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Abstract: There has been an almost exponential increase in the use of molecular dynamics simulations
in basic research and industry over the last 5 years, with almost a doubling in the number of
publications each year. Many of these are focused on neurological membranes, and biological
membranes in general, applied to the medical industry. A smaller portion have utilized membrane
simulations to answer more basic questions related to the function of specific proteins, chemicals
or biological processes. This review covers some newer studies, alongside studies from the last
two decades, to determine changes in the field. Some of these are basic, while others are more
profound, such as multi-component embedded membrane machinery. It is clear that many facets of
the discipline remain the same, while the focus on and uses of the technology are broadening in scope
and utilization as a general research tool. Analysis of recent literature provides an overview of the
current methodologies, covers some of the recent trends or advances and tries to make predictions
of the overall path membrane molecular dynamics will follow in the coming years. In general, the
overview presented is geared towards the general scientific community, who may wish to introduce
the use of these methodologies in light of these changes, making molecular dynamic simulations
more feasible for general scientific or medical research.

Keywords: molecular dynamics (MD); sphingolipid; eicosanoid; ceramide; lipid rafts; vesicle;
graphics processing unit (GPU); biologics; petaflop; drug design; drug delivery; rational design; PC;
phosphatidylcholine; PS; Phosphatidylserine

1. Introduction

With the advent of higher computing power over the last several years, there has
been a substantial increase in the use of molecular dynamics simulations (MD) in various
studies incorporating membranes [1,2] (Figure 1). These range from simple single or di-
lipid mixtures to complex biological systems including proteins, glycolipids, sphingolipids,
ceramides or several specialized compounds and cellular membrane components of inter-
est [3,4]. In many, there have also been attempts to incorporate complex structures from
bilayers and double bilayer systems, irregular attached layers in engineering and lipid
monolayers on a range of surfaces to vesicles used in research and medicine [5–7]. Based on
current trends in computer speed and costs, petaflop computer systems are now in the price
range of single labs or small departments. This indicates that conducting properly designed
research experiments across disciplines is increasingly important, as the use of simulations
for varied aspects will only increase in the coming years [8,9]. In biology, the rate for design
of novel macromolecular cures has increased substantially, with computational sciences as
the main driving force. These trends indicate a major change in pharmaceutical sciences
from small molecule to complex biologics, which cure rather than treat most medical issues,
and invariably change the overall focus from industry and the industrial support given
by academic biology in general. As the primary fields of biological research move away
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from pharmaceutically driven focuses, an increase in basic biological studies will probably
ensue in several years’ time. Many of the MD techniques used in medical research translate
well to more dynamic research, such as plant cell membranes, organelles and a diversity of
organisms’ cellular membranes. There are currently a wide range of reviews which discuss
the techniques involved, and various software available for researchers [10–13]. Many of
these reviews also discuss proper model generation, membrane construction and evaluation
procedures. These techniques and models will be mentioned with appropriate references;
however, the focus of this review is on trend changes and incorporating membrane struc-
tural work into general research laboratories and biologics development. Additionally, this
review should allow scientists unfamiliar with MD to critique the increasing number of
published research articles in this subdiscipline.
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Figure 1. Change over time in computer speed and MD publications. (A) Change in speed for AMD,
Nvidia and Intel Graphics processing units. Intel only began competing in the market in 2010 with
non-embedded processors (black). Prior to the year 2000, Nvidia and AMD precursors companies
are used, consolidated after 2000. (B) Increase in published MD work, with total publications (black)
and top journals (red) compared. Data from authors own company price searches by year, literature
searches by year, and ref. [1].

From the prospect of information, the power of MD cannot be disputed, limited only
by the design of the initial model systems involved. This initial design process incorporates
the complexity of the system involved, related to molecular components, and the types of
simulation. Overall, MD have been grouped into four broadly defined criteria. Types of
simulations range from coarse grained (CG), to all atom, to all atom including quantum
mechanics. There is a direct trade off between the detailed modeled molecular represen-
tations and computational load, or time, necessary to conduct an experiment. General
descriptions of the four types of models include CG, made of hybrid systems with several
atoms combined into a single point, hybrid systems with only some aspects combined,
partial atom, which only fuse non-polar hydrogen into a single point, and all atom, which
are self-explanatory. Additionally, there are models which incorporate quantum mechanics,
allowing electron transfer and covalent bond changes to be included. These currently
are usually only utilized for a small portion of larger models in biological or complex
systems due to an exponential increase in computational load, and are often only necessary
for engineering or non-pharmaceutical research in chemistry and basic biology [14,15].
Additionally, most academicians are limited by the overall analysis utilized to presenting
aspects of simulations based on the initial design of the simulation project and available
computational resources. Often, a wealth of information remains in the raw data itself, with
increasing levels based on level of detailed atomic representation incorporated into the
MD. Well focused laboratories can, with extensive simulations and analysis, generate more
than one publication from experiments, or deposit raw data for analysis in newly emerging
repositories from several laboratories [16–18]. From a researcher’s perspective, combining
MD experiments with wet laboratory techniques can provide a rational approach to inter-
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pretation, as well as a focus for a particular project. Basic research simulations can shed
light on often difficult-to-examine processes, lipid interactions, membrane proteins or the
mitigation of observations from different groups.

Within all of this, the pharmaceutical industry has developed a large amount of private
MD units within its own research and development [19]. In many of these, the focus has
been on small molecule based approaches, with an emerging market for designed chimeric,
antibody based or engineered biologics over the last 15 years [20,21]. Among the most
utilized aspects of MD are drug targets incorporating membrane proteins. These include
receptors, such as CD19 and CD20, with regulatory effects in cells, to neurologically based
receptors effecting synaptic transmission, and complex machinery such as ATP Synthase or
Rhodopsin [22]. Much of the early utilized biologics design approaches only relied on static
structures, such as superposed models, to generate chimeric anti-CD19 in CAR-T cells. With
a growing wealth of domain function analysis, and understanding of the molecular process
in its dynamic aspect, better approaches can be followed [23]. Further, many products can
be tested for proper functioning before moving to a real-life synthetic phase. The overall
comparisons between atomistic or partial hybrid MD and wet lab show an extremely high
level of homology, from kinetics to expected cellular or other function. In most cases where
discrepancies exist, there was a lack of proper model creation in the MD itself, or problems
in wet laboratory experiments [24,25]. Here, MD often serve as another form of cross
checking of laboratory data. On the MD side, the most common discrepancy with kinetics
arises from the lack of the repeating of simulations enough times from different initial
conformations to determine proper means. Overall, the effects of entropy, conformational
states at the molecular level, can give a wide range of different kinetics for a single steered
simulation which do not occur in wet laboratory kinetic experiments measuring millions
of simultaneous reactions. Thus these types of MD for kinetics require multiple starting
points, outlined in the design process of most of the software manuals, to accurately reflect
wet laboratory findings.

Another changing aspect is that most initial studies were limited in computer power.
Often laboratories only looked at portions of receptors of interest with small membranes
of only 40–150 lipids, with key factors related to structural integrity and function outside
of a small domain unincorporated into the research. Further limits were presented from
a need to conduct multiple simulations from different initial conformational states for
kinetics and proper dynamic analysis, as these translate into computational resource needs.
Based on mathematical accuracy at the simulation level, referred to as single or double
precision, 60–100 single or 10–20 double precision simulations were required. In computer
terms, single and double precision is the decimal place used by the mathematics portion
of any software, with single truncated to two and double to the tenth or more decimal. In
simulations, these accumulate any inaccuracy every time step calculation for forces for
every atom in the system at the set decimal level. These two factors again translate to
computational load. Currently however, with the use of graphics processor unit systems, a
lab can conduct one single precision simulation in 24 h with a desktop computer equipped
with a 16 core CPU and two graphics processors. For the corresponding double precision
MD, the time involved increases to a few days. This change, however, is drastic, and prior
to 2014 these same experiments could take months. Technological advancements are now
moving the use of MD from a requirement for large scale clusters or supercomputers to
small systems, small clusters or affordable computer resources.

Several good research examples from earlier studies were conducted incorporating
membranes and proteins, or originally only a few hundred atoms. Often the feat was
astounding in terms of time consumption but limited in nature, due to computer access, to
a few research laboratories [26–28]. Some of the earliest uses of microprocessors were for
the advancement of molecular simulations, even quoted as the reason why the micropro-
cessor was invented. Currently, the trend is to incorporate ever increasing complexity to
the initial model systems used. In pharmaceutical sciences, the majority of targets have
been proteins embedded in cell membranes, before any computer aspects began to be
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used in design processes. Many receptors are dependent on unique lipid or cholesterol
derived components, such as gangliosides, leukotrienes or prostaglandins, which had
not been studied as cofactors or for secondary effects. In many cases, specific membrane
components play vital roles in the targeted proteins, ranging from cofactors to structurally
required components. Thus, the importance of the membrane structure and function can-
not be underplayed, especially related to the pharmaceutical industry or medicine. Now
more complex systems are beginning to be studied from smaller groups, inclusive of the
entire membrane systems [29–31]. Primarily there was initially a divergence in the field,
where membranes or proteins were simulated alone but not combined. A number of the
studied membrane proteins were lacking membrane embedded or associated components.
Rhodopsin is the classic model for both structural and membrane based simulations, as
it was for a time the only x-ray determined membrane protein completely intact with a
membrane in the initial structure [32]. As an example, Rhodopsin is dependent on several
membrane lipids for structural integrity, while the majority of signaling is transmitted
across bi-layers and initially even between photons and atoms [33]. However, most of
the information from simulations has been accumulative, based on increases in computer
power and speed, but have utilized all four simulation types over the years. Along these
lines, there have now been many attempts made, with failures and successes, to incorporate
membrane components for other studied proteins analogous to Rhodopsins [34].

