Removal of Organics with Ion-Exchange Resins (IEX) from Reverse Osmosis Concentrate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Wastewater
2.1.2. Ion Exchange Resin (IEX)
2.1.3. MF Membrane
2.2. Methods
2.2.1. Membrane–IEX Hybrid System
2.2.2. Dissolved Organic Carbon (DOC)
2.2.3. Liquid Chromatography-Organic Carbon Detection (LC-OCD)
2.2.4. Fluorescence Excitation-Emission Matrix (FEEM)
2.2.5. Liquid Chromatography-Mass Spectrometry (LC-MS)
3. Results
3.1. Characteristics of the ROC
3.2. TMP Development and DOC Removal
3.3. FEEM Spectra
3.4. Determination of Organic Fractions
3.5. Organic Micro-Pollutants
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Pérez-González, A.; Urtiaga, A.M.; Ibáñez, R.; Ortiz, I. State of the Art and Review on the Treatment Technologies of Water Reverse Osmosis Concentrates. Water Res. 2012, 46, 267–283. [Google Scholar] [CrossRef] [PubMed]
- Bagastyo, A.Y.; Keller, J.; Poussade, Y.; Batstone, D.J. Characterisation and Removal of Recalcitrants in Reverse Osmosis Concentrates from Water Reclamation Plants. Water Res. 2011, 45, 2415–2427. [Google Scholar] [CrossRef] [PubMed]
- Jamil, S.; Loganathan, P.; Kandasamy, J.; Listowski, A.; Khourshed, C.; Naidu, R.; Vigneswaran, S. Removal of Dissolved Organic Matter Fractions from Reverse Osmosis Concentrate: Comparing Granular Activated Carbon and Ion Exchange Resin Adsorbents. J. Environ. Chem. Eng. 2019, 7, 103126. [Google Scholar] [CrossRef]
- Shutova, Y.; Baker, A.; Bridgeman, J.; Henderson, R.K. Spectroscopic Characterisation of Dissolved Organic Matter Changes in Drinking Water Treatment: From PARAFAC Analysis to Online Monitoring Wavelengths. Water Res. 2014, 54, 159–169. [Google Scholar] [CrossRef]
- Aryal, R.; Lebegue, J.; Vigneswaran, S.; Kandasamy, J.; Grasmick, A. Identification and Characterisation of Biofilm Formed on Membrane Bio-Reactor. Sep. Purif. Technol. 2009, 67, 86–94. [Google Scholar] [CrossRef]
- Weijun, T.; Hua, Z. Exploring the Reaction Mechanism for Ozone Oxidation of Petrochemical Reverse Osmosis Concentrate by Resin Adsorption Chromatography; Atlantis Press: Amsterdam, The Netherlands, 2015. [Google Scholar] [CrossRef] [Green Version]
- Bolto, B.; Dixon, D.; Eldridge, R. Ion Exchange for the Removal of Natural Organic Matter. React. Funct. Polym. 2004, 60, 171–182. [Google Scholar] [CrossRef]
- Heil, C.A. Influence of Humic, Fulvic and Hydrophilic Acids on the Growth, Photosynthesis and Respiration of the Dinoflagellate Prorocentrum Minimum (Pavillard) Schiller. Harmful Algae 2005, 4, 603–618. [Google Scholar] [CrossRef]
- Suffet, I.H.; MacCarthy, P. (Eds.) Aquatic Humic Substances: Influence on Fate and Treatment of Pollutants. In Advances in Chemistry; American Chemical Society: Washington, DC, USA, 1988; Volume 219. [Google Scholar] [CrossRef] [Green Version]
- Boyer, T.H. Removal of Dissolved Organic Matter by Magnetic Ion Exchange Resin. Curr. Pollut. Rep. 2015, 1, 142–154. [Google Scholar] [CrossRef]
