Decarbonization of Power and Industrial Sectors: The Role of Membrane Processes
Abstract
:1. Introduction
1.1. The Problem with CO2 Emissions
1.2. Solutions for CO2 Emission Reductions
1.3. Membrane Technology as Promising CO2 Capture Method
1.4. Advances and Novelty of This Review with Respect to the Current State of the Art
2. Search Criteria and Bibliometric Analysis
3. Typical Industrial Sectors and Stream Characteristics for CO2 Capture
4. Membrane-Based CO2 Capture Technologies
4.1. Membrane Separation
4.1.1. Organic Membranes
4.1.2. Inorganic Membranes
4.1.3. Mixed Matrix Membranes
4.2. Hybrid Membrane Systems
4.2.1. Membrane Contactors
4.2.2. Hybrid Membrane-Absorption
5. Comparison of Membrane and Other Technologies for Post-Combustion CO2 Capture
5.1. Technology Readiness Level and Scalability
Method | Scalability | Comment | TRL | Reference |
---|---|---|---|---|
Absorption | ||||
Amine-based absorption | Large | Amine-based absorption (monoethanolamine (MEA), methyldiethanolamine MDEA) was fully commercialized and used on large scale (power and industrial sector) | 9 | [104] |
Chilled ammonia process (CAP) | Large | The chilled ammonia process was demonstrated using flue gas streams (16% and 3.6% CO2) | 7 | [105] |
Ionic liquid absorption | Early to assess | Although there are a few field trial tests, research and developments are mainly at lab scale | 2–4 | [106,107] |
Piperazine solvent | Large | Piperazine (PZ) solvent for capturing CO2 from 4% CO2 flue gas was tested at natural gas combined cycle (NGCC) power plant | 7–8 | [108] |
Phase-change solvent absorption | Small & medium | Phase-change solvent absorption was tested at packed bed pilot plant | 4–5 | [109] |
Adsorption | ||||
Vacuum swing adsorption/Pressure swing adsorption | Large | Although this adsorption method has already been commercialized by Air Products in hydrogen production plant, in post-combustion CO2 capture, it is not mature yet | 2–5 | [110] |
Temperature swing adsorption | Medium | Large pilot tests to FEED studies for commercial plants | 5–7 | [111,112] |
Electric swing adsorption | Early to assess | This technique is still at lab scale | 3 | [113] |
Membrane separation | ||||
Polymeric membranes | Small & medium | Polymeric membranes for post-combustion CO2 separation are in transition from pilot scale to demonstration with high possibility of commercialization | 6–7 | [114,115,116] |
Inorganic membranes | Early to assess | Due to the complexity of material processing and relatively high cost, this membrane is mainly tested at lab-scale | 3 | [117] |
Membrane contactors | Medium to large scale | Most of the promising membrane contactors at lab scale development with a few of them has been tested at pilot scale | 4–6 | [108,118] |
Hybrid membrane-absorption | Medium to large scale | Hybrid membrane-absorption is being evaluated to achieve low-cost CO2 capture than traditional amine-based capture system. Especially for low CO2 concentration flue gas | 3–4 | [106,119] |
Polymer mixed facilitated transport membranes | Small to medium scale | The pre-pilot field testing was implemented at the cement industry | 6–7 | [120,121] |
Other post-combustion carbon capture technologies | ||||
Cryogenic packed bed capture/Anti-sublimation system | Small to medium scale | Although this technology is mature for CO2/CH4, it is still uncertain to apply for post-combustion flue gas | 3–4 | [122] |
Calcium looping | Large scale | Demonstrated pilot plant using oxy-fuel calcination | 5–7 | [123,124] |
Carbon bio-fixation | Medium to large scale | Microalgae cultivation and biomass co-firing for power generation | 4–6 | [34,125] |
5.2. Overall Technology Comparison for CO2 Capture
6. Conclusions and Future Works
- Stationary CO2 emitters from the power sector and CO2 sources from industry are the first places where their emissions should be reduced.
- CO2 content in flue gas plays a vital role from a technological and economical point of view.
- According to current studies, membrane technology for PCC will play an important role in the near future, since there is a high possibility for further investigations of new membrane materials and optimization of existing ones.
- The study comparison shows the overall best result for membrane technology in different categories, such as CO2 purity and recovery, maturity, scalability, CAPEX, OPEX, and environmental benefits.
- As membrane studies on decarbonization of large emitters have been developing rapidly in recent years, its advantages involving small carbon footprint, easy scale-up, and, especially, lower energy consumption are expected to overcome the first-generation benchmark absorption technology.
- Despite the scientific progress achieved, there are still challenges in the implementation of membranes in real conditions for PCC. These issues include humidity-based membrane resistance, thermal influences on permeability and selectivity, long-term stability of the membrane layer, and the tolerance for flue gas impurities.
- The membrane gas separation method can be suitable for flue gases with higher CO2 content, such as cement, iron, and steel industry.
- Large scale application of membrane technology, particularly in power plants, can be challenging due to the low partial pressure of CO2 in the flue gas. To overcome this issue, it is essential to develop a membrane material with high selectivity and permeability, ease of fabrication, and low cost.
- In recent years, several advances have been made and tested in real conditions regarding the effect of flue gas impurities on membranes. However, there is still a need for further research to find a membrane material with optimal characteristics for PCC.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Ar | Argon |
C | Carbon |
CaCO3 | Calcium carbonate |
CaL | Calcium looping |
CaO | Calcium oxide |
CAP | Chilled ammonia process |
CAPEX | Capital expenditures (capital cost) |
CCS | Carbon Capture, and Storage |
CCSU | Carbon Capture, Storage, and Utilization |
CCU | Carbon Capture and Utilization |
CH4 | Methane |
CO | Carbon monoxide |
CO2 | Carbon dioxide |
FEED | Front End Engineering Design |
H2 | Hydrogen |
H2O | Water |
H2S | Hydrogen sulfide |
IEA | International energy agency |
ILs | Ionic liquid |
MDEA | Methyldiethanolamine |
MEA | Monoethanolamine |
N/A | Not applicable |
N2 | Nitrogen |
N2O | Nitrous oxide |
NGCC | Natural gas combined cycle |
NOx | Nitrogen oxide |
O2 | Oxygen |
OPEX | Operational expenditure (operating cost) |
PCC | Post-combustion capture |
PSA | Pressure swing adsorption |
PZ | Piperazine |
SEGR | Selective exhaust gas recirculation |
SO2 | Sulphur dioxide |
SOx | Sulphur oxide |
TRL | Technology Readiness Level |
TSA | Temperature swing adsorption |
VPSA | Vacuum pressure swing adsorption |
VSA | Vacuum swing adsorption |
References
- Climate Change Indicators: Atmospheric Concentrations of Greenhouse Gases|US EPA. Available online: https://www.epa.gov/climate-indicators/climate-change-indicators-atmospheric-concentrations-greenhouse-gases (accessed on 11 October 2022).
