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Abstract: Nanofiber-based facial masks have attracted the attention of modern cosmetic applications
due to their controlled drug release, biocompatibility, and better efficiency. In this work, Azadirachta in-
dica extract (AI) incorporated electrospun polyvinyl alcohol (PVA) nanofiber membrane was prepared
to obtain a sustainable and hydrophilic facial mask. The electrospun AI incorporated PVA nanofiber
membranes were characterized by scanning electron microscope, Ultraviolet-visible spectroscopy
(UV-Vis) drug release, water absorption analysis, 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging,
and antibacterial activity (qualitative and quantitative) at different PVA and AI concentrations. The
optimized nanofiber of 376 ± 75 nm diameter was obtained at 8 wt/wt% PVA concentration and 100%
AI extract. The AI nanoparticles of size range 50~250 nm in the extract were examined through a zeta
sizer. The water absorption rate of ~660% and 17.24◦ water contact angle shows good hydrophilic
nature and water absorbency of the nanofiber membrane. The UV-Vis also analyzed fast drug release
of >70% in 5 min. The prepared membrane also exhibits 99.9% antibacterial activity against Staphylo-
coccus aureus and has 79% antioxidant activity. Moreover, the membrane also had good mechanical
properties (tensile strength 1.67 N, elongation 48%) and breathability (air permeability 15.24 mm/s).
AI-incorporated nanofiber membrane can effectively be used for facial mask application.

Keywords: electrospinning; PVA nanofiber; Azadirachta indica; cosmetic; facial mask; biocompatible;
membrane; antibacterial

1. Introduction

Human skin comprises three-layered structures: the hypodermis, the dermis, and the
epidermis [1]. The epidermal layer is the outermost layer exposed to the external environ-
ment and microbes for an extended period, imparting its aesthetics [2]. Propionibacterium
acnes is the primary bacteria responsible for acne and pimples [3] on the face, which can be
eliminated with natural antibacterial agents [4]. Initially, clay was used to overcome these
flaws; however, poor penetration of the ingredient to the skin lowered its efficiency [5].
Other skincare products in use include creams, lotions, emulsifiers, and facemasks, the
latter being the most likely. It functions as skin food, allowing the epidermal layer to heal
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more quickly and effectively in less time [6,7]. In the past, facemasks were made with
more than 25 different chemicals [8], including mercury, bithionol, methylene chloride, and
synthetic fragrances that were potentially harmful and infectious to people with sensitive
skin [9]. Paola et al. used bacterial cellulose polymer to be used as a facemask. In vivo
analysis of these facemasks showed improved skin lifting, smoothing, and anti-aging prop-
erties [10]. Nanotechnology has made it possible to increase the absorbency and efficacy
of facemasks’ active ingredients as they have a large surface area and more entrapment
sites [11–13]. Nanocapsules, nanocrystals, serums, and nano dendrimers are the most
recent advancements in cosmetic facemasks, but they are expensive to produce and rarely
available on the market [14]. Silver nanoparticles/guar gum-containing peel facemasks
were synthesized and used for antimicrobial, anti-inflammatory, and antifungal activities.
Results showed that this peel-off mask has significant antibacterial activity [15].

Among these nanomaterials, nanofibers have the most capability to integrate active
substances in them at the nano level during their electrospinning process to get the inherited
benefit [16–19]. Compared to conventional face masks, electrospun nanofiber membranes
provide effective contact with the skin and release the active ingredients quickly and deeper
into the skin pores. These membranes do not require preservatives to store the active agents
and may be packaged as dry membranes, thus, minimizing the degradation rate of active
agents due to non-aqueous storage [20,21]. Moreover, these membranes are developed
from the green eco-friendly synthesis approach with natural ingredients as skin nutrients;
therefore, they are the most suitable candidate for cosmetic applications [22,23]. On the
other hand, nanofiber-based facemasks could eventually replace other methods due to their
ease of manufacture and low cost via the electrospinning technique [24]. However, the end
properties of a nanofiber can be altered by manipulating the parameters of the solution and
machine [25]. Polyvinyl alcohol PVA/Chitosan/starch nanofibrous mats used as wound
dressings exhibited superior cytocompatibility and antibacterial properties [26–29]. The de-
velopment of a three-layered electro-spun polyvinyl alcohol/polycaprolactone/polyvinyl
alcohol nanofibrous mat containing tetracycline hydrochloride (TC-HCL) and phenytoin
sodium (PHT-Na) indicated that these mats exhibit exceptional swelling, antibacterial, and
cell culture capabilities [30]. Mehta et al. modified the commercially available facemask
composition to be electrospun to improve its moisturizing characteristics [31]. A dry facial
mask containing Huangshui polysaccharide (cHSp), hyaluronic acid (HA), and polyvinyl
alcohol (PVA) was fabricated by electrospinning with improved anti-oxidant activity and
moisturizing effect [32].