Some important aspects related to the pharmaceutical industry include several novel
technologies related to cancer or genetics. In the cancer field, membrane MD studies have
greatly benefited peptide, modified peptide, cyclic peptides and variations therein. With
these, most of the focus is related to either permeability or pore formation in targeted cells.
This has also proved useful for the equivalent antibiotic based structures, with some of
the original membrane MD studies related to small molecules’ effects on simple mem-
branes [35,36]. There has also been some good recent research leading to design in vesicle
delivery systems. While vesicle research has many aspects, MD has incorporated fusion
kinetic studies, effects of incorporation of proteins for targeting, and various temperature
and delivery aspects related to membrane composition and stress [27,37]. These types of
study have also been included in at least one product in clinical trials related to drug deliv-
ery systems for inhaled aerosol dispersed vesicles [4,38]. Other studies have also focused
on viral like engineered capsids, antibodies, chimeric antibody products interaction with
membranes or membrane embedded proteins. In these cases also, MD was used for current
developments in biologics in primary studies for viral like delivery systems and antibodies,
and included in patent applications [39,40]. In an older focus, the membrane is looked at
as something to be traversed to reach a target, transiently interacting with the target or
the targeting compound itself. With some advances in membrane based hormones and
various eicosanoids studies, this view is changing, and now the membrane is also seen
as a place of direct interaction either as a target or cofactor. In many cases the ability to
deliver a biologic, especially in the growing field of genetic manipulation, combines surface
protein–membrane interactions and internal membranes such as endosomes, lysosomes or
phagocytic membrane processes which change initial states [41]. Secondary membranes
have only recently become more of a focus, as both secondary effects and direct targeting
for designed products. Some additional aspects include off target effects of antibodies,
engineered immune cells and specialized direct lipid targets such as eicosanoids. With
immune cells in general, there is a large number of unknown interactions with mem-
brane components effecting targeted cells and the engineered cells’ behaviors. Eicosanoids
play extensive regulatory roles in many of the immune cell’s functions, as an example,
which have often been overlooked due to the difficulty in studying the components with
wet laboratory techniques in live organisms. All these factors interplay with the use of
membrane MD in the design or testing phases of drugs, biologics and in general medical
procedure development.
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2. Overview of the Creation of Membrane Molecular Dynamics Simulations

After 1999, a rise in the amount of different MD simulation software was seen, mirror-
ing in many ways the increases in computational power. This was observed again with the
introduction of graphics processor unit (GPU) computing around 2008, and many of the
more classic software suits established GPU versions as well. These have increased speeds
for both double and single precision compiled versions of any software, with both single
and double precision being feasible for a laboratory with 2–4 desktop computers equipped
with several GPUs. Benchmarks for different systems and software have been published
several times over the years [8,42]. In beginning any MD, the obvious first decision is which
software to use and what systems or resources are available [43]. A wealth of reviews exist
for this, and usually include the older original suits which are still updated regularly such
as NAMD, Gromacs, and LAMMPS [14,44,45]. For higher end computations, these also
incorporate auxiliary quantum mechanical (QM) software to model electron dynamics,
such as GAUSSIAN, GAMESS and CP2K [46–48]. In general Gromacs and NAMD are usu-
ally utilized by biologists, while LAMMPS is used primarily by engineers and physicists;
however, these software suits are interchangeable.

Another equally variant portion of any software is referred to as the force field (FF),
which like the base software has seen a rapid rise in numbers since 2000 (Figure 2). Gromacs
alone has 20 different FF types and all the software allows for introduction of user defined
FF. These are not completely fields as defined in physics terms, but rather tabulated
parameters such as bond lengths, angles and dihedrals alongside atomic parameters such
as charge and radius. At the atomic radius level, FF definition ends with Lennard-Jones
or equivalent potential energies data. Use of potential energies is a classical force field,
unlike the more tabulated data, and is only used when atoms move less than an angstrom
user defined distance, or close to their approximate atomic radius. Like Fortran, these
parameters are used in tabulated calculations for every atom or point charge represented
in the MD system defined by the user [49]. When choosing the FF, the specific questions
the researcher wishes to address need to be taken into account. The four types of MD are
defined by the FF utilized, which effects various results in simulations. Coarse grained MD
are usually used to rapidly define macroscopic interactions such as an entire protein with a
membrane over larger time periods. Hybrid systems include FF for lipid representations as
entire head groups, and lipid tail represented by two single point charges per molecule.
Our second set of FF are hybrid, representing each atom, with all hydrogens fused as a
single point charge, and partial hybrid, where only non-polar hydrogens are fussed into
a single point charge. This letter is the most commonly used and represents kinetics and
conformational changes accurately enough to mirror wet laboratory findings. Final sets of
FF are all atom, and all atom including QM, to model electron transfer. Currently this later
type of FF has increased in use substantially, but discrepancies exist as to accuracy. Most of
this accuracy is related to the QM portion which, combined with an all atom FF, tends to
overestimate energies associated with electron transfer reactions. Complete QM MD seems
to fit chemical derived data closely, but are mainly used for solid state and small molecule
based molecular dynamics [50,51].

All atom MDs are now becoming more common due to higher computer speed for
less cost and are slightly more accurate than the mentioned partial hybrid FF [52,53]. The
use of all atom FFs has seen an increase in use since 2014, now making up 20–30 percent of
published MD research. Equilibration time increases the more advanced the simulations
representations, which can be extensive for larger simulations incorporating millions of
atoms. Due to computational costs involved, QM is limited usually to only a smaller
portion of the MDs where necessary, as the code adds dozens to hundreds of calculations
per atom representation. Complete QM simulations of a dozen atoms can take as much time
as a coarse grained simulation of a million atoms, as a direct comparison. Currently there
is now a split occurring between QM simulation types with the introduction of Density
Functional Theory (DFT), not to be confused with Fourier analysis. These emerging QM
simulation software suits are equivalent to the hybrid MD systems for outer electron shells,
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allowing electron transfer to be modeled more rapidly [33,47]. The referenced software
all have extensive manuals that explain force fields, MD and additional parameters in
great detail, along with various computational needs and mathematics of the calculations
involved. Of note are special features that can be incorporated into MD such as x-ray or
photon bombardment, surface structures such as silicon or graphite, applied electronic
current, radioactive elements, and others important in medicine or general biology. These
are mentioned in most of the general software manuals with NAMD, LAMMPS and
Gromacs providing great detail, but are usually utilized by engineers for such activities as
Plasmon chip design, diagnostic components, or equipment in the medical fields [7,54,55].
Nevertheless, these constitute one area of focus related to biologics, especially in basic
testing phases such as kinetics or expected interactions related to membranes.
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represented by sticks, Carbon (green), Oxygen (red), Nitrogen (blue), Phosphate (orange), and
Hydrogen (white) (B) CG model, the atom radius space filling model, left, is represented by averaged
space filling representations of charge. Neutral lipid tail (green) and head groups (blue, red) generate
3 space and charge models for the entire molecule. (C) Partial atom model. Left, only polar hydrogens
are represented alone, while non-polar hydrogens are merged with the respective carbon, increasing
point charge radius. Center, space filling model charge portions including hydrogens. Right, the
final individual space filling and charge representations with merged hydrogen. (D) All atom model,
left—stick representation, right—a final space filling model with hydrogens, inclusive of weak partial
charges. (E) A close-up of all atom models with surface charges. Hybrid models burry these with
larger radius composites. Small sub-angstrom charges shown as accessible surfaces, exposed colored
areas of Nitrogen (blue) and Phosphate (orange), highlighted as green dots on the surface of the
nitrogen in (C), middle, are particularly important for specific lipid interactions involving electron
transfer, or lipids fixed to proteins or other molecules for extended periods.
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Invariably in creating initial membrane models, researchers will encounter or wish to
use lipids or other membrane components not found in the FF libraries for the respective
software. Creating these initial models, termed topology for individual molecules FF,
constitutes the second decision for proper MD experimental design. It is well worth
the effort to make sure that these are correct, and several sites exist for initial FF library
entry generation. The most commonly used sites are PRODRG and automated topology
builder (ATB), the latter with down-loadable libraries of specialized lipid or membrane
FFs [56–58]. Taking time to look at tabulated data from physical chemistry studies, such
as angles, bond lengths and small local charges to make sure topology is correct, can
save time in many later steps involved with model generation. These in some instances
can be the cause of disputable findings from a simulation as the basis of all calculations
performed. Straightforward examples are a missing charge on an atom important in the
normal interaction process such as a head group on a lipid, improper geometry related
to end groups, or a charge placed in the wrong atom on a hydrophobic molecule. Real
parameters can be found through literature combing for the respective compound in
physical chemistry publications, tabulated physical parameters and older collections of
physical parameters such as CRC or MERK manuals prior to 1988 [59]. In some cases, it may
be necessary to include non-standard components such as myristoylation or glycosylation
which follow the same approach to FF entry generation. With some of these components,
there may exist deposited FF files, as NAMD, Gromacs and ATB maintain user deposited
FF files. This is also true for specialized compounds of interest such as cyclic peptides, or
secondary modifications such as haptenated probes or ligands, although usually maintained
on lab specific websites.