- Yoro, K.O.; Daramola, M.O. CO2 Emission Sources, Greenhouse Gases, and the Global Warming Effect. In Advances in Carbon Capture; Woodhead Publishing: Sawston, UK, 2020. [Google Scholar] [CrossRef]
- Main Sources of Carbon Dioxide Emissions|CO2 Human Emissions. Available online: https://www.che-project.eu/news/main-sources-carbon-dioxide-emissions (accessed on 11 October 2022).
- Morgan, J.; Patomäki, H. Planetary Good Governance after the Paris Agreement: The Case for a Global Greenhouse Gas Tax. J. Environ. Manag. 2021, 292, 112753. [Google Scholar] [CrossRef] [PubMed]
- Carbon Dioxide|Vital Signs—Climate Change: Vital Signs of the Planet. Available online: https://climate.nasa.gov/vital-signs/carbon-dioxide/ (accessed on 11 October 2022).
- United Nations Environment Programme (UNEP). Emission Gap Report 2021: The Heat Is on—A World of Climate Promises Not Yet Delivered. 2021, p. 112. Available online: https://wedocs.unep.org/bitstream/handle/20.500.11822/36990/EGR21.pdf (accessed on 11 October 2022).
- Predictions of Future Global Climate|Center for Science Education. Available online: https://scied.ucar.edu/learning-zone/climate-change-impacts/predictions-future-global-climate (accessed on 11 October 2022).
- 2021 United Nations Climate Change Conference—Wikipedia. Available online: https://en.wikipedia.org/wiki/2021_United_Nations_Climate_Change_Conference#cite_note-Glasgow-80 (accessed on 11 October 2022).
- Food and Agriculture Organization (FAO). Agriculture, Forestry and Other Land Use Emissions by Sources and Removals by Sinks; 0259-2576. 2014, p. 90. Available online: http://www.fao.org/3/a-i3671e.pdf (accessed on 12 October 2022).
- Grant, N.; Hawkes, A.; Napp, T.; Gambhir, A. Cost Reductions in Renewables Can Substantially Erode the Value of Carbon Capture and Storage in Mitigation Pathways. One Earth 2021, 4, 1588–1601. [Google Scholar] [CrossRef]
- Rabaia, M.K.H.; Abdelkareem, M.A.; Sayed, E.T.; Elsaid, K.; Chae, K.J.; Wilberforce, T.; Olabi, A.G. Environmental Impacts of Solar Energy Systems: A Review. Sci. Total Environ. 2021, 754, 141989. [Google Scholar] [CrossRef] [PubMed]
- Furlan, C.; Mortarino, C. Forecasting the Impact of Renewable Energies in Competition with Non-Renewable Sources. Renew. Sustain. Energy Rev. 2018, 81, 1879–1886. [Google Scholar] [CrossRef]
- Tovar-Facio, J.; Cansino-Loeza, B.; Ponce-Ortega, J.M. Management of Renewable Energy Sources. In Sustainable Design for Renewable Processes; Elsevier: Amsterdam, The Netherlands, 2022; pp. 3–31. [Google Scholar] [CrossRef]
- Marocco Stuardi, F.; MacPherson, F.; Leclaire, J. Integrated CO2 Capture and Utilization: A Priority Research Direction. Curr. Opin. Green Sustain. Chem. 2019, 16, 71–76. [Google Scholar] [CrossRef]
- Reiner, D.M. Learning through a Portfolio of Carbon Capture and Storage Demonstration Projects. Nat. Energy 2016, 1, 15011. [Google Scholar] [CrossRef] [Green Version]
- Xie, W.-H.; Li, H.; Yang, M.; He, L.-N.; Li, H.-R. CO2 Capture and Utilization with Solid Waste. Green Chem. Eng. 2022, 3, 199–209. [Google Scholar] [CrossRef]
- Shao, B.; Zhang, Y.; Sun, Z.; Li, J.; Gao, Z.; Xie, Z.; Hu, J.; Liu, H. CO2 Capture and In-Situ Conversion: Recent Progresses and Perspectives. Green Chem. Eng. 2021, 3, 189–198. [Google Scholar] [CrossRef]
- Valluri, S.; Claremboux, V.; Kawatra, S. Opportunities and Challenges in CO2 Utilization. J. Environ. Sci. 2022, 113, 322–344. [Google Scholar] [CrossRef]
- Wang, M.; Lawal, A.; Stephenson, P.; Sidders, J.; Ramshaw, C. Post-Combustion CO2 Capture with Chemical Absorption: A State-of-the-Art Review. Chem. Eng. Res. Des. 2011, 89, 1609–1624. [Google Scholar] [CrossRef] [Green Version]
- Humayun, A.; Anwar, M.N. CO2 Capture, Storage, Transformation, and Utilization: An Introduction. In Nanomaterials for CO2 Capture, Storage, Conversion and Utilization; Elsevier: Amsterdam, The Netherlands, 2021; pp. 1–19. [Google Scholar] [CrossRef]
- Léonard, G.; Toye, D.; Heyen, G. Assessment of Solvent Degradation within a Global Process Model of Post-Combustion CO2 Capture. Comput. Aided Chem. Eng. 2014, 33, 13–18. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, L.; Otto, A.; Robinius, M.; Stolten, D. A Review of Post-Combustion CO2 Capture Technologies from Coal-Fired Power Plants. Energy Procedia 2017, 114, 650–665. [Google Scholar] [CrossRef]
- Arias, B.; Alonso, M.; Abanades, C. CO2 Capture by Calcium Looping at Relevant Conditions for Cement Plants: Experimental Testing in a 30 KW th Pilot Plant. Ind. Eng. Chem. Res. 2017, 56, 2634–2640. [Google Scholar] [CrossRef] [Green Version]
- Anand, A.; Raghuvanshi, S.; Gupta, S. Trends in Carbon Dioxide (CO2) Fixation by Microbial Cultivations. Curr. Sustain. /Renew. Energy Rep. 2020, 7, 40–47. [Google Scholar] [CrossRef]
- Markewitz, P.; Kuckshinrichs, W.; Leitner, W.; Linssen, J.; Zapp, P.; Bongartz, R.; Schreiber, A.; Müller, T.E. Worldwide Innovations in the Development of Carbon Capture Technologies and the Utilization of CO2. Energy Environ. Sci. 2012, 5, 7281. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Xie, J.; Hou, W.; Tu, X.; Xu, J.; Song, F.; Wang, Z.; Lu, Z. Mapping the Knowledge Structure of Research on Patient Adherence: Knowledge Domain Visualization Based Co-Word Analysis and Social Network Analysis. PLoS ONE 2012, 7, e34497. [Google Scholar] [CrossRef] [Green Version]
- Merigó, J.M.; Cancino, C.A.; Coronado, F.; Urbano, D. Academic Research in Innovation: A Country Analysis. Scientometrics 2016, 108, 559–593. [Google Scholar] [CrossRef]
- Merigó, J.M.; Mas-Tur, A.; Roig-Tierno, N.; Ribeiro-Soriano, D. A Bibliometric Overview of the Journal of Business Research between 1973 and 2014. J. Bus. Res. 2015, 68, 2645–2653. [Google Scholar] [CrossRef]
- Radhakrishnan, S.; Erbis, S.; Isaacs, J.A.; Kamarthi, S. Novel Keyword Co-Occurrence Network-Based Methods to Foster Systematic Reviews of Scientific Literature. PLoS ONE 2017, 12, e0172778. [Google Scholar] [CrossRef] [Green Version]
- Liao, H.; Tang, M.; Luo, L.; Li, C.; Chiclana, F.; Zeng, X.-J. A Bibliometric Analysis and Visualization of Medical Big Data Research. Sustainability 2018, 10, 166. [Google Scholar] [CrossRef] [Green Version]
- Data & Statistics—IEA. Available online: https://www.iea.org/data-and-statistics/data-browser?country=WORLD&fuel=CO2%20emissions&indicator=CO2BySource (accessed on 15 October 2022).