Natural plant oils are very effective against various bacteria and could be used as a
substitute for conventional antibiotics [33,34]. Since ancient times, different parts of organic
plants have been used as antibacterial agents to fight against such bacteria [35]. Various
solvent extracts of Azadirachta indica (AI) bark were examined for their antioxidant [36] and
antibacterial activities [37], and the results showed that methanol and ethanol extracts had
higher antioxidant capabilities than the other solvent extracts. Bi-layered nanofibrous mats
(PVA and chitosan) loaded with Azadirachta indica were produced and checked for their
antibacterial activity. Results indicated excellent antibacterial properties of developed mats,
which can be potentially used as bio-medical material [38]. Research was conducted on
various properties of nanofibrous mats having Azadirachta indica as an herbal antibacterial
agent, which suggested the uniform diameter of nanofibrous mats and an antibacterial effi-
ciency of 80% [39]. A simple, natural, and dry facial mask loaded with Phyllanthus emblica
(P. emblica) was developed using an electrospinning technique. The proposed dry nanofiber
facial masks are hydrophilic, biocompatible, and inflammation-free and exhibit superior
tyrosinase suppression [40]. An electrospun nanofibrous membrane of PVA loaded with
organic oils was produced for dermal applications. The composite nanofibrous membranes
based on PVA comprise palmarosa oil and phytoncide oil, exhibiting outstanding antibac-
terial characteristics [41]. Bulus and his co-workers developed an electrospun cosmetic
facemask consisting of aloe vera, black rice, and black cumin. The in vitro studies of the de-
veloped membrane showed excellent moisturizing and cell regeneration properties [42]. A
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composite nanofiber sheet of Polyvinyl Pyrrolidone/polycaprolactone (PVP/PCL) loaded
with tea tree oil was developed with an electrospinning technique. The developed sheets
possess effective antibacterial activity against Staphylococcus aureus and Escherichia coli
(7.5 and 9.55 mm zone of inhibition), with up to 61% of antioxidant activity [43].

A few studies have been conducted with natural ingredients loaded on nanofibers
for skin application. However, limited study has been explored on synthesizing AI-
incorporated PVA nanofiber with effective and fast AI extract release. This research suggests
an effective way to incorporate AI extract in PVA nanofiber during electrospinning, along
with control release of AI extract when applying nanofiber membrane as a facial mask.

In this work, we prepared AI integrated PVA electrospun nanofiber membrane for
a biocompatible facial mask. Nanofiber membranes based on different PVA and AI ex-
tract concentrations have been prepared through needless electrospinning. AI extract is
integrated into nanofiber as a natural antibacterial agent, exhibiting effective antibacterial
activity on the skin. Moreover, PVA is also a biopolymer and is recognized as a safe ingredi-
ent by the Food and Drug Authority, United States of America [44], providing a sustainable
solution for various biomedical applications [45]. Fiber morphology and functional groups
of nanofiber membrane were analyzed through the scanning electron microscope (SEM)
and Fourier-transform infrared spectroscopy (FTIR). The AI extract release of the composite
membrane has been analyzed through the UV-Vis spectrophotometer. The nanofiber mem-
brane’s water absorption and contact angle have been estimated to evaluate the moisture
management of the nanofiber membrane. The antibacterial activity and antioxidant charac-
teristics are analyzed to calculate the functionality of the AI-incorporated PVA nanofiber
membrane. Due to its effective drug release, biocompatibility, and porous structure, the
as-prepared nanofiber can be used as a facial mask.

2. Materials and Methods
2.1. Materials

Polyvinyl alcohol (PVA) of Mw ~85,000–124,000 (99% hydrolyzed) and High-Performance
Liquid Chromatography (HPLC) grade water were purchased from Sigma Aldrich, Taufkirchen,
Germany. 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ethanol were purchased from the
local supplier of Alfa Aesar, Haverhill, MA, USA. Fresh leaves of AI were obtained from
the biological gardens of The University of Agriculture in Faisalabad, Pakistan.