- Dialynas, E.; Mantzavinos, D.; Diamadopoulos, E. Advanced Treatment of the Reverse Osmosis Concentrate Produced during Reclamation of Municipal Wastewater. Water Res. 2008, 42, 4603–4608. [Google Scholar] [CrossRef]
- Qian, F.; He, M.; Wu, J.; Yu, H.; Duan, L. Insight into Removal of Dissolved Organic Matter in Post Pharmaceutical Wastewater by Coagulation-UV/H2O2. J. Environ. Sci. 2019, 76, 329–338. [Google Scholar] [CrossRef]
- Khan, M.H.; Ha, D.-H.; Jung, J. Optimizing the Industrial Wastewater Pretreatment by Activated Carbon and Coagulation: Effects of Hydrophobicity/Hydrophilicity and Molecular Weights of Dissolved Organics. J. Environ. Sci. Health Part A 2013, 48, 534–542. [Google Scholar] [CrossRef] [PubMed]
- Jamil, S.; Loganathan, P.; Kandasamy, J.; Listowski, A.; McDonald, J.A.; Khan, S.J.; Vigneswaran, S. Removal of Organic Matter from Wastewater Reverse Osmosis Concentrate Using Granular Activated Carbon and Anion Exchange Resin Adsorbent Columns in Sequence. Chemosphere 2020, 261, 127549. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Martin, A.; Shang, R.; Siegers, W.; Cornelissen, E.; Heijman, B.; Rietveld, L. Anionic Exchange for NOM Removal and the Effects on Micropollutant Adsorption Competition on Activated Carbon. Sep. Purif. Technol. 2014, 129, 25–31. [Google Scholar] [CrossRef]
- Fan, J.; Li, H.; Shuang, C.; Li, W.; Li, A. Dissolved Organic Matter Removal Using Magnetic Anion Exchange Resin Treatment on Biological Effluent of Textile Dyeing Wastewater. J. Environ. Sci. 2014, 26, 1567–1574. [Google Scholar] [CrossRef]
- Ahmad, R.T.; Nguyen, T.V.; Shim, W.G.; Vigneswaran, S.; Moon, H.; Kandasamy, J. Effluent Organic Matter Removal by Purolite®A500PS: Experimental Performance and Mathematical Model. Sep. Purif. Technol. 2012, 98, 46–54. [Google Scholar] [CrossRef]
- Levchuk, I.; Rueda Márquez, J.J.; Sillanpää, M. Removal of Natural Organic Matter (NOM) from Water by Ion Exchange—A Review. Chemosphere 2018, 192, 90–104. [Google Scholar] [CrossRef]
- Shanmuganathan, S.; Nguyen, T.V.; Shim, W.G.; Kandasamy, J.; Vigneswaran, S. Performance of Submerged Membrane—Ion Exchange Hybrid System with Purolite A502PS in Treating Reverse Osmosis Feed. Sep. Purif. Technol. 2014, 122, 24–31. [Google Scholar] [CrossRef]
- Shanmuganathan, S.; Nguyen, T.V.; Shim, W.G.; Kandasamy, J.; Listowski, A.; Vigneswaran, S. Effluent Organic Matter Removal from Reverse Osmosis Feed by Granular Activated Carbon and Purolite A502PS Fluidized Beds. J. Ind. Eng. Chem. 2014, 20, 4499–4508. [Google Scholar] [CrossRef]
- Altunterim, R.; Vergili, I. Clofibric Acid Removal by Ion Exchange Using a Magnetic Ion Exchange Resin: Equilibrium, Kinetics, Reusability and Characterisation. Int. J. Environ. Anal. Chem. 2020, 102, 5495–5515. [Google Scholar] [CrossRef]
- Landry, K.A.; Boyer, T.H. Diclofenac Removal in Urine Using Strong-Base Anion Exchange Polymer Resins. Water Res. 2013, 47, 6432–6444. [Google Scholar] [CrossRef]
- Chapman, H. WRAMS, Sustainable Water Recycling. Desalination 2006, 188, 105–111. [Google Scholar] [CrossRef]