- Gür, T.M. Carbon Dioxide Emissions, Capture, Storage and Utilization: Review of Materials, Processes and Technologies. Prog. Energy Combust. Sci. 2022, 89, 100965. [Google Scholar] [CrossRef]
- Zhang, K.; Bokka, H.K.; Lau, H.C. Decarbonizing the Energy and Industry Sectors in Thailand by Carbon Capture and Storage. J. Pet. Sci. Eng. 2022, 209, 109979. [Google Scholar] [CrossRef]
- Srivastav, P.; Schenkel, M.; Mir, G.R.; Berg, T.; Staats, M. Carbon Capture, Utilisation and Storage (CCUS): Decarbonisation Pathways for Singapore’s Energy and Chemicals Sectors; Navigant: Utrecht, The Netherlands, 2021. Available online: https://file.go.gov.sg/carbon-capture-utilisation-and-storage-decarbonisation-pathway-for-singapore-energy-and-chemical-sectors-pdf.pdf (accessed on 15 October 2022).
- Lungkadee, T.; Onsree, T.; Tangparitkul, S.; Janwiruch, N.; Nuntaphan, A.; Tippayawong, N. Technical and Economic Analysis of Retrofitting a Post-Combustion Carbon Capture System in a Thai Coal-Fired Power Plant. Energy Rep. 2021, 7, 308–313. [Google Scholar] [CrossRef]
- Ferrara, G.; Lanzini, A.; Leone, P.; Ho, M.T.; Wiley, D.E. Exergetic and Exergoeconomic Analysis of Post-Combustion CO2 Capture Using MEA-Solvent Chemical Absorption. Energy 2017, 130, 113–128. [Google Scholar] [CrossRef]
- Scholes, C.A.; Ho, M.T.; Wiley, D.E.; Stevens, G.W.; Kentish, S.E. Cost Competitive Membrane—Cryogenic Post-Combustion Carbon Capture. Int. J. Greenh. Gas Control 2013, 17, 341–348. [Google Scholar] [CrossRef]
- Seo, K.; Chen, Z.; Edgar, T.F.; Brennecke, J.F.; Stadtherr, M.A.; Baldea, M. Modeling and Optimization of Ionic Liquid-Based Carbon Capture Process Using a Thin-Film Unit. Comput. Chem. Eng. 2021, 155, 107522. [Google Scholar] [CrossRef]
- He, X.; Hägg, M.B. Energy Efficient Process for CO2 Capture from Flue Gas with Novel Fixed-Site-Carrier Membranes. Energy Procedia 2014, 63, 174–185. [Google Scholar] [CrossRef]
- Kentish, S.E.; Scholes, C.A.; Qader, A.; Stevens, G.W. In the Field Membrane Pilot Plant Trials of CO2 Separation from Flue Gas. Greenh. Gas Sci. Technol. 2015, 5, 229–237. [Google Scholar] [CrossRef]
- Liu, L.; Fang, M.; Xu, S.; Wang, J.; Guo, D. Development and Testing of a New Post-Combustion CO2 Capture Solvent in Pilot and Demonstration Plant. Int. J. Greenh. Gas Control 2022, 113, 103513. [Google Scholar] [CrossRef]
- Bains, P.; Psarras, P.; Wilcox, J. CO2 Capture from the Industry Sector. Prog. Energy Combust. Sci. 2017, 63, 146–172. [Google Scholar] [CrossRef]
- Shirmohammadi, R.; Aslani, A.; Ghasempour, R.; Romeo, L.M.; Petrakopoulou, F. Techno-Economic Assessment and Optimization of a Solar-Assisted Industrial Post-Combustion CO2 Capture and Utilization Plant. Energy Rep. 2021, 7, 7390–7404. [Google Scholar] [CrossRef]
- Shirmohammadi, R.; Aslani, A.; Ghasempour, R.; Romeo, L.M. CO2 Utilization via Integration of an Industrial Post-Combustion Capture Process with a Urea Plant: Process Modelling and Sensitivity Analysis. Processes 2020, 8, 1144. [Google Scholar] [CrossRef]
- Gatti, M.; Martelli, E.; di Bona, D.; Gabba, M.; Scaccabarozzi, R.; Spinelli, M.; Viganò, F.; Consonni, S. Preliminary Performance and Cost Evaluation of Four Alternative Technologies for Post-Combustion CO2 Capture in Natural Gas-Fired Power Plants. Energies 2020, 13, 543. [Google Scholar] [CrossRef] [Green Version]
- Diego, M.E.; Bellas, J.M.; Pourkashanian, M. Techno-Economic Analysis of a Hybrid CO2 Capture System for Natural Gas Combined Cycles with Selective Exhaust Gas Recirculation. Appl. Energy 2018, 215, 778–791. [Google Scholar] [CrossRef]
- Jiang, L.; Gonzalez-Diaz, A.; Ling-Chin, J.; Roskilly, A.P.; Smallbone, A.J. Post-Combustion CO2 Capture from a Natural Gas Combined Cycle Power Plant Using Activated Carbon Adsorption. Appl. Energy 2019, 245, 1–15. [Google Scholar] [CrossRef]
- Biliyok, C.; Canepa, R.; Wang, M.; Yeung, H. Techno-Economic Analysis of a Natural Gas Combined Cycle Power Plant with CO2 Capture. Comput. Aided Chem. Eng. 2013, 32, 187–192. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Carbon Dioxide Capture and Storage; Cambridge University Press: Cambridge, UK, 2005; Available online: https://archive.ipcc.ch/pdf/special-reports/srccs/srccs_wholereport.pdf (accessed on 8 October 2022).
