotechnol. 2014, 24, 97–105. [Google Scholar] [CrossRef]
- Siddiqui, M.F.; Rzechowicz, M.; Harvey, W.; Zularisam, A.; Anthony, G.F. Quorum sensing based membrane biofouling control for water treatment: A review. J. Water Process. Eng. 2015, 7, 112–122. [Google Scholar] [CrossRef]
- Li, W.; Cao, F.; He, C.; Ohno, K.; Ngai, T. Measuring the Interactions between Protein-Coated Microspheres and Polymer Brushes in Aqueous Solutions. Langmuir 2018, 34, 8798–8806. [Google Scholar] [CrossRef]
- Tolker-Nielsen, T.; Molin, S. Spatial Organization of Microbial Biofilm Communities. Microb. Ecol. 2000, 40, 75–84. [Google Scholar] [CrossRef]
- Cardoso, P.D.F.; Perchat, S.; Vilas-Boas, L.A.; Lereclus, D.; Vilas-Bôas, G.T. Diversity of the Rap–Phr quorum-sensing systems in the Bacillus cereus group. Curr. Genet. 2019, 65, 1367–1381. [Google Scholar] [CrossRef] [PubMed]
- Harms, A.; Diard, M. Crowd Controlled—Host Quorum Sensing Drives Phage Decision. Cell Host Microbe 2019, 25, 179–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.; Cha, E.; Ham, S.; Park, J.; Nam, S.; Kwon, H.; Byun, Y.; Park, H. Linoleic acid inhibits Pseudomonas aeruginosa biofilm formation by activating diffusible signal factor-mediated quorum sensing. Biotechnol. Bioeng. 2020, 118, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Batista, J.H.; Leal, F.C.; Fukuda, T.T.; Alcoforado Diniz, J.; Almeida, F.; Pupo, M.T.; da Silva Neto, J.F. Interplay between two quorum sensing-regulated pathways, violacein biosynthesis and VacJ/Yrb, dictates outer membrane vesicle biogenesis in Chromobacterium violaceum. Environ. Microbiol. 2020, 22, 2432–2442. [Google Scholar] [CrossRef]
- Rampioni, G.; Leoni, L.; Williams, P. The art of antibacterial warfare: Deception through interference with quorum sensing–mediated communication. Bioorganic Chem. 2014, 55, 60–68. [Google Scholar] [CrossRef]
- Katebian, L.; Gomez, E.; Skillman, L.; Li, D.; Ho, G.; Jiang, S.C. Inhibiting quorum sensing pathways to mitigate seawater desalination RO membrane biofouling. Desalination 2016, 393, 135–143. [Google Scholar] [CrossRef]
- Liu, X. Plant Cell Wall Mediated Defense Mechanisms during Bacterial Quorum Sensing Signaling; Nanyang Technological University: Singapore, 2020. [Google Scholar] [CrossRef]
- Pundir, P.; Liu, R.; Vasavda, C.; Serhan, N.; Limjunyawong, N.; Yee, R.; Zhan, Y.; Dong, X.; Wu, X.; Zhang, Y.; et al. A Connective Tissue Mast-Cell-Specific Receptor Detects Bacterial Quorum-Sensing Molecules and Mediates Antibacterial Immunity. Cell Host Microbe 2019, 26, 114–122.e8. [Google Scholar] [CrossRef]
- Li, Y.; Woo, Y.; Sekar, M.; Narasimalu, S.; Dong, Z. Effect of Nano-Titanium Dioxide Contained in Titania-Polyurea Coating on Marina Biofouling and Drag Reduction. J. Biomed. Nanotechnol. 2020, 16, 1530–1541. [Google Scholar] [CrossRef]
- Bzdrenga, J.; Daudé, D.; Rémy, B.; Jacquet, P.; Plener, L.; Elias, M.; Chabrière, E. Biotechnological applications of quorum quenching enzymes. Chem. Biol. Interact. 2017, 267, 104–115. [Google Scholar] [CrossRef]
- Mohanan, N.; Gislason, A.; Sharma, P.K.; Ghergab, A.; Plouffe, J.; Levin, D.B.; de Kievit, T. Quorum sensing and the anaerobic regulator (ANR) control polyhydroxyalkanoate (PHA) production in Pseudomonas chlororaphis PA23. FEMS Microbiol. Lett. 2019, 366, fnz223. [Google Scholar] [CrossRef]