Once these are generated, the initial coordinates can be set up using embedded soft-
ware functions, or in some cases auxiliary software. This latter can be useful for membrane
protein studies in particular, as most MD software packages are able to handle smaller
components such as lipids. Examples are again NAMD, Gromacs, or LAMMPS [14,44],
but there are a number of laboratories and groups with their own specific program found
online, or add on functions such as g_membed in Gromacs [60,61]. The general process
of membrane model construction is shown in Figure 3 and follows a very methodical
approach for a generalized larger workflow process. It is usually more advantageous to
completely create the membrane before addition of macromolecular components. More
complex examples include the necessity to refold portions of larger macromolecules and
are not the focus here. These often entail entire studies, especially if there is no homology
models to begin with. Of note, there is often a wealth of structural data available for
proteins or macromolecules from non-image based experiments such as spin labels, prox-
imity fluorophores, or related studies, giving localized information for particular amino
acids or compounds. These often pose more challenges for model construction, sometimes
taking a month or more, but can generate accurate models in lieu of refolding simulations.
Also, these serve as methodologies for checking the proper protein structure before more
advanced simulations can be conducted, or judging the accuracy of results from refolding
simulations [62,63].

The third and final variables in the decision process for MD research are related to
what the researcher wishes to observe, defining the simulation parameters. In many cases
there is overlap between simulation types and what can be ascertained. Examples are
energy and motion, which are intimately intertwined. In a normal affinity kinetic analysis,
it is necessary to generate multiple runs from different conformational states and apply
force to one component, called pulled or steered MD, for small or large molecules. Kinetics
are determined by taking the mean Gibbs free energy changes from all runs, and include
pulling the molecule of interest from one position in a bound interacting state to an unbound
state over time. This also allows for the analysis of molecular conformational changes
to be studied by default [12,14]. In most of these types of simulations, hybrid systems
such as Gromacs with FF 54a7 will suffice [50]. More complex questions have arisen in
recent literature related to the pharmaceutical industry. Direct permeability of membranes
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have been studied, from small molecules and peptides to larger protein complexes such as
lytic proteins from T cells or the immune system [35,64]. These have posed questions not
necessarily related to kinetics, rather, they test the modes of action or the overall process
involved. Here, most of the researchers questions can be ascertained from extended all atom
unrestrained simulations. These are often combined with a control membrane lacking the
molecule of study, as controls become important, as in wet laboratory work. In some cases,
these break down to kinetic based studies in the end, but are wide ranging in the literature
overall as far as FF simulation types and setup, starting around 2000 [10,65]. More rapid
simulations using coarse grained MD only generate relative kinetics, not close to those
determined in laboratory experiments, but instead are used to test very general principles
such as membrane association. Often these are combined with hybrid representations of a
single component such as proteins to test very general aspects of interactions, while the
more detailed atomic representations assess global changes.
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Figure 3. Creating initial structural models. (A) A starting piece of lipid monolayer is constructed by
hand, or obtained. These usually have 1–2 lipid types such as DOPC or PS. (B–D), (B) cholesterol,
yellow (C) Ceramides, purple, and Inositol Phosphates, Pink, are added to (A) using software
to randomly embed these, or by hand with graphics software. This process is repeated until all
membrane constituents are added, resulting in a small subunit (D) Final starting subunit containing
several lipid or hydrophobic molecules. (E) The most common membrane simulation starting models
are repeating duplications of (D), which can be generated with Pymol or other software to write out
symmetry generated models, and combined. (F) More complex is a 5000 lipid vesicle used in studies,
generated by software specialized for membrane vesicle generation, or (G) a hand created 60 lipid
monolayer, orange, which has been extensively equilibrated before simulations. Other examples
of the last stages after (D) are researcher specific. The most common (H) is a protein embedded
or attached to the surface of a membrane. Software for this is presented in most MD suits, and
these can be generated with graphics software. (I) A more specialized model for simulations, the
bilayer, is attached to a solid surface, such as gold. This model again can be generated by graphics
software, using software presented in suits such as LAMMPS, or with lab specific software sometimes
shared online.
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Combined simulations are not limited to inclusion of QM in small regions of the
simulation. With combined CG simulations specifically, these have taken two paths, with
the second becoming more developed recently. The first type of combined model utilized
more in past research represents specific components such as proteins, peptides or molecule
of interest as all atom or partial atom representations. Typically, the membrane constituents
remain CG representations. This process allows larger time steps, often in the microsecond
range, to be studied, giving more accurate results for the component of focus related to
association times. A second more modern use of combined sampling with CG simulations
began in 2008 with Lindahl working with Gromacs [14], where all atom models were
fitted to CG models at various time steps and analyzed as static structures. This has been
furthered by others, especially in non-protein membrane systems, to now allow fitting
of all atom models with adequate sampling space to ascertain a number of physical and
chemical properties. Examples of this for non-membrane systems illustrate the process
well, and show that structural and chemical pathways can be accurately modeled using
the technique [66,67]. With larger models such as embedded proteins, however, there
are often more conformational states. Smaller molecules shown in the referenced Nies or
Ganeson have only 0–3 conformational states which can be fitted into the CG model space,
akin to x-ray crystallographic density fitting. Macromolecules can include more than a
million states, but only relevant areas such as enzymatic sites remain important, while
the bulk are simply solvent based. This is particularly interesting for membrane systems,
providing larger time frames for sampling with various processes such as insertion, folding
or necessary lipid interactions.

More diverse examples of MD are emerging with significant increases in utilizing the
technique for research. These include diagnostic chips, vesicles used as delivery systems,
models of vesicles used in kinetic studies such as absorption-emissions spectroscopy,
specific neurological systems involving two separate lipid bilayers, multiple bilayer systems
such as in tuberculosis, and interesting novel membranes from fixed attached lipid filtration
to Ag lipid coated nanoparticles [6,16,68]. Many more exist in the literature, with a general
theme of more complexity in the past few years. Some of the largest simulations include
membranes, such as the entire photosynthetic light harvesting system and light absorbing
Rhodopsin from human rods in the visual system [33,69]. For MD in these areas, it is
often more useful to use partial hybrid systems, with only non-polar hydrogen fused
into the parent carbon atoms. Kinetics in these fit well and most of the design processes
function exactly as the models indicate. For chip design and vesicle construction, this can be
invaluable. In the latter, membrane stability under various conditions such as temperature
and sheer stress is important, and very minimal changes to the membrane can have
significant effects. A simple example of this is cholesterol, which affects membrane fluidity.
A change from 1% to 5% weight to volume is the definition of lipid rafts versus normal
membranes in human cells [29,30]. Extended models, based on size, have shown that these
can be modeled well and cholesterol will localize to clustered regions. Analogously, the
membranes themselves can be assembled testing different localized membrane component’s
effects on the global membrane structure related to mechanical processes. These originally
engineering studies can translate well to medical device studies, such as those on diagnostic
chips or products that come into contact with human tissue, such as dialysis equipment. In
the industry, there has been increased use of biological synthetic membranes, especially
with diagnostic equipment contacting human fluids. Other simulation setup considerations
vary significantly based on the software involved, and include choices for steered MD such
as rate and force, options to fix atoms in the x-y or z directions, setting walls with various
force parameters or, conversely, continuous systems where atoms move to adjacent sides of
a defined unit cell when passing boundaries. There are choices for temperature algorithms,
pressure, close contact force distances, and many controls for various force parameters, far
too many to describe in detail in a single review. For these, the various manuals associated
with MD explain the parameters in detail. It is well worth backtracking references from the
original authors who designed these in any critique and design of good MD experiments.
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Together with the FF and model coordinates, these form the criteria for the entire MD,
entailing one to two pages of instructions with set parameters for the software, usually
termed the run parameters.

Once the model is constructed to the level of detail necessary for the experiment, the
run parameters set, and the FF defined, the various MDs are run. This first entails equilibra-
tion of the system modeled before the actual experiment. Normally random velocities are
assigned to each atom to mimic an initial temperature and pressure. Equilibration allows
these to be normalized across the system. Usually this necessitates multiple MD where
temperature and pressure are sequentially held as fixed, raising temperature until the final
temperature and pressure are achieved. Then, the simulation is run for a period with no ex-
ternal applied forces to allow the natural configuration of atoms to be achieved. Additional
aspects such as steric clashes, atoms placed too close and initial movements also occur
during this step in the process. These produce extensive unnatural forces due to close range
interactions which are removed by the process of equilibration. This is often important for
membranes which have to adopt specific shapes based on overall charges in the system,
and assume structures akin to the first MD which entailed phase separation [70]. If the
membrane is constructed by hand, this process can take long time periods for membrane
systems. Thus, there is a lack of starting files for more complex membranes available for
general use, especially with vesicles, which can save time for other researchers. Still, many
researchers start by utilizing fragments of publicly available structure files for membranes
which have already been equilibrated to some extent.

3. Analysis of Membrane Molecular Dynamic Simulations

Analysis of MD encompasses a multitude of variables based on the types of simulations
and methods employed. A wide range of various tools exist within the software used for
simulations, and in many cases the overall trajectories generated by running MD can be
analyzed across different software. External graphics software allows analysis such as
Pymol, or this can be done with the internal visualization graphical user interface (GUI) if
the software includes this [71]. One of the most commonly utilized is Virtual Molecular
Dynamics (VMD), a GUI developed for NAMD, although Gromacs, CHARMM and other
simulations can be visualized and analyzed [44,68]. Additionally, a number of tools exist
for conversion of various formats of the simulation trajectories for cross analysis in different
software, with a number of open source toolkits able to handle data from several different
software packages [72–75]. Good examples of these are MDanalysis, MDtraj, PylipID,
and growing consortia such as the VMD plugin library, scipy or PLUMED [76–78]. Often,
researchers also utilize a number of personalized scripts for data manipulation which can
be found through literature and website searches. It is also valuable to have some scripting
knowledge for handling large data sets, data format conversion and generation of graphics.
Most software for MD are also open source, meaning easy incorporation of user written
code. Some of the most utilized aspects of analysis are mentioned here along with changes
in trends, together with some common mistakes and pointers to resources for plotting
analyzed data.