- Oh, J.; Jung, D.; Oh, S.H.; Roh, K.; Ga, S.; Lee, J.H. Design, Simulation and Feasibility Study of a Combined CO2 Mineralization and Brackish Water Desalination Process. J. CO2 Util. 2019, 34, 446–464. [Google Scholar] [CrossRef]
- Hägg, M.B.; Lindbråthen, A.; He, X.; Nodeland, S.G.; Cantero, T. Pilot Demonstration-Reporting on CO2 Capture from a Cement Plant Using Hollow Fiber Process. Energy Procedia 2017, 114, 6150–6165. [Google Scholar] [CrossRef]
- Plaza, M.G.; Martínez, S.; Rubiera, F. CO2 Capture, Use, and Storage in the Cement Industry: State of the Art and Expectations. Energies 2020, 13, 5692. [Google Scholar] [CrossRef]
- Voldsund, M.; Gardarsdottir, S.O.; de Lena, E.; Pérez-Calvo, J.-F.; Jamali, A.; Berstad, D.; Fu, C.; Romano, M.; Roussanaly, S.; Anantharaman, R.; et al. Comparison of Technologies for CO2 Capture from Cement Production-Part 1: Technical Evaluation. Energies 2019, 12, 559. [Google Scholar] [CrossRef] [Green Version]
- Gardarsdottir, S.O.; de Lena, E.; Romano, M.; Roussanaly, S.; Voldsund, M.; Pérez-Calvo, J.-F.; Berstad, D.; Fu, C.; Anantharaman, R.; Sutter, D.; et al. Comparison of Technologies for CO2 Capture from Cement Production-Part 2: Cost Analysis. Energies 2019, 12, 542. [Google Scholar] [CrossRef] [Green Version]
- Youn, M.H.; Park, K.T.; Lee, Y.H.; Kang, S.P.; Lee, S.M.; Kim, S.S.; Kim, Y.E.; Ko, Y.N.; Jeong, S.K.; Lee, W. Carbon Dioxide Sequestration Process for the Cement Industry. J. CO2 Util. 2019, 34, 325–334. [Google Scholar] [CrossRef]
- Cormos, A.M.; Cormos, C.C. Reducing the Carbon Footprint of Cement Industry by Post-Combustion CO2 Capture: Techno-Economic and Environmental Assessment of a CCS Project in Romania. Chem. Eng. Res. Des. 2017, 123, 230–239. [Google Scholar] [CrossRef]
- Asimakopoulou, A.; Koutsonikolas, D.; Kastrinaki, G.; Skevis, G.; Casado-Coterillo, C. Membranes Innovative Gas-Liquid Membrane Contactor Systems for Carbon Capture and Mineralization in Energy Intensive Industries. Membranes 2021, 11, 271. [Google Scholar] [CrossRef] [PubMed]
- Rumayor, M.; Fernández-González, J.; Domínguez-Ramos, A.; Irabien, A. Deep Decarbonization of the Cement Sector: A Prospective Environmental Assessment of CO2 Recycling to Methanol. ACS Sustain. Chem. Eng. 2022, 10, 267–278. [Google Scholar] [CrossRef]
- Ehrenberg, A. Chapter 6 Iron and Steel Slags: From Wastes to by-Products of High Technical, Economical and Ecological Advantages. In Industrial Waste; De Gruyter: Berlin, Germany, 2021; pp. 203–252. [Google Scholar]
- Kuramochi, T.; Ramírez, A.; Turkenburg, W.; Faaij, A. Comparative Assessment of CO2 Capture Technologies for Carbon-Intensive Industrial Processes. Prog. Energy Combust. Sci. 2012, 38, 87–112. [Google Scholar] [CrossRef]
- Koohestanian, E.; Sadeghi, J.; Mohebbi-Kalhori, D.; Shahraki, F.; Samimi, A. A Novel Process for CO2 Capture from the Flue Gases to Produce Urea and Ammonia. Energy 2018, 144, 279–285. [Google Scholar] [CrossRef]
- Edrisi, A.; Mansoori, Z.; Dabir, B. Urea Synthesis Using Chemical Looping Process—Techno-Economic Evaluation of a Novel Plant Configuration for a Green Production. Int. J. Greenh. Gas Control 2016, 44, 42–51. [Google Scholar] [CrossRef]
- Collodi, G. Hydrogen Production via Steam Reforming with CO2 Capture. Chem. Eng. Trans. 2010, 19, 37–42. [Google Scholar]
- Sayah, A.K.; Hosseinabadi, S.; Farazar, M. CO2 Abatement by Methanol Production from Flue-Gas in Methanol Plant. World Acad. Sci. Eng. Technol. 2010, 69, 90–93. [Google Scholar]
- Wang, S.; Li, X.; Wu, H.; Tian, Z.; Xin, Q.; He, G.; Peng, D.; Chen, S.; Yin, Y.; Jiang, Z.; et al. Advances in High Permeability Polymer-Based Membrane Materials for CO2 Separations. Energy Environ. Sci. 2016, 9, 1863–1890. [Google Scholar] [CrossRef]
- Sifat, N.S.; Haseli, Y. A Critical Review of CO2 Capture Technologies and Prospects for Clean Power Generation. Energies 2019, 12, 4143. [Google Scholar] [CrossRef] [Green Version]
- Dalane, K.; Dai, Z.; Mogseth, G.; Hillestad, M.; Deng, L. Potential Applications of Membrane Separation for Subsea Natural Gas Processing: A Review. J. Nat. Gas Sci. Eng. 2017, 39, 101–117. [Google Scholar] [CrossRef]
- Kárászová, M.; Zach, B.; Petrusová, Z.; Červenka, V.; Bobák, M.; Šyc, M.; Izák, P. Post-Combustion Carbon Capture by Membrane Separation, Review. Sep. Purif. Technol. 2020, 238, 116448. [Google Scholar] [CrossRef]