- Kim, J.-H.; Choi, D.-C.; Yeon, K.-M.; Kim, S.-R.; Lee, C.-H. Enzyme-Immobilized Nanofiltration Membrane To Mitigate Biofouling Based on Quorum Quenching. Environ. Sci. Technol. 2011, 45, 1601–1607. [Google Scholar] [CrossRef] [PubMed]
- Kocak, G.; Cicek, H.; Ceylan, Ö.; Bütün, V. Antimicrobial and anti-quorum-sensing properties and paint film usage of novel diazaborine-based copolymers. J. Appl. Polym. Sci. 2018, 136, 46907. [Google Scholar] [CrossRef] [Green Version]
- Erriu, M.; Blus, C.; Szmukler-Moncler, S.; Buogo, S.; Levi, R.; Barbato, G.; Madonnaripa, D.; Denotti, G.; Piras, V.; Orrù, G. Microbial Biofilm Modulation by Ultrasound: Current Concepts and Controversies. Ultrason Sonochem. 2014, 21, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Pitt, W.G.; Ross, S.A. Ultrasound Increases the Rate of Bacterial Cell Growth. Biotechnol. Prog. 2003, 19, 1038–1044. [Google Scholar] [CrossRef]
- Oulahal, N.; Martial-Gros, A.; Boistier, E.; Blum, L.J.; Bonneau, M. The development of an ultrasonic apparatus for the noninvasive and repeatable removal of fouling in food processing equipment. Lett. Appl. Microbiol. 2000, 30, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Kang, C.K.; Kim, S.S.; Kim, S.; Lee, J.; Lee, J.H.; Roh, C.; Lee, J. Antibacterial cotton fibers treated with silver nanoparticles and quaternary ammonium salts. Carbohydr. Polym. 2016, 151, 1012–1018. [Google Scholar] [CrossRef]
- Zhao, Z.Q.; Ma, X.; Chen, R.; Xue, H.; Lei, J.; Du, H.; Zhang, Z.; Chen, H. Universal Antibacterial Surfaces Fabricated from Quaternary Ammonium Salt-Based PNIPAM Microgels. ACS Appl. Mater. Interfaces 2020, 12, 19268–19276. [Google Scholar] [CrossRef]
- Wan, X.; Zhang, Y.; Deng, Y.; Zhang, Q.; Li, J.; Wang, K.; Li, J.; Tan, H.; Fu, Q. Effects of interaction between a polycation and a nonionic polymer on their cross-assembly into mixed micelles. Soft Matter 2015, 11, 4197–4207. [Google Scholar] [CrossRef]
- Lv, X.; Liu, C.; Song, S.; Qiao, Y.; Hu, Y.; Li, P.; Li, Z.; Sun, S. Construction of a quaternary ammonium salt platform with different alkyl groups for antibacterial and biosensor applications. RSC Adv. 2018, 8, 2941–2949. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Cheng, J.; Yang, X.; Liu, H.; Xu, X.; Ma, L.; Shang, S.; Song, Z. Construction of antimicrobial and biocompatible cotton textile based on quaternary ammonium salt from rosin acid. Int. J. Biol. Macromol. 2020, 150, 1–8. [Google Scholar] [CrossRef]
- Savini, F.; Loffredo, M.; Troiano, C.; Bobone, S.; Malanovic, N.; Eichmann, T.; Caprio, L.; Canale, V.; Park, Y.; Mangoni, M.; et al. Binding of an antimicrobial peptide to bacterial cells: Interaction with different species, strains and cellular components. Biochim. Biophys. Acta (BBA)-Biomembr. 2020, 1862, 183291. [Google Scholar] [CrossRef] [PubMed]
- Etienne, O.; Picart, C.; Taddei, C.; Haikel, Y.; Dimarcq, J.L.; Schaaf, P.; Voegel, J.C.; Ogier, J.A.; Egles, C. Multilayer Polyelectrolyte Films Functionalized by Insertion of Defensin: A New Approach to Protection of Implants from Bacterial Colonization. Antimicrob. Agents Chemother. 2004, 48, 3662–3669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alves, D.; Olívia Pereira, M. Mini-review: Antimicrobial peptides and enzymes as promising candidates to functionalize biomaterial surfaces. Biofouling 2014, 30, 483–499. [Google Scholar] [CrossRef]