In MD, energy and motion are stored in trajectories, represented with the overall
vectors stored for each atom involved in the simulation. However, these are meaningless in
summed form, except for very rudimentary analysis, which often made up the bulk of larger
simulations in the distant past. Very straightforward Gibbs and Enthalpy can be analyzed
simply by comparing the summed totals of the entire system at an equilibrated starting
point and ending point. As with other methods, these also require multiple simulations,
but were utilized in the past for less time consumption. Here, CG simulations can also be
utilized through fitted all atom models in a similar fashion. An an example, a membrane
system with an embedded protein or molecule of interest can be simulated unrestrained
at one point, and then again for a period with the system changed to a finalized state [79].
Energies are extrapolated by simply taking the difference of the two states. This was largely
replaced with steered molecular dynamics as computers became more rapid and able to



Membranes 2023, 13, 148 11 of 32

handle larger simulations. However in some cases, such as association rate studies or
insertion rates of proteins, long time periods may be involved in the tens to hundreds of
microsecond range. This makes CG back-sampling a newer valuable method emerging in
the field of membrane simulations.

Pulled MD, synonymous with steered MD, takes simulations as a starting point and
applies an external force to one or more components of the system causing them to move
away from a fixed point [12,14]. This allows an entire plot for various energies to be com-
puted, along with any changes in energies along an entire reaction pathway. These types
of simulations also open the possibility for a multitude of more detailed analyses to be
performed. In many cases, various components of the simulation, regions, surfaces, ions,
specific membrane molecules or domains in a single protein can be separately analyzed.
One common mistake is that initial MD set-up often requires individual atoms, groups or
elements to have specific energies printed beforehand, in most cases to save individual file
space, as simulations can generate extremely large files. This includes generating files to
include in parameter files before simulations start; however, they can usually be extracted
later from most simulations with auxiliary scripts. Direct energy profiles for elements of
interest include total Gibbs, Enthalpy and Entropy. Usually, Entropy is inferred by determi-
nation of the two other energies, as it is more difficult to determine from direct analysis.
Gibbs energy is usually analogous with the kinetics from wet laboratory measurements,
which fit surface plasmon resonance (SPR) and isothermal titration calorimetry data (ITC)
rather closely [25,80]. Like these two wet laboratory techniques, measuring enthalpy and
free energy, most other kinetic factors can be inferred.

Other methods open to researchers for analysis of energy include principal component
analysis (PC), direct vector analysis and correlations such as Pearson correlation coefficient
or Pearson’s R values [81,82]. This latter is used for analysis of energies and motions,
although any two components can be tested to see if they are correlated to each other.
In membranes, this can be demonstrated by over a dozen experiments. For instance, it
was found in some simulations that two of one lipid type will adhere to a cholesterol,
while another 100 of the same type are prevented from interacting through hindrance by
the first two. Thus, sets of cholesterol and the bound lipids will show correlations, but
the non-bound ones will not. Use of PC is similar, and can also be used to test any two
components of a system. In MD analysis, these are most often used to correlate the top three
derived energy motion vectors as a means to separate various component’s contributions
to the entire total energy. This is often advantageous, especially for systems incorporating
proteins or larger molecules, and invaluable to any design process. For membranes, this
can be used to analyze regions, specific molecules, rafts and sides of bilayers. Vector
analysis for any extrapolated energies can also be analyzed individually for contributions
from the breakdown into single Cartesian coordinates of x, y and z. This often allows
the energy contribution from specific directions to be ascertained, such as motions of a
single protein domain or molecule in the x or y plane, important in the analysis of various
membrane systems. These can also be used to generate visualized trajectories of single
direction energy or motion contributions for a molecule or groups of molecules, useful
in analyzing specific features associated with single components of the model. Usually
shown as exaggerating a particular motion energy, these help extensively with engineering,
mechanical understanding, conceptualization and presentation.

Other analyses often used include radius of gyration, dihedral angle plots and root
mean square fluctuation (RMSF). Until recently, these were the most commonly presented
data, usually related to conformational changes in proteins. Again, these are often broken
down into a Cartesian system, as in membrane analysis often only two relative directions
become dominant. These are most often applied to individual molecules within the mod-
eled system, rather than global analysis in a specific membrane. An example includes
the use of these analyses in ceramides within a lipid membrane system, which cluster
and move between layers of solvent exposed regions based on charge and concentration
gradients [83]. With protein analysis, these are invaluable tools for determination of amino
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acids associated with binding sites, especially in membrane systems where specific lipids
or cholesterols are necessary for the structural integrity [31,84,85]. All of these are usually
plotted against time, but as with PC analysis can also be plotted as a correlation between
any two variables to determine relative correlations. With compared changes between start-
ing and ending models, component analysis can often highlight coordinated movement
against randomized effects.

More simple but useful analysis include distances, relative position over time and
general motion. This latter can often be used to determine a randomized motion versus
changes associated with perturbing a specific modeled system in steered MD. Distances
are by far the most reported data originally, dating to the 1960-70’s, usually presented
as graphs over time, both in older and recent literature. With membranes, this can be
invaluable, and often simply requires determination of motion as a geometric function,
with a single molecules as centered reference. Randomized motions show up in analysis
as almost perfectly sinusoidal with time components, while non randomized effects will
show direct shifts in motion behavior when plotted against time [14,86]. Distances between
two points of interest can be used in a similar fashion [87]. With membrane analysis, it is
also often useful to plot various single components in two dimensions over a time course
from the simulation. These can be used to show clustering effects, or other effects from
randomized versus nonrandom motion upon perturbation. Examples include clustering
energy and visualization of inositol lipids around proteins, and lipid raft condensation
from cholesterol concentration. Some of the most common types of data display are shown
in Figure 4.

More specialized analytical tools for membranes include their intrinsic ordered states.
Simple parameters such as thickness globally over the space defined by the membrane
occupancy of the unit cell, or more precise, down to the single lipid components, can
be plotted. This allows localized effects from small molecules to larger proteins to be
visualized over the membrane. In the same manner, density can be analyzed and surface
charges on both sides of a membrane, usually all shown as surface plots or heat maps. More
physical analysis such as applied voltage current effects and x-ray bombardment can also be
incorporated, and visualized [88,89]. For radiation based simulations, there is often a need
to represent a portion or whole run with QM MD. Fortunately there have been some recent
advances with the implementation of DFT which greatly increases the feasibility of electron
transfer based simulations. Analysis of these simulations shed light on enzyme based
applications of biologics or small molecules, especially when covalent bond formation is
important [33,47]. Kinetics from these simulations shift down to femtosecond rates and
much higher repulsion and association energies. However, complete surface charges at
the single atom level can also be computed and plotted, even giving a higher dimensional
layer to analysis, down to electron energetic density maps at subatomic distances.

What is important for membrane based biologics and pharmaceutical development
remains based on requirements of legislation. First, often kinetics are most important based
on historically defied legislation, now including testing of protein mutants, designed Fab
and whole antibodies effects with membranes. For non-lipid membrane interactions of
different membrane types, this can be particularly important, such as polymer filtration or
chemical based filters. These usually incorporate steered molecular dynamics, and for larger
systems can be run in single precision on lab computers equipped with GPUs. Standard
times include a single 24 h period for each MD run, with a benchmark of 200,000 atoms
at 60–70 ns a day. This excludes the set up time for any system, but as a production
of 50–60 unique runs for accuracy can be completed in 2–3 months [90,91]. For a larger
corporation, or laboratories with a higher end computer, this can be reduced to less than a
day excluding prior MD setup run time. In this case, the costs now allow pharmaceutical
companies to integrate the use of MD as cost saving applications.
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Figure 4. Common methods of data presentation. (A) Surface maps can be used to highlight
differences based on a range of colors, including contour lines and changes between areas. (B) A
3D heat map graph, often used to highlight a range of data from density, thickness and charge to
lipid clustering and type. (C) Another 3D graph type consisting of graduated lines often used to look
at thickness and charge. In many cases, the graphs in (A–C) can be used to represent different data
in a number of user-specific ways. (D) Phi-Psi dihedral angle change plots (Ramachandran) for a
non-interacting, left, and interacting amino acid, right. The top and bottom are with and without
the small molecule ligand. These graphs were often used in NMR, X-ray and earlier MD studies to
identify important residues over proteins, especially in lieu of graphics software. The technique is
also applicable to lipids, especially cofactors or ligands, but has been more often utilized recently by
AI driven data mining. (E) Simple free energy change graphs for small molecules, top, and proteins,
bottom. Proteins in some cases mirror the small molecules. In the top, red shows a multi-ordered
affinity, which can be missed without pulled simulations when determining kinetics. The top, black,
shows a small molecule which has a large energy barrier, even though the process is energetically
favorable. The bottom, red, shows a very straightforward normal kinetic which has no hidden
aspects, while the bottom, black, details a common aspect of membrane attracted proteins, an initial
energy drop, before binding, due usually to hydrophobic residue interactions. (F) The most common
representations, a PC plot of the energy motion eigenvectors for a protein, here binding a membrane.
The top shows a membrane with 1% cholesterol, and the bottom 5%. The total energy for the protein
interacting with the membrane is shown as the heat maps, highlighting more focused interactions
from the protein’s bottom with 5% cholesterol. Data in (A,B,C,E) are test data for graphing; data in
(D,F) are real experimental data (author).