- Chen, G.; Wang, T.; Zhang, G.; Liu, G.; Jin, W. Membrane Materials Targeting Carbon Capture and Utilization. Adv. Membr. 2022, 2, 100025. [Google Scholar] [CrossRef]
- Khalilpour, R.; Mumford, K.; Zhai, H.; Abbas, A.; Stevens, G.; Rubin, E.S. Membrane-Based Carbon Capture from Flue Gas: A Review. J. Clean. Prod. 2015, 103, 286–300. [Google Scholar] [CrossRef]
- Kunalan, S.; Palanivelu, K. Polymeric Composite Membranes in Carbon Dioxide Capture Process: A Review. Environ. Sci. Pollut. Res. 2022, 29, 38735–38767. [Google Scholar] [CrossRef] [PubMed]
- Ji, G.; Zhao, M. Membrane Separation Technology in Carbon Capture. In Recent Advances in Carbon Capture and Storage; InTech: London, UK, 2017. [Google Scholar]
- Dubey, A.; Arora, A. Advancements in Carbon Capture Technologies: A Review. J. Clean. Prod. 2022, 373, 133932. [Google Scholar] [CrossRef]
- Cao, Y.; Khan, A.; Nakhjiri, A.T.; Albadarin, A.B.; Kurniawan, T.A.; Rezakazemi, M. Recent Advancements in Molecular Separation of Gases Using Microporous Membrane Systems: A Comprehensive Review on the Applied Liquid Absorbents. J. Mol. Liq. 2021, 337, 116439. [Google Scholar] [CrossRef]
- Anderson, M.; Wang, H.; Lin, Y.S. Inorganic Membranes for Carbon Dioxide and Nitrogen Separation. Rev. Chem. Eng. 2012, 28, 101–121. [Google Scholar] [CrossRef]
- Li, S.; Liu, Y.; Wong, D.A.; Yang, J. Recent Advances in Polymer-Inorganic Mixed Matrix Membranes for CO2 Separation. Polymers 2021, 13, 2539. [Google Scholar] [CrossRef] [PubMed]
- Yazid, A.F.; Mukhtar, H.; Nasir, R.; Mohshim, D.F. Incorporating Carbon Nanotubes in Nanocomposite Mixed-Matrix Membranes for Gas Separation: A Review. Membranes 2022, 12, 589. [Google Scholar] [CrossRef]
- Keskin, A.A. A Review on Computational Modeling Tools for MOF-Based Mixed Matrix Membranes. Computation 2019, 7, 36. [Google Scholar] [CrossRef] [Green Version]
- Castro-Muñoz, R.; Fíla, V. Progress on Incorporating Zeolites in Matrimid®5218 Mixed Matrix Membranes towards Gas Separation. Membranes 2018, 8, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamble, A.R.; Patel, C.M. A Review on the Recent Advances in Mixed Matrix Membranes for Gas Separation Processes. Renew. Sustain. Energy Rev. 2021, 145, 111062. [Google Scholar] [CrossRef]
- Vadillo, J.M.; Gómez-Coma, L.; Garea, A.; Irabien, A. Hollow Fiber Membrane Contactors in CO2 Desorption: A Review. Energy Fuels 2021, 35, 111–136. [Google Scholar] [CrossRef]
- Siagian, U.W.R.; Raksajati, A.; Himma, N.F.; Khoiruddin, K.; Wenten, I.G. Membrane-Based Carbon Capture Technologies: Membrane Gas Separation vs. Membrane Contactor. J. Nat. Gas Sci. Eng. 2019, 67, 172–195. [Google Scholar] [CrossRef]
- Ramezani, R.; di Felice, L.; Gallucci, F. A Review on Hollow Fiber Membrane Contactors for Carbon Capture: Recent Advances and Future Challenges. Processes 2022, 10, 2103. [Google Scholar] [CrossRef]
- Scholes, C.A.; Simioni, M.; Qader, A.; Stevens, G.W.; Kentish, S.E. Membrane Gas–Solvent Contactor Trials of CO2 Absorption from Syngas. Chem. Eng. J. 2012, 195–196, 188–197. [Google Scholar] [CrossRef]
- Masoumi, S.; Rahimpour, M.R.; Mehdipour, M. Removal of Carbon Dioxide by Aqueous Amino Acid Salts Using Hollow Fiber Membrane Contactors. J. CO2 Util. 2016, 16, 42–49. [Google Scholar] [CrossRef]
- Masoumi, S.; Keshavarz, P.; Ayatollahi, S.; Mehdipour, M.; Rastgoo, Z. Enhanced Carbon Dioxide Separation by Amine-Promoted Potassium Carbonate Solution in a Hollow Fiber Membrane Contactor. Energy Fuels 2013, 27, 5423–5432. [Google Scholar] [CrossRef]
- Makhloufi, C.; Lasseuguette, E.; Remigy, J.C.; Belaissaoui, B.; Roizard, D.; Favre, E. Ammonia Based CO2 Capture Process Using Hollow Fiber Membrane Contactors. J. Memb. Sci. 2014, 455, 236–246. [Google Scholar] [CrossRef] [Green Version]
- Sohaib, Q.; Gómez-Coma, L.; Albo, J.; Druon-Bocquet, S.; Irabien, A.; Sanchez-Marcano, J. CO2 Capture in a Hollow Fiber Membrane Contactor Coupled with Ionic Liquid: Influence of Membrane Wetting and Process Parameters. Sep. Purif. Technol. 2020, 233, 115986. [Google Scholar] [CrossRef]
- Vadillo, J.M.; Gómez-Coma, L.; Garea, A.; Irabien, A. CO2 Desorption Performance from Imidazolium Ionic Liquids by Membrane Vacuum Regeneration Technology. Membranes 2020, 10, 234. [Google Scholar] [CrossRef]
- Liqui-Cel®, Design & Operating Guidelines for Liqui-Cel® Extra-Flow Membrane Contactors. Available online: https://multimedia.3m.com/mws/media/1577896O/design-and-operating-guidelines-for-3m-liqui-cel-membrane-contactors.pdf (accessed on 23 November 2022).