- Costa, F.; Carvalho, I.F.; Montelaro, R.C.; Gomes, P.; Martins, M.C.L. Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces. Acta Biomater. 2011, 7, 1431–1440. [Google Scholar] [CrossRef] [Green Version]
- Melo, M.N.; Ferre, R.; Castanho, M.A.R.B. Antimicrobial peptides: Linking partition, activity and high membrane-bound concentrations. Nat. Rev. Genet. 2009, 7, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Eby, D.M.; Farrington, K.E.; Johnson, G.R. Synthesis of Bioinorganic Antimicrobial Peptide Nanoparticles with Potential Therapeutic Properties. Biomacromolecules 2008, 9, 2487–2494. [Google Scholar] [CrossRef] [PubMed]
- Yazici, H.; O’Neill, M.B.; Kacar, T.; Wilson, B.R.; Oren, E.E.; Sarikaya, M.; Tamerler, C. Engineered Chimeric Peptides as Antimicrobial Surface Coating Agents toward Infection-Free Implants. ACS Appl. Mater. Interfaces 2016, 8, 5070–5081. [Google Scholar] [CrossRef] [Green Version]
- Tiller, J.C.; Liao, C.-J.; Lewis, K.; Klibanov, A.M. Designing surfaces that kill bacteria on contact. Proc. Natl. Acad. Sci. USA 2001, 98, 5981–5985. [Google Scholar] [CrossRef]
- Li, Y.; Luo, B.; Guet, C.; Narasimalu, S.; Dong, Z. Preparation and Formula Analysis of Anti-Biofouling Titania–Polyurea Spray Coating with Nano/Micro-Structure. Coatings 2019, 9, 560. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Cui, Z.; Zhu, Q.; Narasimalu, S.; Dong, Z. Fabrication of Zinc Substrate Encapsulated by Fluoropolyurethane and Its Drag-Reduction Enhancement by Chemical Etching. Coatings 2020, 10, 377. [Google Scholar] [CrossRef] [Green Version]
- Feng, L.; Li, S.; Li, Y.; Li, H.; Zhang, L.; Zhai, J.; Song, Y.; Liu, B.; Jiang, L.; Zhu, D. Super-Hydrophobic Surfaces: From Natural to Artificial. Adv. Mater. 2002, 14, 1857–1860. [Google Scholar] [CrossRef]
Attachment Process | Findings and Positions |
---|---|
Regions in the fluid that motile bacteria occupy | 1. Bulk liquid—no effect on cells; 2. Near surface bulk liquids—cells experience hydrodynamic (shear) effects; 3. Near surface constrained—cells experience hydrodynamic (shear) and physicochemical effects (e.g., Van der Waals & electrostatic forces). |
Attachment to surfaces | 1. Non-motile bacteria—able to adhere at low and moderate fluid velocities but not high velocities; 2. Motile bacteria—able to adhere to surfaces regardless of fluid velocities. |
Bacterial density buoyance | Sedimentation of bacteria that increases in stationary phase (exception of Vibrio parahaemolyticus). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Xu, Z.; Xu, Z.; Li, Y. Mini-Review of Biofilm Interactions with Surface Materials in Industrial Piping System. Membranes 2023, 13, 125. https://doi.org/10.3390/membranes13020125
Yang H, Xu Z, Xu Z, Li Y. Mini-Review of Biofilm Interactions with Surface Materials in Industrial Piping System. Membranes. 2023; 13(2):125. https://doi.org/10.3390/membranes13020125
Chicago/Turabian StyleYang, Haoyi, Zezheng Xu, Zetong Xu, and Yuanzhe Li. 2023. "Mini-Review of Biofilm Interactions with Surface Materials in Industrial Piping System" Membranes 13, no. 2: 125. https://doi.org/10.3390/membranes13020125
APA StyleYang, H., Xu, Z., Xu, Z., & Li, Y. (2023). Mini-Review of Biofilm Interactions with Surface Materials in Industrial Piping System. Membranes, 13(2), 125. https://doi.org/10.3390/membranes13020125