Secondly, direct interactions of products with their targets and off target effects being
necessary. This can be particularly important for lipid based systems representative of the
human cell membranes, as there are often clustering effects, and direct direct interaction of
protein based biologics with non-desired membrane constituents both for targeted macro-
molecules and as distant effectors on other membrane proteins. For things representative
of the neurological system, endocrine systems and specialized tissues utilizing membrane
based signaling lipids, these can be decisive in effectiveness or off-target effects [34,92].
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Standardized membrane models serve as a reference point to test new products safety and
analysis therefore becomes standardized too. Often, diffusion rates and a single membrane
component become a focal point, and can be difficult to localize and ascertain while still
being present in the data. These models have been used in MD to analyze a more global
interaction of various perturbations such as carbon nanotubes to the proteins involved in
embedding into membranes such as Annexins [93,94]. Studies of this type can add validity
to, or analyze various expected or observed health related issues. Also, they arre important
in chip design, where lipid coated silica-dioxide or other compounds, ranging from gold to
copper, are tested for proper interactions with ligands, ranging from small chemicals to
large proteins [7,95].

Aside from these, a third set of important analytics in the design process are more
product related for any membranes, coming from more specialized research. These often
incorporate temperature effects, diffusion rates in two or three dimensions and concentra-
tion gradients between two enclosed systems [96]. Obviously this is important for studies
of vesicle targeted membranes, where two membranes diffuse into a single bi-layer. Here,
safety would dictate knowing the fate of all constituents of the vesicle. Other membrane
systems such as polymer attached membrane filter interaction with molecules, proteins
in fixed membranes, and specific small molecules interactions often incorporate the same
analysis types [5,37]. In a similar manner, lipid membrane bi-layers have also been simu-
lated to analyze ion gradient and solvent kinetic effects, with gated protein channels from
neurochemicals to antibiotics, and even to pour forming peptides and compounds such as
flavonoids. This is detailed by reading through the G protein coupled receptors (GPCR)
database alone, which has ample examples of effects on the membrane, from lipid mediated
cofactors to external small molecule drugs [97].

Current trends seem to follow an expected shift from MD used for small molecules in
the past to macromolecules as the product. Several factors can be of interest in this manner
of biologics development. Good examples include testing interactions from antibodies, or
peptides with biological membranes. These are beginning to follow the more standardized
approaches once used for small molecule membrane interactions. In the past and over
the years, it has become routine to test the interactions of small molecules against several
different membrane types, with a focus on different prostaglandins, leukotrienes or plas-
minogen ligands [98]. The effects studied are often these membrane molecules themselves,
through direct or indirect interaction with the introduced molecules. Cellular membranes
control a wide range of processes from vasoconstriction and dilation, uterus muscles and
lining, muscle function, especially smooth muscle, gastrointestinal reactions, heart muscles,
neurological reactions, inflammation, blood clotting and several other processes. These
effects are controlled on minute to hour rates and involve membrane soluble and often
embedded hydrophobic hormones. In the past, most protein biologics MD studies have
only explored direct protein–protein or protein–ligand interactions, excluding these as
constituents. As a number of pathologies are associated with the mentioned large number
of membrane compounds, it can become standardized methodology to analyze a base set of
biological membrane systems with anything targeting membrane components [35,99,100].
Invariably this can save money for market based research and development, by identifying
potential side effects before moving to a physical product. This is especially important for
membrane embedded systems, from more complex biologics such as CAR T cells, macro-
molecular ligands of membrane receptors, chimeric membrane receptors and antibody
products targeting membranes [23,101,102]. Additionally, other membrane effects related
to such things as carbon nanotubes, microplastics and medical device byproducts would
benefit from use of standardized MD screening and analysis.

4. Experimental Design Principles Specialized for Biologics and
Pharmaceutical Application

Using MD for research in the pharmaceutical industry has two main themes. There
is either direct analysis of biologics as pharmaceuticals, or they are used for the design
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of equipment. A third theme is studying the actual methodologies themselves, which
poses an interesting area of research often overlooked in debate. However, many of the
most recent biologics ranging from CAR T cells or modified immune cells to proteins and
peptides now include some level of MD in the overall patent process [20,53,103]. With
appropriate methodologies, MD are utilized for scrutiny and design processes ranging from
cell adhesion to surfaces and delivery system membrane interactions, to filter membrane
interactions [4,104]. In addition to the scrutiny or design aid, MD can also be used to
explain discrepancies between wet lab data, which are encountered with some products.
A rule of thumb has been to check results against SPR, which tends to fit MD work more
accurately than other techniques. What is needed for patenting and product design is based
in large part on the specifics, which have an extensive range along with the current change
in trends within the pharmaceutical industry. Some of these are explained below, but there
is no exhaustive list as newer ideas and products arise.

Most basic principles of a designed biologic can be shown from proteins and chimeric
proteins. Often, the mechanics of the product need to be ascertained in a proper environ-
ment, such as lipid membranes, acidic environments, or specific solvents expected during
the products lifetime. These include domain changes and overall motions of the proteins,
targeted or used, embedded in membrane systems. There is already a wealth of publica-
tions demonstrating these types of experiments, the most straight forward being GPCR,
antibody targeted membrane proteins and ion gated channels such as KcsA [105–107]. Each
of these demonstrates the effects associated usually with a secondary ligand or protein
interaction such as small molecule pharmaceuticals, while dependent on the membrane
itself for proper function. With GPCR, there is even a database now for different simulations
that have been conducted [97]. In the simplest form, the GPCR is simulated in an unbound
state, and then the interacting molecule or antibody is attached and simulated again, both
in unrestrained simulation. Comparing the two allows binding affinities and overall energy
changes to be calculated as the GPCR transitions into a different conformation. Like these,
ion gated channels work in a similar manner; however, often with channels, the energetics
of the ion gradients and solvent effects are also taken into account with multiple simula-
tions at different pH, ion mixture or temperature. Unrestrained simulations can usually
provide tabulated kinetics, though they lack specifics in the translational energy landscape,
providing a more rapid result, including entropy without steered MD.

An interesting example of antibody targeting involves the T cell receptor (TCR) and
accessible sites. In the initial blind generation of antibodies, two types were often encoun-
tered. One would cause constitutive activation of TCR and expansion of T cells. Another
group would bind and label the TCRs while not activating them. While this seems trivial,
this type of antibody targeting difference can be what determines overall biologics effec-
tiveness. Obviously in such an extreme case, the first antibody would kill a patient, while
the second would target specific TCR sub-types, eliminating a specific T cell. Thus one
is a viable biologic utilizable as a beneficial treatment for T cell mediated diseases such
as T cell lymphomas or Multiple Sclerosis. With the first wave of antibody biologics, this
modeling aspect was not taken into account and in clinical trials the first anti CD20 killed
participants by creating a cytokine storm linked to constitutive activation of the targeted
receptor [108,109]. This occurred again for anti-CD28 and others until the overall structural
effects of antibodies began to be incorporated into the process [110]. Related to antibodies,
another key interest is the threshold for activity. It is counter intuitive that the highest
affinity is not always the best. Often with immune receptors, there is a range, where too
high an affinity can lead to autoimmune disorders [111,112]. This may be particularly
relevant to biologics related to cancer, where there can be an over expression of a single
protein, 2 to 50 times higher than that of other cells [113]. Affinity ranges can be used to
target such cells, without causing large scale off targeting of healthy tissue in the design
process. Here, precision kinetics can be invaluable through the use of MD experiments
before actually producing any physical product. In these examples, the membrane plays
a vital role in protein mechanics, accessibility to the target and through direct interaction
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with the targeting product effecting kinetics. Use of MD in these cases highlight the cost
effectiveness, and foresight that can be achieved with the technique.

A similar type of study can be found for PD-1 affecting antibodies. Currently there
are two types modeled and a number of generic biologics being developed with the same
targets. In the broad scope, there are antibodies blocking the PD-1 receptor, which also have
to be screened for activation determined by internal phosphorylation. The other group
target the PD-1 ligand (PD-1L), thus constituting two receptors on antigen presenting
cells [114]. In either case, the use of MD in simulations not only allows for binding sites
to be studied, but effects on activity transmitted through either protein target [114,115].
Additionally, a wide range of products can be tested which is often pointed out as the
downside of biologics related to patent protection and the pharmaceutical industry [116].
Current legislation has attempted to maintain the marketability of biologics of this type by
requiring protein biologics to have greater than 20% unique sequence structure and to have
to undergo the same 7–10 year process for patent approval and sales. Currently, generic
biologics can only forgo this and move to rapid approval once the original product has
been on the market for 10 years [117–120].

Other interesting principles include the effects of membrane constituents themselves
as targets of biologics, and the direct effect of the targeting. Interestingly some of the earliest
MDs included lipids such as leukotrienes or ceramides, in basic studies as drug targets,
starting in the 1970s [1,121]. More recently, these have been used in several studies that
demonstrate the range of possibilities from initial design and focus of MD for specialized
purposes. Originally, cholesterol was used as a model study, starting in the 1980s [96]. Ef-
fects showed that cholesterol concentration highly regulates lipid membrane fluidity related
to temperature. Studies then began to look at the effects of cholesterol in lipid raft systems
and it became apparent that varied regions in larger membrane systems can have micro
conformations based on localized concentration of components [122,123]. In these cases MD
was used to further the theory of lipid rafts. In lipid rafts, the process has been modeled in
MD and found to be controlled by cholesterol concentration differences creating less fluid
structures. Not only are these “rafts” less fluid, but the membrane dimensions and charges
change relative to the surrounding membrane they are embedded within. Later studies
have now began to incorporate these lipid membrane systems into functional effects for a
range of membrane proteins and related compounds of pharmaceutical interest [30,124]. In
cells, this has shown clustering of surface proteins on membranes and cholesterol clustering,
giving rise to clustering of other molecules, such as inositol-phosphate or prostaglandins.
Often, the cholesterol concentration plays a role in the conformational or functional state of
membrane receptors, which also effect targeting.