- Kim, S.; Scholes, C.A.; Heath, D.E.; Kentish, S.E. Gas-Liquid Membrane Contactors for Carbon Dioxide Separation: A Review. Chem. Eng. J. 2021, 411, 128468. [Google Scholar] [CrossRef]
- Freeman, B.; Hao, P.; Baker, R.; Kniep, J.; Chen, E.; Ding, J.; Zhang, Y.; Rochelle, G.T. Hybrid Membrane-Absorption CO2 Capture Process. Energy Procedia 2014, 63, 605–613. [Google Scholar] [CrossRef] [Green Version]
- Kundu, P.K.; Chakma, A.; Feng, X. Effectiveness of Membranes and Hybrid Membrane Processes in Comparison with Absorption Using Amines for Post-Combustion CO2 Capture. Int. J. Greenh. Gas Control 2014, 28, 248–256. [Google Scholar] [CrossRef]
- Dong, W.; Fang, M.; Wang, T.; Liu, F.; Yi, N. CO2 Capture by Using a Membrane-Absorption Hybrid Process in the Nature Gas Combined Cycle Power Plants. Aerosol Air Qual. Res. 2021, 21, 200374. [Google Scholar] [CrossRef]
- Jang, M.-G.; Yun, S.; Kim, J.-K. Process Design and Economic Analysis of Membrane-Integrated Absorption Processes for CO2 Capture. J. Clean. Prod. 2022, 368, 133180. [Google Scholar] [CrossRef]
- Diego, M.E.; Bellas, J.-M.; Pourkashanian, M. Process Analysis of Selective Exhaust Gas Recirculation for CO2 Capture in Natural Gas Combined Cycle Power Plants Using Amines. In Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, Charlotte, NC, USA, 26–30 June 2017. [Google Scholar] [CrossRef]
- Herraiz, L.; Fernández, E.S.; Palfi, E.; Lucquiaud, M. Selective Exhaust Gas Recirculation in Combined Cycle Gas Turbine Power Plants with Post-Combustion CO2 Capture. Int. J. Greenh. Gas Control 2018, 71, 303–321. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, A.; Okolie, J.A.; Abdelrasoul, A.; Niu, C.; Dalai, A.K. Review of Post-Combustion Carbon Dioxide Capture Technologies Using Activated Carbon. J. Environ. Sci. 2019, 83, 46–63. [Google Scholar] [CrossRef] [PubMed]
- Norkobilov, A.; Gorri, D.; Ortiz, I. Comparative Study of Conventional, Reactive-Distillation and Pervaporation Integrated Hybrid Process for Ethyl Tert-Butyl Ether Production. Chem. Eng. Process. Process Intensif. 2017, 122, 434–446. [Google Scholar] [CrossRef] [Green Version]
- Chauvy, R.; de Weireld, G. CO2 Utilization Technologies in Europe: A Short Review. Energy Technol. 2020, 8, 2000627. [Google Scholar] [CrossRef]
- Technology Readiness Level—Wikipedia. Available online: https://en.wikipedia.org/wiki/Technology_readiness_level (accessed on 16 March 2022).
- Carbon Capture and Storage Experiencing Record Growth as Countries Strive to Meet Global Climate Goals. Available online: https://www.globalccsinstitute.com/news-media/press-room/media-releases/carbon-capture-and-storage-experiencing-record-growth-as-countries-strive-to-meet-global-climate-goals/ (accessed on 16 January 2023).
- Petra Nova Carbon Capture Project Stalls with Cheap Oil. Available online: https://www.energyandpolicy.org/petra-nova/ (accessed on 25 October 2022).
- Khalifa, O.; Alkhatib, I.I.I.; Bahamon, D.; Alhajaj, A.; Abu-Zahra, M.R.M.; Vega, L.F. Modifying Absorption Process Configurations to Improve Their Performance for Post-Combustion CO2 Capture—What Have We Learned and What Is Still Missing? Chem. Eng. J. 2022, 430, 133096. [Google Scholar] [CrossRef]
- Chilled Ammonia Process|Baker Hughes. Available online: https://www.bakerhughes.com/process-solutions/chilled-ammonia-process (accessed on 18 September 2022).
- Global CCS Institute. A Report. Technology Readiness and Cost of CCS. March 2021. Available online: https://www.globalccsinstitute.com/wp-content/uploads/2022/03/CCE-CCS-Technology-Readiness-and-Costs-22-1.pdf (accessed on 12 October 2022).
- Vadillo, J.M.; Díaz-Sainz, G.; Gómez-Coma, L.; Garea, A.; Irabien, A. Chemical and Physical Ionic Liquids in CO2 Capture System Using Membrane Vacuum Regeneration. Membranes 2022, 12, 785. [Google Scholar] [CrossRef] [PubMed]
- Concawe Report. Technology Scouting—Carbon Capture: From Today’s to Novel Technologies. 2021. Available online: https://www.concawe.eu/wp-content/uploads/Technology-scouting%E2%80%94carbon-capture-from-todays-to-novel-technologies.pdf (accessed on 18 October 2022).
- ROLINCAP Achievements. Available online: http://www.rolincap-project.eu/rolincap-achievements (accessed on 18 October 2022).
- Prado, P.L.B.; Wang, M. CO2 Capture with Adsorbents: Current Pilot Projects; University of Sheffield: Sheffield, UK, 2020. [Google Scholar]
- Wu, K.; Deng, S.; Li, S.; Zhao, R.; Yuan, X.; Zhao, L. Preliminary Experimental Study on the Performance of CO2 Capture Prototype Based on Temperature Swing Adsorption (TSA). Carbon Capture Sci. Technol. 2022, 2, 100035. [Google Scholar] [CrossRef]
- Okumura, T.; Yoshizawa, K.; Nishibe, S.; Iwasaki, H.; Kazari, M.; Hori, T. Parametric Testing of a Pilot-Scale Design for a Moving-Bed CO2 Capture System Using Low-Temperature Steam. Energy Procedia 2017, 114, 2322–2329. [Google Scholar] [CrossRef]
- Shah, G.; Ahmad, E.; Pant, K.K.; Vijay, V.K. Comprehending the Contemporary State of Art in Biogas Enrichment and CO2 Capture Technologies via Swing Adsorption. Int. J. Hydrogen Energy 2021, 46, 6588–6612. [Google Scholar] [CrossRef]