- Devaisy, S. Membrane Hybrid System in High Quality Water Reuse. Doctoral Thesis, University of Technology, Sydney, Australia, 2015. [Google Scholar]
- Loganathan, P.; Kandasamy, J.; Ratnaweera, H.; Vigneswaran, S. Submerged Membrane/Adsorption Hybrid Process in Water Reclamation and Concentrate Management—A Mini Review. Environ. Sci Pollut. Res. 2022. [Google Scholar] [CrossRef]
- Shanmuganathan, S.; Loganathan, P.; Kazner, C.; Johir, M.A.H.; Vigneswaran, S. Submerged Membrane Filtration Adsorption Hybrid System for the Removal of Organic Micropollutants from a Water Reclamation Plant Reverse Osmosis Concentrate. Desalination 2017, 401, 134–141. [Google Scholar] [CrossRef] [Green Version]
- de Ridder, D.J.; Verliefde, A.R.D.; Heijman, S.G.J.; Verberk, J.Q.J.C.; Rietveld, L.C.; van der Aa, L.T.J.; Amy, G.L.; van Dijk, J.C. Influence of Natural Organic Matter on Equilibrium Adsorption of Neutral and Charged Pharmaceuticals onto Activated Carbon. Water Sci. Technol. 2011, 63, 416–423. [Google Scholar] [CrossRef] [PubMed]
- Huber, S.A.; Balz, A.; Abert, M.; Pronk, W. Characterisation of Aquatic Humic and Non-Humic Matter with Size-Exclusion Chromatography—Organic Carbon Detection—Organic Nitrogen Detection (LC-OCD-OND). Water Res. 2011, 45, 879–885. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Westerhoff, P.; Leenheer, J.A.; Booksh, K. Fluorescence Excitation−Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter. Environ. Sci. Technol. 2003, 37, 5701–5710. [Google Scholar] [CrossRef]
- Monsalvo, V.M.; McDonald, J.A.; Khan, S.J.; Le-Clech, P. Removal of Trace Organics by Anaerobic Membrane Bioreactors. Water Res. 2014, 49, 103–112. [Google Scholar] [CrossRef]
- Shanmuganathan, S.; Johir, M.A.H.; Nguyen, T.V.; Kandasamy, J.; Vigneswaran, S. Experimental Evaluation of Microfiltration–Granular Activated Carbon (MF–GAC)/Nano Filter Hybrid System in High Quality Water Reuse. J. Membr. Sci. 2015, 476, 1–9. [Google Scholar] [CrossRef]
- Bassandeh, M.; Antony, A.; Le-Clech, P.; Richardson, D.; Leslie, G. Evaluation of Ion Exchange Resins for the Removal of Dissolved Organic Matter from Biologically Treated Paper Mill Effluent. Chemosphere 2013, 90, 1461–1469. [Google Scholar] [CrossRef]
- Qiang, L.; Cheng, J.; Yi, J.; Rotchell, J.M.; Zhu, X.; Zhou, J. Environmental Concentration of Carbamazepine Accelerates Fish Embryonic Development and Disturbs Larvae Behavior. Ecotoxicology 2016, 25, 1426–1437. [Google Scholar] [CrossRef]
- Pires, A.; Almeida, Â.; Calisto, V.; Schneider, R.J.; Esteves, V.I.; Wrona, F.J.; Soares, A.M.V.M.; Figueira, E.; Freitas, R. Long-Term Exposure of Polychaetes to Caffeine: Biochemical Alterations Induced in Diopatra Neapolitana and Arenicola Marina. Environ. Pollut. 2016, 214, 456–463. [Google Scholar] [CrossRef] [PubMed]
- Halling-Sorensen, B. Environmental Risk Assessment of Antibiotics: Comparison of Mecillinam, Trimethoprim and Ciprofloxacin. J. Antimicrob. Chemother. 2000, 46, 53–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khanzada, N.K.; Farid, M.U.; Kharraz, J.A.; Choi, J.; Tang, C.Y.; Nghiem, L.D.; Jang, A.; An, A.K. Removal of Organic Micropollutants Using Advanced Membrane-Based Water and Wastewater Treatment: A Review. J. Membr. Sci. 2020, 598, 117672. [Google Scholar] [CrossRef]