Three examples using lipid mediators can be found in simulations of direct antibody
targeting, proteins involved using these as ligands, or use of specialized membrane based
systems to target these compounds within a lipid membrane. Leukotrienes are numerous in
the human body, functioning as mediators in everything from metabolism to inflammation,
and are some of the major focuses related to pain and inflammation [125,126]. A first
example in model MD design is to exam the targeting of these lipid based components by
the antibodies, along with similar compounds. This has been done initially and can shed
light on the field, based on antibody interactions with the cellular lipid membrane itself,
an often neglected component of cellular membrane simulations [127]. A second example,
effects of constituents and clustering of antibodies on the membrane surface targeting
membrane proteins are simulated. Overall MD have shown what happens for therapeutic
antibodies, such as novel cysteinyl containing leukotriene antibodies in development as
therapeutics as they interact with the membrane as a secondary effect [128]. Making
changes in lipid constituents such as ceramides, proteins or one of over 200 lipids that can
be within a natural membrane, the information applicable to safety and feasibility can be
tested before moving into cellular testing with a range of similar products. [29,100]. Often,
clustering and concentration play vital roles in emerging pharmaceutically focused MD.
Again using Leukotrienes, MDs have been used extensively to study the metabolic GPCR
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associated with their synthesis and metabolism. Much of the inflammatory process relies on
rapid production and elimination of these from the membrane [107,129]. Thus, the GPCR
and cytochromes associated with metabolism are often targets for pain and inflammation
based therapeutics. A number of MDs have been conducted with these membrane bound
proteins, including metabolically within the model cell membranes [130]. In a range of MD
experiments, everything from leukotriene concentration to lipid types within the membrane
and pH, as well as charge from the surrounding solvent or membrane components, have
been modeled. Finally, more advanced applications of MD have even began to look at
the targeting of leukotrienes with membranes from therapeutic delivery systems. These
currently range from lipid and polymer coated gold nanoparticles to vesicles utilizing
vesicle membrane embedded antibody chimeras [6,131–133].

Using all of the mentioned simulations as models, some underlying themes emerge for
experimental design. Obviously, the researcher wishes to model the real world as closely
as possible, but this can often be difficult with cell membranes, or synthetic membrane
systems exposed to biological systems. A normal cell has hundreds of different lipid
mediators, along with an equal number of proteins. In many cases, the membrane contains
a multitude of cell specific components, such as eicosanoids. These in turn allow a cell
to use the membrane as a control mechanism for extracellular signals which can effect
distant cells in the organism, again through membrane mediators. Eicosanoids in particular
allow a cell to control membrane proteins, or attract extracellular constituents from small
molecules to macromolecular complexes. Thus it becomes important to identify what
someone wishes to observe beforehand, as model membrane systems currently only utilize
two to several lipids and possibly cholesterol. More recent published research has shown
an increase in complexity of modeled membranes by one or two components such as
ceramides or eicosanoids, along with one or two additional differing lipids. Originally, this
was not a problem as most modeled vesicle membranes in attempts to correlate the kinetics
derived from wet lab experiments using synthetic vesicles. Most of these wet lab protocols
utilize one or two lipids only, such as PS, PC, DOPC, DPPC, cardiolipin or equivalent,
and often neglect cholesterol, which is a major cellular component in human and animal
cells. However, as questions turn to safety and function in living organisms, systems are
increasingly becoming more complex. It is well worth any researcher’s time and effort to
place emphasis on the starting model, as this is the limiting step in information obtainable
from any MD. Additionally, the complexity of the membrane system in organisms can
be a deciding factor in membrane associated products’ success. Interactions with specific
leukotrienes, as an example, has hindered many product’s success or contributes to off
target effects which give rise to adverse reactions.

Other weighted factor for MD experimental design seems to be “what does the re-
searcher wish to observe?” It seems pointless to create an overly complex membrane
system if the solvent is more important. Key factors can include kinetics, protein or biologic
conformational changes, protein–protein, protein–lipid or protein membrane interactions,
specificity, pH, solubility and global effects. These can be daunting in scope and it is often
better to focus on specific elements that can be obtained from a specific MD experiment.
Kinetics is straightforward, and usually used to compare various starting products, to test a
specific unknown affinity or compare calculated affinities with wet laboratory determined
kinetics [134]. These most often rely more on a ligand, but do include global membrane
affinities in some cases, such as Annexins [135]. Here, simulations are usually a series
of pulled, or steered MD, which provide mean kinetics along with several other factors
such as temperature and viscosity [80,136]. Simulations like this also usually allow for
more rapid analysis of conformational changes and account for half of association based
MD [12,137]. Other association MDs, however. are more readily studied with only several
extended unrestrained simulations for longer periods, from 400 nanoseconds to 5–10 mi-
croseconds [24,138,139]. Unrestrained longer simulations allow differences to be compared
more effectively over medium time intervals. This usually allows extended interaction
times and longer associations to be observed along with effects, especially for membrane
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system’s interaction with outside influences such as solvents, soluble molecules and soluble
proteins. Additionally, these can show localized effects across larger membrane systems
such as component congregation and clustering effects. Other factors can be tested by
comparing extended simulations, with only a few replicates, and can be revealing in the
function of uncharachterized proteins, membranes or molecules.

For the most part, slight variations of any of these main experimental designs would
benefit any laboratory with either real life membrane goals or membranes used for targeting
in the development of biologics and pharmaceuticals. A final aspect of the design of good
MD is the types of detailed analysis the researcher wishes to conduct. Choices fall into many
of the mentioned MD examples, but are defined in more precise detail based on the available
techniques used by the software involved. Thus, a combination of software choice, force
field and the overall MD itself all play together in the design process, with the observational
goal driving the experimental design process. This often is extremely laboratory focused
and usually entails some aspect outside of pre-established protocols ranging from a unique
protein or new unmodeled compounds to the effects of ionized radicals. There is direct
correlation to the interpretation expected from the design studies and the accuracy of
the models involved, especially related to kinetics [140]. Thus another common theme is
what level of accuracy is expected to mirror wet laboratory experiments. In most cases,
models need only incorporate several of a class of the most common compounds as hybrid
partial charges in a membrane to achieve levels within acceptable standard deviation
P-values from other biochemical studies. Often even simplistic models, such as CG, will
correspond to wet laboratory data within P-value ranges of < 0.05, but there tends to be
better correlation to SPR and ITC determined kinetics with hybrid models such as 54a7,
and even more with all atom [25]. For physics and electron transfer at the QM level, there
are not very many MDs available with membranes to allow correlation statistics. In the
few examples, there appears to be correlation with physical laboratory results in individual
published work, with many arguments arising as to accuracy in reviews.

5. Applying Simulation Data to Product Development

Rational design approaches to any aspect of science dictate the utilization of computer
modeling before advancing to creating and testing a physical product [12,21]. The overall
aims are to reduce cost, but also increase product creation rate, product success rates and
eliminate problems associated with side effects or unwanted reactions. As in many cases
MD simulations coincide with various wet laboratory work, these then begin to serve as
secondary checks to make sure designs work as expected. Because of the complexity of
the organism, there will exist for some time unwanted and unpredictable reactions, but
many of these can be predicted and removed with simple standardized models. Changes
in computational speed, use of GPUs and cheaper memory mean individual laboratories
can now utilize these in research projects. This then progressing MD research to a portion
of a study rather than complete research careers in and of themselves. A once unheard
of petaflop computer system can allow rapid MD pipelines for a single group, or even a
decent two or four CPU two GPU computer can allow for introduction of more general
studies into the laboratory. These cost from US $250,000 to US $8000 for the former and the
later, respectively at the time of this publication, Figure 5.

Downsides to this approach come from expected areas when any increase in newer
methods arise. Initially, a lack of sufficient researchers familiar with MD techniques meant
a lack of peer review and direct criticism of simulations. Now, the main drawbacks are
associated with a necessity to refold larger macromolecules without structural data such
as X-ray or NMR. This is of course applicable solely to protein based components of any
simulations. In many cases, there seems to be no adequate critiques of computationally
refolded proteins, or adequate validation such as tertiary structure or Ramachandran
outliers [141–143]. Automated refolding exists online now from protein data bases such
as Swiss-prot and swiss-modeler, which have attempted to incorporate several scoring
functions and checks for structural validity [144]. However, homology modeling, the core
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of Swiss modeling, requires at least part of the unknown protein to have homologous
sequences to a known x-ray or other three dimensional structure [145,146]. Thus many
resort to MD alone in protein refolding for model creation which can take extensive amounts
of time, especially in lieu of any starting structured regions. Membrane association is often
necessary for protein stability. This, however, remains largely unreported and underplayed
in most publications, along with standardized quality control checks. The second dilemma
is a lack of public access to the large data sets produced from simulations. Currently there
are several attempts, and calls for a data base to upload raw data sets. With refolded
proteins, a similar evolution appeared and there is now a repository for models, modbase,
where the scientific community is allowed access to the structures utilized in publications
and research [143,147].
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Figure 5. Number of flops per United States dollar by year. Almost mirroring the change in computer
speed observed with GPU usage, the price per flop in computing power has decreased almost
exponentially since early 2000. A recent plateau was observed around 2016, which is related to the
limits of size in transistors. Intel (black) sold GPU’s primarily as PCI devices necessary to attach
monitors from 1990–2000. In 2010, they began selling GPUs equivalent to Nvidia (green) and AMD
(red). Currently Nvidia has exclusive purchase contracts with EU and US academic institutions, the
US military as sole hardware supplier and Intel with the Chinese government and academia. This has
prompted AMD to have lower prices in an attempt to sell GPU devices to the general public. Bulk
(blue) are applicable to prices for all three companies when larger quantities of devices are purchased.
A current standard GPU has a 20 teraflop (Nvidia, Intel) and 40 teraflop (AMD) processing capacity
per single device.