- Bui, M.; Adjiman, C.S.; Bardow, A.; Anthony, E.J.; Boston, A.; Brown, S.; Fennell, P.S.; Fuss, S.; Galindo, A.; Hackett, L.A.; et al. Carbon Capture and Storage (CCS): The Way Forward. Energy Environ. Sci. 2018, 11, 1062–1176. [Google Scholar] [CrossRef] [Green Version]
- Janakiram, S.; Martín Espejo, J.L.; Yu, X.; Ansaloni, L.; Deng, L. Facilitated Transport Membranes Containing Graphene Oxide-Based Nanoplatelets for CO2 Separation: Effect of 2D Filler Properties. J. Memb. Sci. 2020, 616, 118626. [Google Scholar] [CrossRef]
- He, X.; Lindbråthen, A.; Kim, T.-J.; Hägg, M.-B. Pilot Testing on Fixed-Site-Carrier Membranes for CO2 Capture from Flue Gas. Int. J. Greenh. Gas Control 2017, 64, 323–332. [Google Scholar] [CrossRef]
- Garcia, J.A.; Villen-Guzman, M.; Rodriguez-Maroto, J.M.; Paz-Garcia, J.M. Technical Analysis of CO2 Capture Pathways and Technologies. J. Environ. Chem. Eng. 2022, 10, 108470. [Google Scholar] [CrossRef]
- Scholes, C.A.; Kentish, S.E.; Qader, A. Membrane Gas-Solvent Contactor Pilot Plant Trials for Post-Combustion CO2 Capture. Sep. Purif. Technol. 2020, 237, 116470. [Google Scholar] [CrossRef]
- Freeman, B.; Baker, R.; Kniep, J.; Merkel, T. Bench Scale Development of a Hybrid Membrane-Absorption CO2 Capture Process (Final Report); Membrane Technology and Research: Pittsburgh, PA, USA; Morgantown, WV, USA, 2020. [Google Scholar]
- He, X. Polyvinylamine-Based Facilitated Transport Membranes for Post-Combustion CO2 Capture: Challenges and Perspectives from Materials to Processes. Engineering 2021, 7, 124–131. [Google Scholar] [CrossRef]
- Janakiram, S.; Santinelli, F.; Costi, R.; Lindbråthen, A.; Nardelli, G.M.; Milkowski, K.; Ansaloni, L.; Deng, L. Field Trial of Hollow Fiber Modules of Hybrid Facilitated Transport Membranes for Flue Gas CO2 Capture in Cement Industry. Chem. Eng. J. 2021, 413, 127405. [Google Scholar] [CrossRef]
- Font-Palma, C.; Cann, D.; Udemu, C. Review of Cryogenic Carbon Capture Innovations and Their Potential Applications. C 2021, 7, 58. [Google Scholar] [CrossRef]
- Moreno, J.; Hornberger, M.; Schmid, M.; Scheffknecht, G. Part-Load Operation of a Novel Calcium Looping System for Flexible CO2 Capture in Coal-Fired Power Plants. Ind. Eng. Chem. Res. 2021, 60, 7320–7330. [Google Scholar] [CrossRef]
- Moreno, J.; Hornberger, M.; Schmid, M.; Scheffknecht, G. Oxy-Fuel Combustion of Hard Coal, Wheat Straw, and Solid Recovered Fuel in a 200 KWth Calcium Looping CFB Calciner. Energies 2021, 14, 2162. [Google Scholar] [CrossRef]
- Roh, K.; Bardow, A.; Bongartz, D.; Burre, J.; Chung, W.; Deutz, S.; Han, D.; Heßelmann, M.; Kohlhaas, Y.; König, A.; et al. Early-Stage Evaluation of Emerging CO2 Utilization Technologies at Low Technology Readiness Levels. Green Chem. 2020, 22, 3842–3859. [Google Scholar] [CrossRef]
- Bergstrom, J.C.; Ty, D. Economics of Carbon Capture and Storage. In Recent Advances in Carbon Capture and Storage; InTech: London, UK, 2017. [Google Scholar]
- International Energy Agency Greenhouse Gas (IEAGHG) R&D Programme. Technical Review. Greenhouse Gas Emissions Accounting for CO2 Capture and Utilisation (CCU) Technologies: Greenhouse Gas Accounting Guidelines for CCU. 2018, p. 53. Available online: http://documents.ieaghg.org/index.php/s/NMg4N8B9QCfPCDC (accessed on 15 September 2022).
- Vega, F.; Cano, M.; Camino, S.; Fernández, L.M.G.; Portillo, E.; Navarrete, B. Solvents for Carbon Dioxide Capture. In Carbon Dioxide Chemistry, Capture and Oil Recovery; InTech: London, UK, 2018. [Google Scholar]
- Ho, M.T.; Allinson, G.W.; Wiley, D.E. Comparison of MEA Capture Cost for Low CO2 Emissions Sources in Australia. Int. J. Greenh. Gas Control 2011, 5, 49–60. [Google Scholar] [CrossRef]
- Raksajati, A.; Ho, M.T.; Wiley, D.E. Reducing the Cost of CO2 Capture from Flue Gases Using Aqueous Chemical Absorption. Ind. Eng. Chem. Res. 2013, 52, 16887–16901. [Google Scholar] [CrossRef]
- Rubin, E.S.; Davison, J.E.; Herzog, H.J. The Cost of CO2 Capture and Storage. Int. J. Greenh. Gas Control 2015, 40, 378–400. [Google Scholar] [CrossRef]
- Hashemi, S.M.; Sedghkerdar, M.H.; Mahinpey, N. Calcium Looping Carbon Capture: Progress and Prospects. Can. J. Chem. Eng. 2022, 100, 2140–2171. [Google Scholar] [CrossRef]
- Fu, C.; Roussanaly, S.; Jordal, K.; Anantharaman, R. Techno-Economic Analyses of the CaO/CaCO3 Post-Combustion CO2 Capture from NGCC Power Plants. Front. Chem. Eng. 2021, 2, 596417. [Google Scholar] [CrossRef]
- Oliveira, G.M.; Caetano, N.; Mata, T.M.; Martins, A.A. Biofixation of CO2 Emissions from Natural Gas Combined Cycle Power Plant. Energy Rep. 2020, 6, 140–146. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Putting CO2 to Use; International Energy Agency (IEA): Paris. 2019. Available online: https://www.iea.org/reports/putting-co2-to-use (accessed on 18 October 2022).
- Center for climate and energy solutions (C2ES). Carbon Utilization—A Vital and Effective Pathway for Decarbonization, Summary Report. 2019, p. 42. Available online: https://www.c2es.org/document/carbon-utilization-a-vital-and-effective-pathway-for-decarbonization (accessed on 18 October 2022).