- Jamil, S.; Loganathan, P.; Listowski, A.; Kandasamy, J.; Khourshed, C.; Vigneswaran, S. Simultaneous Removal of Natural Organic Matter and Micro-Organic Pollutants from Reverse Osmosis Concentrate Using Granular Activated Carbon. Water Res. 2019, 155, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Ferchichi, M.; Dhaouadi, H. Sorption of Paracetamol onto Biomaterials. Water Sci. Technol. 2016, 74, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Ozaki, H.; Ikejima, N.; Shimizu, Y.; Fukami, K.; Taniguchi, S.; Takanami, R.; Giri, R.R.; Matsui, S. Rejection of Pharmaceuticals and Personal Care Products (PPCPs) and Endocrine Disrupting Chemicals (EDCs) by Low Pressure Reverse Osmosis Membranes. Water Sci. Technol. 2008, 58, 73–81. [Google Scholar] [CrossRef]
- Nallani, G.C.; Edziyie, R.E.; Paulos, P.M.; Venables, B.J.; Constantine, L.A.; Huggett, D.B. Bioconcentration of Two Basic Pharmaceuticals, Verapamil and Clozapine, in Fish: Bioconcentration of Verapamil and Clozapine in Fish. Environ. Toxicol. Chem. 2016, 35, 593–603. [Google Scholar] [CrossRef]
- Shanmuganathan, S.; Nguyen, T.V.; Jeong, S.; Kandasamy, J.; Vigneswaran, S. Submerged Membrane—(GAC) Adsorption Hybrid System in Reverse Osmosis Concentrate Treatment. Sep. Purif. Technol. 2015, 146, 8–14. [Google Scholar] [CrossRef]
- Alborzi, A.; Hsieh, I.-M.; Reible, D.; Malmali, M. Analysis of Fouling Mechanism in Ultrafiltration of Produced Water. J. Water Process Eng. 2022, 49, 102978. [Google Scholar] [CrossRef]
- Lee, N.; Amy, G.; Croué, J.-P.; Buisson, H. Identification and Understanding of Fouling in Low-Pressure Membrane (MF/UF) Filtration by Natural Organic Matter (NOM). Water Res. 2004, 38, 4511–4523. [Google Scholar] [CrossRef]
- Kimura, K.; Kume, K. Irreversible Fouling in Hollow-Fiber PVDF MF/UF Membranes Filtering Surface Water: Effects of Precoagulation and Identification of the Foulant. J. Membr. Sci. 2020, 602, 117975. [Google Scholar] [CrossRef]
- Villacorte, L.O.; Ekowati, Y.; Winters, H.; Amy, G.; Schippers, J.C.; Kennedy, M.D. MF/UF Rejection and Fouling Potential of Algal Organic Matter from Bloom-Forming Marine and Freshwater Algae. Desalination 2015, 367, 1–10. [Google Scholar] [CrossRef]
- Yuan, W.; Kocic, A.; Zydney, A.L. Analysis of Humic Acid Fouling during Microfiltration Using a Pore Blockage–Cake Filtration Model. J. Membr. Sci. 2002, 198, 51–62. [Google Scholar] [CrossRef]
- Kim, H.-C.; Dempsey, B.A. Membrane Fouling Due to Alginate, SMP, EfOM, Humic Acid, and NOM. J. Membr. Sci. 2013, 428, 190–197. [Google Scholar] [CrossRef]
- Peiris, R.H.; Budman, H.; Moresoli, C.; Legge, R.L. Identification of Humic Acid-like and Fulvic Acid-like Natural Organic Matter in River Water Using Fluorescence Spectroscopy. Water Sci. Technol. 2011, 63, 2427–2433. [Google Scholar] [CrossRef]