Progressing into product development, the use of MD then becomes more akin to
direct engineering work in the classical definition. Varied components of the membrane,
proteins and small molecules become important with specific focal points. For membrane
models, the components for delivery systems are moving towards a simple construction
pipeline of a desired membrane model with the correct viscosity, integrity and embedded
elements necessary for function [148]. This can be ascertained from lists or composite
analysis of MD studies, using a library starting point. Usually only one single novel
element is the tested variable in a library of starting membrane models for simulations.
For proteins such as Fab used for targeting or more complex receptors, this is completely
mechanical. With the use of engineering based classifications for regions and domains,
anything from chimeras to completely engineered machines are possible [21,149]. An
example is the use of 3–10 helices found in TCR and dozens of other proteins. Often these
are used to forgo the normal gravitational effect needed for levers, applying force to one
end of a platform with a fulcrum and a load further away. In particular, these are highly
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represented in membrane proteins, often utilizing the force connected to an α-helix as load
opposite the 3–10 helix. With a pull on a single amino acid, the 3–10 helix turns into a
normal helix, extending the associated α-helix, transmitting signals through the membrane.
Analogously, membranes have rafts, areas with specific thicknesses based on constituents,
inositol rich regions, protein rich regions, and localized effects from specific molecules
such as glycolipids and ceramides that can be classified. While more complex, many areas
can be fitted into base model classification schemes. Here the engineering aspect comes
from sets of predetermined MD with the desired starting membrane models, used as an
assembly line quality control to test novel products desired effects or for generation of
synthetic membranes. Though similar, the engineering aspects related to membrane MD
are more geared towards non-pharmaceutical products and research.

Combined these trends indicate a slow move towards more automation in MD, which
is usually the case with most scientific specialties. Examples are genetics and the progres-
sion from painstaking gel sequencing to next generation sequencers and, equivalently,
computer sciences and programming itself. The rapidity which is now being achieved with
MD means a much greater combination of cross-discipline focal areas such as genetics, toxi-
cology and immunology, to name a few [96,150]. Using toxicology as an example, the use of
predefined membrane models for metabolites, toxins and cellular byproducts analysis with
MD means these can be tested rapidly by simply introducing the new compounds [22,24].
This is akin to the testing of novel compounds mentioned previously, where several cellular
membranes of interest are designed and maintained as a base model system. These can be
invaluable to medicine and medical studies for a range of designed products from macro-
molecular biologics to general compounds such as pain medications. Additionally, it allows
for more global analysis of the effects rather than extremely difficult compound tracing
in vivo, and for membranes this is particularly important as most cytochrome enzymes
are membrane dependent [121,130,151]. These are the basis of small molecule alteration
or digestion, as well as most lipid degradation or synthesis. Secondary compounds often
create allergic diseases. A number of these have been modeled within membranes and
published, with focus more on small molecule interactions.

Additionally, application of the analytical tools in a more regimented fashion means
a higher rate of success in product development. Due to the nature of MD, especially
more recently with less computational time, this adds more timely developed biologics
and pharmaceutical products. Current trends in product development have been more
focused on moving rapidly through cellular toxicity and into animal models. From some
aspects this can be deceiving and most products fail in the first phases of human testing
than any other, something costly in monetary and life terms [2,11,152]. Longer term effects
and more human interactions can be ascertained even before moving into cellular testing.
While something such as expression like CD19 being expressed on blood brain tissue can
be tested by simply screening already composited NIH expression profile databases, direct
interactions with other components of the membrane such as leukotrienes often have
distant effects in an organism [98,153]. These types of interactions cannot be observed until
the entire organism is exposed to the products and is often extremely species specific. Data
mining is important to such work, with AI used for rapidly comparing or identifying a
single lipid’s interactions across many different MD simulations.

Analogous to the engineering aspects, with a biologics designed interactions, many
of the analytical tools discussed also show a standardized or pipeline based trend. Clear
increases, in particular for energy vector PC analysis, in published work have emerged,
now occurring in a large percentage of publications from 2019–2022. These, if conducted
properly, can help in modular approaches to protein design, capsid design and vesicle
design with the effects of membranes necessary to the overall functionality. For membranes
in particular, these can be used to trace specific influences perturbing the membrane, down
to single components, but are often limited to those interacting with proteins. In analyzing
membranes directly with MD, current trends often focus on the simple global parameters
such as density, surface charge, thickness and viscosity changes or extremely physical
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parameters such as heat capacity. In direct physical MD utilizing QM, a large amount of
the focus is often ionization and effects on electron transfer through radical generation, or
again with protein interactions. Radical formation is itself an important aspect of longer
term damage and effects from usually smaller molecular pharmaceuticals, but is important
to current chemotherapy and radiation treatments for cancer [89,154]. In adverse drug
reactions, the majority of metabolites are processed through membrane bound cytochromes,
changing into radicals, then forming covalent attachments with membrane components or
proteins. With the growing number of cytochrome simulations, it would be easy to start
incorporating MD data into AI based data pipelines.

Focus on synthetic membranes has also become more represented in current trends in
pharmaceutical product design. Due to the nature of detection and sensitivity, membrane
embedded proteins are one of the most useful tools in diagnostic chips for medical labs
ranging from simple fluid analysis to phlebotomy [155,156]. In almost all of the chips,
it is both beneficial and necessary to embed the proteins within lipid bilayer systems
attached to Silicon, Ni, Cu, Ag, and Au platforms [157]. These are also used in chips
other than SPR, such as assorted affinity assay chips for simple kinetic sensor devices, in
a similar fashion [158,159]. Here, analysis of MD simulations is feasible and applicable
to any patents, shedding light on any differences observed effecting accuracy, such as
secondary interactions causing false positive or negative results. In the case of antibodies,
such chips can also be used in research to rapidly detect off target effects such as from
glycolipids, eicosanoids or soluble receptor ligands. In these cases it is often essential
to identify interactions with membrane embedded targets, membrane lipids, proteins
and other constituents before a product is moved into animal testing. The use of MD in
the design process for membrane interaction modeling is akin to afamatrix chips and is
progressing in a similar way, moving towards a larger number of automated tests per
chip. Extremely useful standardized sets of modeled membranes for testing in silico are
increasing in the public sector and are already implemented in industry in this manner.

Biological mimicking lipid membranes have also been utilized in novel applications
ranging from artificial kidney design and various longer lived products outside of sensors
alone. One focus found was the introduction of ion channels and use of MD in testing
the effects of various external environments [160,161]. In many cases, the driving force
for translocation across membranes is from external forces from ion gradients as the sole
energy source [139,162]. This itself can also be demonstrated on free membrane simulations,
with components such as ceramides moving to one side with charged gradients, or other
unique lipid bilayer interaction. Here, CG membrane models are applicable to uses of
synthetic membranes including aquaporins for water purification, synthetic endocrine
type devices and filtration membranes incorporating covalently fixed lipids. In these cases,
focus is often regarding the lifetime of various protein or other components, which need
to be re-applied at specific points to maintain viability. For many of these instances, CG
longer simulations are often utilized to test lifetimes of various added constituents [10,163].
However, there is now a clear move in research towards all-atom based simulations even
for longer time course studies. These provide a basis for other effects necessary in device
manufacture such as oxidation or detergent effects, with a number of product focused labs
combining CG and other simulation types.

More advanced applications have also utilized these combined CG and all atom
separate simulations to extracting PC analysis, electronic charged surfaces, and electron
flow to model logic gates used in biologic circuits [68]. Here, surface analysis is used mostly
for charge distributions at the sub-angstrom level surfaces along bilayers and PC analysis
for electron flow, rather than to detect motion and energy contributions from protein amino
acids or other molecules. Additional plotted parameters are added for polar or non-polar
head groups of lipids, lipid or hydrophobic tail groups, localized charge densities, charge
thickness and various parameters with a more engineering based focus.

Another consortium, the human brain project has now begun to provide larger col-
lections of MD trajectories for analysis [124]. This has now allowed AI research to begin
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incorporating MD. In several instances, complex membranes have been set up and a
number of multicomponent protein systems embedded in these. Downstream proteins in
signaling cascades have also been modeled into what have become large scale intracellular
interaction cascades, based on the initial membrane embedded systems. The stated overall
goal is to allow any researcher a set of base models for MD, to test any compound’s effects
on the signaling process, with an obvious focus on ligand gated proteins and possible
ligands. Extreme examples have shown changes that occur in simulations at the sub µs
level, related to ion flow and kinetics correlated to changes at the minute and hour levels
physiologically [10,35,164]. In this project, there is an interesting use of basic MD data
analysis combined with artificial learning and correlation data from known physiological
processes aided by artificial intelligence-like algorithms. The ultimate goal is simply the
running of several simulations with a new ligand, biologic or small molecule and the
resulting process at a larger organismal level becomes known. This project is still under
construction, but benchmarks have been met and the use of data analysis from raw MD
serves as a foundation.