- Raganati, F.; Miccio, F.; Ammendola, P. Adsorption of Carbon Dioxide for Post-Combustion Capture: A Review. Energy Fuels 2021, 35, 12845–12868. [Google Scholar] [CrossRef]
- Janakiram, S.; Ansaloni, L.; Jin, S.-A.; Yu, X.; Dai, Z.; Spontak, R.J.; Deng, L. Humidity-Responsive Molecular Gate-Opening Mechanism for Gas Separation in Ultraselective Nanocellulose/IL Hybrid Membranes. Green Chem. 2020, 22, 3546–3557. [Google Scholar] [CrossRef]
- Jusoh, N.; Yeong, Y.F.; Chew, T.L.; Lau, K.K.; Shariff, A.M. Current Development and Challenges of Mixed Matrix Membranes for CO2 /CH4 Separation. Sep. Purif. Rev. 2016, 45, 321–344. [Google Scholar] [CrossRef]
- Zanco, S.E.; Pérez-Calvo, J.-F.; Gasós, A.; Cordiano, B.; Becattini, V.; Mazzotti, M. Postcombustion CO2 Capture: A Comparative Techno-Economic Assessment of Three Technologies Using a Solvent, an Adsorbent, and a Membrane. ACS Eng. Au 2021, 1, 50–72. [Google Scholar] [CrossRef]
Power Generation Sector | CO2 Content | Global CO2 Emissions (Mt/Year) | Capture Cost ($/tCO2) | Flue Gas Temp (°C) | Flue Gas Component | Reference |
---|---|---|---|---|---|---|
Power sector | ||||||
Coal-fired power plant | 12–16 | 9900 | 41–100 | 40–80 | CO2, CO, O2, N2, H2O, NOx, SOx | [35,36,37,38,39,40,41,42] |
Natural gas-fired power plant | 7–10 | 6336 | 41–100 | 90–178 | CO2, O2, N2, H2O, trace amount of NOx | [42,43,44] |
Power plant with natural gas combined cycle | 3–6.5 | 6336 | 50–100 | 90–110 | CO2, O2, N2, H2O, trace amount of NOx | [42,45,46,47,48] |
Oil-fired power plant | 12–14 | 755 | 58–100 | N/A | CO2, O2, N2, H2O, NOx, SOx | [32,42,49] |
Cement, iron and steel industries | ||||||
Cement production | 14–33 | 2310 | 60–120 | 150–350 | CO2, CO, N2, H2O, NOx, SOx | [42,46,50,51,52,53,54,55,56,57,58] |
Iron and steel industry | 15–27 | 2632 | 40–100 | ~100 | H2, CO2, CO, N2, H2O, H2S | [42,59,60] |
Other industrial sectors | ||||||
Refineries | 3–20 | >1000 | 35–100 | 160–190 | Depends on the fuel used (commonly CO2, CO, O2, N2, H2O, NOx, SOx, Ar) | [42] |
Ammonia production | 18 | 450 | 25–35 | N/A | H2, CO2, CH4, O2 | [32,42,61,62] |
Hydrogen production | 15–20 | 830 | 50–80 | N/A | H2, CO2, CH4, CO | [32,42,63] |
Methanol production | 10 | 222 | 40–60 | ~141 | Mainly CO2, O2, N2, H2O | [32,49,64] |
Properties | Organic Membranes | Inorganic Membranes | Mixed Matrix Membranes |
---|---|---|---|
Fabrication cost | Low | High | Moderate |
Chemical and thermal stability | Moderate | High | High |
Synthesis and processability | Easy | Difficult | Easy |
Plasticization | Susceptible | Insusceptible | Insusceptible |
Surface roughness | Low | High | Moderate |
Fouling resistance | Low | Moderate | Moderate |
Cleaning after fouling | Difficult | Easy | Easy |
Swelling | Frequently occurs | Swelling-free | Swelling-free |
Resistant to pressure | Moderate | High | High |
Mechanical strength | Good | Poor | Excellent |
Gas Separation performance | Below the Robeson’s upper bound | Above the Robeson’s upper bound | Above the Robeson’s upper bound |
Advantages | Disadvantages |
---|---|
Membrane separation | |
High separation efficiency can be achieved Fast development possible due to modular set-up Promising technology for low energy consumption and lower capital cost compared to conventional separation technologies Easy scale-up Smaller footprint Easy for remote area | Swelling of the membrane by water O2 and sulfur dioxide (SO2) might pass through the membrane with CO2 High energy for compressions Limited purity of CO2 Lowering membrane area demand is challenging |
Hybrid absorption-membrane separation | |
High CO2 concentration of flue gas can be achieved Lower capital cost due to higher concentration Energy consumption can be minimized | High operational/maintenance cost Flue gas pre-treatment considering membrane and absorbent characteristics |
Amine scrubbing (absorption) | |
Most mature technology Capturing level is high enough (80–95%) Solvent can be regenerated above 95% Applicable to large scale CO2 product purity above 98% Applicable to flue gases with low CO2 partial pressure | Solvent degradation Regeneration requires a high amount of energy Corrosive environment Emissions by degradation of the solvent |
CO2 bio-fixation | |
No particular feed stream quality is required A source of energy capable of replacing fossil fuels (biofuels) Efficient in low CO2 concentration Captured CO2 can directly be utilized as bio-product Wastewater can be used Environmental benefit | Algae sensitive to impurities, pH Expensive to control growing and drying processes Large space is required Water resource necessity Saturation of microalgae to CO2 takes long time Only feasible to partial CO2 removal Sunlight unavailability at nighttime |
Adsorption | |
Adsorbents can be recycled High capture efficiency Resistant to long-term use Lower environmental impact VPSA (vacuum pressure swing adsorption) can be highly energy-efficient at higher CO2 partial pressure | Flue gas pre-treatment (cooling and drying) Desorption process is energy-intensive Negative impact of SOx and NOx on adsorbents No ideal adsorbent Maturity is low in PCC |
Cryogenic separation | |
Highly purified products There is no need for additives or chemical reagents CO2 can be obtained in liquid form ready for transport High CO2 recovery rate can be achieved | Refrigeration requires a high amount of energy Only viable for high CO2 concentration above 90% Flue gas should be dehydrated |
Calcium looping | |
Energy efficiency loss is low (4–7%) Highly developing technology for cement industry owing to waste heat recovery | Attrition depending on raw meal/limestone hardness Calcination process requires additional fuel burning Air separation unit is required to fuel-burning of calcination Reactivity efficiency of CaO decreases in multiple carbonation/calcination cycles |
[33,34,72,98,99,100] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamolov, A.; Turakulov, Z.; Rejabov, S.; Díaz-Sainz, G.; Gómez-Coma, L.; Norkobilov, A.; Fallanza, M.; Irabien, A. Decarbonization of Power and Industrial Sectors: The Role of Membrane Processes. Membranes 2023, 13, 130. https://doi.org/10.3390/membranes13020130
Kamolov A, Turakulov Z, Rejabov S, Díaz-Sainz G, Gómez-Coma L, Norkobilov A, Fallanza M, Irabien A. Decarbonization of Power and Industrial Sectors: The Role of Membrane Processes. Membranes. 2023; 13(2):130. https://doi.org/10.3390/membranes13020130
Chicago/Turabian StyleKamolov, Azizbek, Zafar Turakulov, Sarvar Rejabov, Guillermo Díaz-Sainz, Lucia Gómez-Coma, Adham Norkobilov, Marcos Fallanza, and Angel Irabien. 2023. "Decarbonization of Power and Industrial Sectors: The Role of Membrane Processes" Membranes 13, no. 2: 130. https://doi.org/10.3390/membranes13020130
APA StyleKamolov, A., Turakulov, Z., Rejabov, S., Díaz-Sainz, G., Gómez-Coma, L., Norkobilov, A., Fallanza, M., & Irabien, A. (2023). Decarbonization of Power and Industrial Sectors: The Role of Membrane Processes. Membranes, 13(2), 130. https://doi.org/10.3390/membranes13020130