- Hudson, N.; Baker, A.; Ward, D.; Reynolds, D.M.; Brunsdon, C.; Carliell-Marquet, C.; Browning, S. Can Fluorescence Spectrometry Be Used as a Surrogate for the Biochemical Oxygen Demand (BOD) Test in Water Quality Assessment? An Example from South West England. Sci. Total Environ. 2008, 391, 149–158. [Google Scholar] [CrossRef]
- Bridgeman, J.; Baker, A.; Carliell-Marquet, C.; Carstea, E. Determination of Changes in Wastewater Quality through a Treatment Works Using Fluorescence Spectroscopy. Environ. Technol. 2013, 34, 3069–3077. [Google Scholar] [CrossRef]
- Rahmani, S. The Removal Mechanism of Natural Organic Matter by Ion Exchange Resins from Thermodynamic Perspectives; The University of British Columbia: Vancouver, BC, Canada, 2017. [Google Scholar] [CrossRef]
- Pürschel, M.; Ender, V.; Worch, E. Modelling the NOM Uptake by Anion Exchange Resins in Drinking Water Plants. Desalination Water Treat. 2014, 52, 4029–4039. [Google Scholar] [CrossRef]
- Urbanowska, A.; Kabsch-Korbutowicz, M. Ion Exchange with Macroporous Polystyrene Resins for the Removal of Natural Organic Matter. Water Qual. Res. J. 2018, 53, 191–204. [Google Scholar] [CrossRef] [Green Version]
- Bazri, M.M.; Mohseni, M. Impact of Natural Organic Matter Properties on the Kinetics of Suspended Ion Exchange Process. Water Res. 2016, 91, 147–155. [Google Scholar] [CrossRef]
- Bolto, B.; Dixon, D.; Eldridge, R.; King, S.; Linge, K. Removal of Natural Organic Matter by Ion Exchange. Water Res. 2002, 36, 5057–5065. [Google Scholar] [CrossRef] [PubMed]
- Drikas, M.; Dixon, M.; Morran, J. Long Term Case Study of MIEX Pre-Treatment in Drinking Water; Understanding NOM Removal. Water Res. 2011, 45, 1539–1548. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; SenGupta, A.K. Sorption of Hydrophobic Ionizable Organic Compounds (HIOCs) onto Polymeric Ion Exchangers. React. Funct. Polym. 2004, 60, 27–39. [Google Scholar] [CrossRef]
- Simon, F.X.; Penru, Y.; Guastalli, A.R.; Esplugas, S.; Llorens, J.; Baig, S. NOM Characterization by LC-OCD in a SWRO Desalination Line. Desalination Water Treat. 2013, 51, 1776–1780. [Google Scholar] [CrossRef]
- Rahmani, S.; Mohseni, M. The Role of Hydrophobic Properties in Ion Exchange Removal of Organic Compounds from Water. Can. J. Chem. Eng. 2017, 95, 1449–1455. [Google Scholar] [CrossRef]
- Shen, C.; Meng, Q.; He, W.; Wang, Q.; Zhang, G. PPO/PEO Modified Hollow Fiber Membranes Improved Sensitivity of 3D Cultured Hepatocytes to Drug Toxicity via Suppressing Drug Adsorption on Membranes. Colloids Surf. B Biointerfaces 2014, 123, 762–769. [Google Scholar] [CrossRef]
- Jeong, S.; Rice, S.A.; Vigneswaran, S. Long-Term Effect on Membrane Fouling in a New Membrane Bioreactor as a Pretreatment to Seawater Desalination. Bioresour. Technol. 2014, 165, 60–68. [Google Scholar] [CrossRef]
- Nguyen, T.V.; Jeong, S.; Pham, T.T.N.; Kandasamy, J.; Vigneswaran, S. Effect of Granular Activated Carbon Filter on the Subsequent Flocculation in Seawater Treatment. Desalination 2014, 354, 9–16. [Google Scholar] [CrossRef]