6. Future Perspectives for Membrane Based Molecular Dynamics

Obviously there is now a growing utilization for MD in the entire patent application
and product design aspects of the pharmaceutical industry. This is partially due to the
change in the industry from small molecules to larger peptides, new delivery systems
and protein based biologics [38,165,166]. Interestingly, the drive for using MD in larger
corporations was already underway in 2000, with Hoffman La Roche and others hiring
over a thousand research and development technicians for MD projects alone [167]. A
number of biologics in the patent database, and undergoing the approval process, have
already utilized several MD to study the products’ effects at the atomic level as outlined.
The initial wave of these were often Fab, or whole antibody based, but are now growing
and include everything from chimeric receptors expressed on cells to entire designed capsid
like delivery systems [39,40,80,102]. Novel vesicle delivery systems have also utilized MD,
and at least one has been approved for use as a nasal aerosol system. Additional examples
include peptide antibiotics, cyclic modified peptides for cancer therapies, afamatrix chips,
diagnostic chips and in some cases modified Au-lipid nanoparticles as delivery systems.
All of these have utilized MD in the design process and included studies in safety as
well as proof of the principle aspects associated with the patent process or applications
themselves [55,168].

What does the future hold, based on current trends and changes in primary research
and the pharmaceutical industry? As the price of conducting MD experiments drops, we
have already observed an increase in overall application of this type of work. This translates
to two separate aspects of research. In the industrial to academic setting, a move towards
automation and standardization is invariable. This has already become evident from the
GPCR databases’ inclusion of MD data, the human brain project and the use of several
different membrane types in the examples presented. In addition, model databases and
basic sets of modeled systems are being maintained in various repositories offering a range
of initial membrane structures and components as already partially constructed tests or
experimental starting points. Each of these allows a standardized beginning step to become
incorporated, which is often necessary in industry as a point of reference for regulatory
agencies to compare results. With research and development workflows, this means a
standardized set of MD will be utilized in the near future. For small molecule systems
and membranes, this is already becoming normal, where several lipid membrane systems
are tested for effects of newer pharmaceuticals. With biologics, the trend is most likely
to be followed with ever growing and more complex membranes as standards for direct
targeting and to test off targeting effects which increase with larger molecular structures.
This can greatly aid in safety issues before products are even created in physical form,
during design phases.
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The growth of newer pharmaceutical products such as CAR T cells, anti-cancer anti-
bodies, interleukins or utilization of the immune system, in one way or another, through
chimeric or designed proteins is also likely to follow a similar approach. This also changes
with the advent of larger biologics to a greater generic or biosimilar market and invari-
ably translates down to newer models of decision making from primary physicians [169].
Biosimilars themselves have already prompted changes to the approval legislation in the
US and EU pharmaceutical system, altering what constitutes safety in the development
process [117,119,165,170,171]. With standardized membrane models, new chimeric recep-
tors in particular can be tested for stability and function before expression in cell systems.
Here MD serves to eliminate excessive cost associated with a more randomized trial and
error processes used in the past. As the majority of Fab or antibody products also target
membrane bound ligands, their effects can also become more standardized, especially with
databases of modeled membrane systems ready for each new product. In addition, with a
standardized approach there becomes more credibility with regulatory agencies than with
de novo membranes in MD with each product. This process most likely will apply to other
products such as chip design, filter design and several other areas. However, other products
such as specialized vesicle construction may not be able to follow standardization similar
to normal vesicles. Most of the membranes involved utilize extremely novel systems such
as metal attached or modified lipid based systems. Automation processes such as these are
already applied to other sectors of the health industry, such as food and dietetics [121,172].

In the academic setting, MD is likely to become more feasible to most laboratories.
As such, there will be a change, from laboratories whose sole focus was MD alone to
the incorporation of other aspects of wet laboratory work as the number of laboratories
conducting pure MD work will become minimal. Like X-ray crystallography, which saw a
large move towards automation in the 1990s, in many laboratories MD will become just one
of several tools utilized in research. This opens up many areas where some wet laboratory
experiments are difficult for one reason or other and also as cross reference for functional
theories developed through direct wet laboratory results. Along with the advancement
of structural biology in general, this increase in MD use also changes the time course of
research projects considerably. In earlier decades, an entire group could spend their whole
career studying a single cancer. In current settings a single laboratory, with the correct
tools, software and resources, could cure a single cancer every 4 years. In areas such as
engineering and equipment design, the use of MD modeled membranes has already been
utilized routinely for decades, starting with some of the first simulations used [28,70,172].
With an increase in use, there will invariably be more products related to electronics and
use of membranes in complex equipment. An example is from rapid sequencing equipment
under development, where MDs play a vital role. In the envisioned nanopore system it
is possible to expand whole genome sequencing to minute time scales, with lipid coated
pores [173]. In addition, membrane systems form the bases of human neuron and electronic
interaction and allow for design principles to be tested before development of products,
ranging from pacemakers to direct neural network connections. It is, however, impossible
to determine what will arise with science as a whole, as often products or new technology
are developed without foresight.

On the downside, with the increases observed in use of membrane simulations, there
is also an increase in the need for peer review [174,175]. This is often more problematic with
MD data, research and publications. First, the simulations themselves can generate large
data sets, often tens to hundreds of gigabytes in size, while analysis can be equally cum-
bersome to deal with. Secondly, data related to the accuracy of any models, or simulation
itself, is often not submitted or presented as part of the overall published data and again
can be quite large. Simple tricks include looking at force field files from the simulations,
starting models and the overall run parameters in the experiment [141,142]. In many cases,
researchers are able to salvage useful information even from a badly designed experiment.
An example is pulled simulations, where the unit cell parameters are too small, which is a
common mistake for those learning MD. Often, motions involved are still significant and
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informative, even for small regions of respective membrane systems. Nevertheless, there
are often unrealistic protein, small molecule and lipid structures presented in research,
many neglecting simple structure-based knowledge from a century of studies. This has
prompted some scholars and institutions to suggest or attempt to compile and maintain
MD data repositories akin to the protein data bank or modbase [16,143]. In many cases,
even deposition of the models themselves can be useful to the academic community, but
are often prized by corporate research and thus protected outside the academic realm. Still,
an investigator automatically maintains copyright from the date it was generated according
to international law, although structural information in this manner has only been used in
very few cases for intellectual property fights [117,118,120].

Utilization of tertiary structure knowledge and protein physiology in general can often
aid in critiques, but does not often implement membrane systems. In many cases, logical
answers for minor outliers exist which were unexpected, but global structural elements
always maintain specific shapes, analogous to protein forms such as helices, sheets and
well-structured turns. Similarly, models of complex membranes show common features
such as rafts, charge localization and specific lipid–lipid type dominate clustering. For
the most part, membranes can also be challenging to decipher differences from correct or
incorrect models. With MD simulations, in most cases errors relate to FF files, or more
specifically lack of proper equilibration, or even molecular elements. An example of simple
physiological knowledge and error analysis is found in simulations of simple PS/PC lipid
membranes used in many kinetic studies. When cholesterol is added, there are drastic
changes in the melting point for the mixture. At 30% cholesterol, these become equivalent
to butter at room temperature as do most membranes. In some cases, these were originally
used for functional studies in MD, without connecting the two aspects, in order to study
membrane binding proteins, thus effectively making the protein membrane interactions
the same as those interacting with a rigid surface, rather than a fluid system.

Many of the grander aspirations of the academic community involve increased com-
plexity of simulations. This is not simply related to number of elements contained in the
models, but the size of simulation dimensions. We have already observed this, first with
simulations of the light harvesting system, Mitochondrial ATP Synthase and Ribosomes
without endoplasmic reticulum membranes, each simulation containing dozens of proteins,
nucleic acids and membrane components or other macromolecular components [69,176,177].
Currently, the human brain project now maintains an MD database for simulations involv-
ing membrane proteins, membranes and related projects. Direct statements from this and
other projects have already proposed the “whole cell simulation”, alongside complete mod-
eling of the brain at all physiological levels. There is now increasing interest and attempts
to further this project, where an entire human cell can be represented in an all atom MD.
There have already been models and CG MD for some aspects of this, primarily from the
Scripps Institute and associated labs across the globe [33,178,179]. Invariably there is a need
for large scale membrane components, as the number of different membranes in a single
cell include nuclear, golgi, phagosomes, proteasomes, lysosomes, excretory vesicles and a
number of specialized elements for specific cell types. Some of these have already begun
to be simulated, apparent from reviews of complex membrane systems, now including a
number of intercellular membranes and bacterial cell membranes [180–182]. Additionally,
each of these has localized membrane differences, such as lipid rafts and charge, or drastic
pH and other solvent extremes on either side. Each usually also contain more than 200 or
more lipid and lipid-like molecules distinct to membrane types and, invariably, differences
between cells. Many regulatory hormones or other lipid components such as leukotrienes
demonstrate this aspect, being synthesized in one cell type and having long range effects
in the organism. Invariably, all these aspects will in the near future find their way into a
model for simulations of the entire human cell. Expanded, these will hopefully encompass
most or all cell and tissue types, incorporating cell–cell interactions which effect many
membrane components. Tissue, often being constructed of more than one cell type and
lined with different extracellular matrices, requires a large contribution from membrane
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based MD research when all facets are combined. Ultimately, the entire drive is to replace
animal models with a testable, computer based organismal model of the entire human,
a goal set for completion in the far future, the outcome of computer based automation
of biological processes. Already this has found some funding drive from places such as
the Swiss 3R Foundation, the US FDA, the EU Pharmaceutical regulatory legislation and,
interestingly, animal rights groups such as PETA [183,184]. This something that would
prove invaluable to medicine, pharmaceutical research, the pharmaceutical industry and
the design of biologics in general. Current social goals would in the end allow any small or
large molecule to be tested for any type of interactions in the human body with nothing
other than a computer.
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