- Nur, T.; Johir, M.A.H.; Loganathan, P.; Nguyen, T.; Vigneswaran, S.; Kandasamy, J. Phosphate Removal from Water Using an Iron Oxide Impregnated Strong Base Anion Exchange Resin. J. Ind. Eng. Chem. 2014, 20, 1301–1307. [Google Scholar] [CrossRef]
Item | Characteristics |
---|---|
Material | Hydrophilic modified Polyacrylonitrile (PAN) |
Nominal pore size | 0.10 μm |
Outer diameter | 2.1 mm |
Inner diameter | 1.1 mm |
Surface area | 0.2 m2 |
Manufacturer | MANN+HUMMEL ULTRA-FLO PTE LTD, Singapore |
Parameters | Unit | Level | |
---|---|---|---|
General | Conductivity | µS | 2655 ± 10 |
pH | 6.8 ± 0.5 | ||
ORP | mV | 41 | |
DOC | ppm | 29 ± 3 | |
TDS | ppm | 1950 ± 12 | |
Inorganic anions | Fluoride | ppm | 2.8 ± 0.2 |
Chloride | ppm | 445 ± 10 | |
Nitrate | ppm | 38 ± 5 | |
Sulphate | ppm | 223 ± 14 | |
Inorganic cations | Na | ppm | 450 ± 25 |
K | ppm | 101 ± 20 | |
Ca | ppm | 109 ± 11 | |
Mg | ppm | 55 ± 5 |
DOC | ||||||||
---|---|---|---|---|---|---|---|---|
NOM Fraction | Total | Hydrophobic | Hydrophilic | Bio- Polymers | Humics | Building Block | LMW Neutrals | LMW Acids |
Conc (mg/L) | 30.8 ± 2 | 3.44 ± 0.9 | 27.34 ± 2.0 | 0.66 ± 0.1 | 16.91 ± 2 | 4.41 ± 0.8 | 5.36 ± 0.5 | n.q |
Total DOC (%) | 100% | 11.2 ± 0.3% | 88.8 ± 0.06% | 2.2 ± 0.003% | 55 ± 0.06% | 14.3 ± 0.26% | 17.4 ± 0.02% | - |
Micro-Pollutants | LOQ (ng/L) | Molecular Weight (MW) (g/mol) | Log Kow (pH 7) | Charge | ROC (ng/L) |
---|---|---|---|---|---|
Atenolol | 5 | 266 | 0.16 | + | 486 ± 20 |
Paracetamol | 5 | 151 | 0.46 | 75 ± 30 | |
Sulfamethoxazole | 5 | 253 | 0.89 | − | 93 ± 45 |
Caffeine | 10 | 194 | −0.07 | 0 | 1095 ± 24 |
Trimethoprim | 5 | 290 | 0.91 | +/0 | 912 ± 42 |
TCEP ii | 10 | 250 | 1.44 | 201 ± 28 | |
Carbamazepine | 5 | 236 | 2.45 | 0 | 2175 ± 60 |
Fluoxetine | 5 | 309 | 4.10 | + | 44 ± 3 |
Clozapine | 5 | 326 | 3.23 | + | 63.2 ± 5.2 |
Amtriptyline | 5 | 277 | 4.92 | + | 40 ± 5 |
N,N-diethy1-3-methylbenzamide | 5 | 191 | 1.96 | 72 ± 2.2 | |
Primidone | 5 | 218 | 0.91 | − | 26.5 ± 0.5 |
Verapamil | 5 | 454 | 3.79 | + | 74.5 ± 8 |
Simazine | 5 | 201 | 2.18 | 0 | 74.5 ± 5.5 |
Ketoprofen | 5 | 254 | 3.12 | − | 260 ± 75 |
Naproxen | 5 | 230 | 3.18 | − | 352 ± 69 |
Gemfibrozil | 5 | 250 | 4.77 | − | 320 ± 42 |
Triclosan | 5 | 290 | 5.34 | 0 | 181 ± 30 |
Diclofenac | 5 | 296 | 4.51 | − | 324 ± 14 |
Triclocarban | 10 | 316 | 4.90 | 0 | 147.5 ± 12 |
Diuron | 5 | 233 | 2.68 | 0 | 318 ± 42 |
Purolite® A502PS | DOC | Hydophobics | Hydrophilics | Biopolymers | Humics | Building Blocks | LMWs Neutrals |
---|---|---|---|---|---|---|---|
10 g/L | 18,228 ± 112 (44.4 ± 0.27%) | 3927 ± 50 (24.5 ± 0.3%) | 14,301 ± 150 (48.1 ± 0.5%) | 1256 ± 151 (−29.6 ± 3.5%) | 7510 ± 410 (48.2 ± 2.6%) | 1139 ± 65 (83.5 ± 4.77%) | 4395 ± 50 (15 ± 0.17%) |
20 g/L | 15,363 ± 163 (53.1 ± 0.56%) | 3305 ± 102 (36.5 ± 3.1%) | 12,058 ± 212 (56.2 ± 0.9%) | 1165 ± 71 (−20.2 ± 1.2%) | 2665 ± 258 (81.2 ± 7.8%) | 3785 ± 168 (45.2 ± 2%) | 4441 (14.1 ± 0.04%) |
Micro-Pollutants | LOQ | Log Kow | Charge | MW (g/mol) | Raw ROC1 | PUR 5 g/L | Removal (%) | Raw ROC2 | PUR 20 g/L | Removal (%) |
---|---|---|---|---|---|---|---|---|---|---|
Atenolol | 5 | 0.16 | + | 266 | 466 ± 12 | 114 ± 3 | 76 ± 1.1 | 506 ± 11 | 34 ± 4 | 93 ± 0.2 |
Paracetamol | 5 | 0.49 | − | 151 | 114 ± 9 | 13 ± 1 | 88 ± 3 | 36 ± 2 | <5 | >86 |
Sulfamethoxazole | 5 | 0.89 | − | 253 | 144 ± 18 | 11 ± 2 | 93 ± 2.5 | 42 ± 6 | 7 ± 2 | 84 ± 1 |
Caffeine | 10 | −0.07 | 0 | 194 | 1410 ± 116 | 97 ± 4 | 93 ± 0.5 | 717 ± 25 | 36 ± 4 | 95 ± 0.5 |
Trimethoprim | 5 | 0.91 | +/0 | 290 | 974 ± 50 | 149 ± 5 | 85 ± 1.5 | 852 ± 12 | 13 ± 2 | 98 ± 0.2 |
TCEP ii | 10 | 1.44 | 250 | 229 ± 22 | 77 ± 2 | 66 ± 2 | 162 ± 9 | 29 ± 4 | 82 ± 1 | |
Carbamazepine | 5 | 2.45 | 0 | 236 | 2240 ± 145 | 386 ± 12 | 83 ± 1 | 2110 ± 115 | 40 ± 5 | 98 ± 0.5 |
Fluoxetine | 5 | 4.10 | + | 309 | 47 ± 2 | 6 ± 1 | 87 ± 0.5 | 41 ± 5 | 5 | 88 ± 1 |
clozapine | 5 | 3.53 | 326 | 68 ± 4 | 20 ± 4 | 71 ± 0.4 | 59 ± 6 | <5 | >92 | |
amtriptyline | 5 | 4.92 | + | 277 | 45 ± 8 | 5 ± 0.5 | 89 ± 0.2 | 35 ± 2 | <5 | >86 |
DEET | 5 | 2.42 | 191 | 68 ± 12 | 13 ± 2 | 81 ± 2 | 74 ± 4 | 6 ± 1 | 92 ± 2 | |
primidone | 5 | 0.91 | − | 218 | 26 ± 5 | 5 ± 2 | 82 ± 1 | 27 ± 2 | <5 | >81 |
Verapamil | 5 | 3.79 | + | 454 | 83 ± 4 | 6 ± 2 | 93 ± 1 | 66 ± 4 | <5 | >92 |
Simazine | 5 | 2.18 | 0 | 201 | 80 ± 8 | 14 ± 4 | 83 ± 2 | 69 ± 4 | <5 | >93 |
Ketoprofen | 5 | 3.12 | − | 254 | 377 ± 12 | 35 ± 2 | 91 ± 1.5 | 142 ± 6 | <5 | >96 |
Naproxen | 5 | 3.18 | − | 230 | 443 ± 24 | 46 ± 6 | 90 ± 0.5 | 261 ± 8 | 5 | 98 ± 0.5 |
Gemfibrozil | 5 | 4.77 | − | 250 | 344 ± 10 | 80 ± 4 | 77 ± 4 | 285 ± 12 | 9 ± 2 | 97 ± 1 |
Triclosan | 5 | 5.34 | 0 | 290 | 211 ± 9 | 47 ± 5 | 78 ± 2 | 151 ± 11 | 19 ± 5 | 87 ± 2 |
Diclofenac | 5 | 4.51 | − | 296 | 337 ± 14 | 117 ± 6 | 65 ± 2.5 | 310 ± 12 | 12 ± 5 | 96 ± 0.5 |
Triclocarban | 10 | 4.90 | 0 | 316 | 162 ± 6 | 19 ± 4 | 88 ± 2 | 133 ± 12 | 15 ± 2 | 89 ± 2 |
Diuron | 5 | 2.68 | 0 | 233 | 381 ± 7 | 29 ± 6 | 92 ± 0.2 | 256 ± 18 | <5 | >98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Devaisy, S.; Kandasamy, J.; Aryal, R.; Johir, M.A.H.; Ratnaweera, H.; Vigneswaran, S. Removal of Organics with Ion-Exchange Resins (IEX) from Reverse Osmosis Concentrate. Membranes 2023, 13, 136. https://doi.org/10.3390/membranes13020136
Devaisy S, Kandasamy J, Aryal R, Johir MAH, Ratnaweera H, Vigneswaran S. Removal of Organics with Ion-Exchange Resins (IEX) from Reverse Osmosis Concentrate. Membranes. 2023; 13(2):136. https://doi.org/10.3390/membranes13020136
Chicago/Turabian StyleDevaisy, Sukanyah, Jaya Kandasamy, Rupak Aryal, Md Abu Hasan Johir, Harsha Ratnaweera, and Saravanamuthu Vigneswaran. 2023. "Removal of Organics with Ion-Exchange Resins (IEX) from Reverse Osmosis Concentrate" Membranes 13, no. 2: 136. https://doi.org/10.3390/membranes13020136
APA StyleDevaisy, S., Kandasamy, J., Aryal, R., Johir, M. A. H., Ratnaweera, H., & Vigneswaran, S. (2023). Removal of Organics with Ion-Exchange Resins (IEX) from Reverse Osmosis Concentrate. Membranes, 13(2), 136. https://doi.org/10.3390/membranes13020136