2.2. Extraction of AI Juice

The extraction of juice began with the collection of AI leaves. After thorough washing,
the leaves were air-dried at room temperature for two hours. Then, the leaves were passed
through a juicer machine and a strainer cloth to obtain juice which further passed through
multiple stages of fine filtration processes. The filtered juice of AI was used purely as a
solvent to dissolve the polymer in the case of samples with 100:0 AI concentration. However,
the other samples, 75:25 (8P-75E) and 50:50 (8P-50E), were prepared through dilution of
pure AI extract with HPLC water to get the required ratio.

2.3. Preparation of Electrospinning Solution

Electrospinning solutions were prepared by dissolving three PVA concentrations
(6, 7, and 8 wt./wt.%) in a mixture of AI extract and HPLC water with different ratios,
respectively. The concentration of AI extract was adjusted to 100:0 wt.%, 75:25 wt.%, and
50:50 wt.% of the solvent. These solutions were prepared with constant stirring at 600 rpm
for 24 h at 60 ◦C.

2.4. Functional Nanofibrous Membrane Fabrication through Electrospinning

Figure 1 illustrates the process flow of the prepared nanofibers facemask, starting
from the AI extraction from fresh leaves and solution preparation with PVA polymer.
Subsequent electrospinning of PVA/AI extracts solution at needleless electrospinning setup
(Elmarco Nanospider NSLAB, Liberec, Czech Republic, one spinning electrode, small
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carriage capacity 10 mL, spinning voltage 0–80 kV, and spinning distance 120–240 mm).
After multiple trials, the process variables, such as applied voltage, spinning distance, and
carriage speed, were held constant at 45 kV, 20 cm, and 25 mm/s, respectively. All solutions
were run for 8 h to fabricate separate nanofiber sheets of 0.2 mm thickness. Environmental
conditions (temperature 28 ± 2 ◦C and relative humidity 45 ± 3% R.H) were kept constant
throughout the electrospinning process. The following combinations of membranes with
three levels of PVA and AI extract were fabricated to analyze the impact of the PVA and
AI extract concentration on the functional characteristics of the nanofibrous membrane, as
given in Table 1.
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Figure 1. A schematic illustration of preparing AI-loaded PVA nanofibers facemask.

Table 1. Nanofiber membrane samples at different PVA and AI concentrations.

Sr Sample Code PVA Concentration
(wt%)

AI Extract Concentration
(%)

1 6P-100E 6 100

2 7P-100E 7 100

3 8P-100E 8 100

4 8P-75E 8 75

5 8P-50E 8 50

2.5. Characterization and Techniques

SEM (MIRA 3 TESCAN, Kohoutovice, Czech Republic) was used to investigate the
produced nanofibers’ fiber morphology. ImageJ software was used to analyze the diameter
of prepared samples. The diameter of 100 fibers was recorded, and then the average diame-
ter was calculated. Fourier transform infrared (FTIR) technique was used to investigate the
functional group of the prepared AI-incorporated PVA-nanofibers membrane with an over
a range of 400–4000 cm−1. It was performed on PERKIN ELMER Spectrum 2 (Waltham,
MA, USA).

The particle size distribution of AI particles was determined by Zeta Sizer (Ver 7.11,
Malvern, UK) using the dynamic light scattering (DLS) approach. The solution was soni-
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cated in the water bath to prevent particle aggregation and disperse particles within the
solution before the test. Single fiber tensile tester machine UTM-4 (Sonnenbergstrasse,
Switzerland) measured tensile force and elongation at the break of prepared nanofibers
according to standard ASTM D882-01. The sample size for testing was 5 mm × 50 mm.
Each sample was tested five times, and the average was calculated. The air permeability
of the developed nanofibers was measured on SDL ATLAS M-021A (Rock Hill, SC, USA)
according to standard ISO-9237. The testing parameters were kept at 100 Pa pressure with
a 20 cm head. Each sample was measured five times, and the average value was recorded.
Each sample of nanofiber sheet was measured for its water contact angle (WCA) to confirm
its hydrophilicity. The optical tensiometer (Theta lite/TL-100, Espoo, Finland) measured
WCA via the sessile drop method. A sample with 1 × 1-inch dimensions was put on the
sample tray, and the water was dropped onto the sheet’s surface. After monitoring the
contact angle for 12 s, the machine recorded a final reading. The developed nanofiber
membrane was cut into 2.5 cm × 2.5 cm pieces, and its dry weight, or Wd, was noted
at room temperature (30 ◦C and 55% R.h). After that nanofiber sheet was placed in PBS
(0.01 M, pH 4.9–5.1) for different intervals of time (1, 3, 5, and 10 min), and the weight
was recorded as Ww after the extra water was wiped with a filter paper (blotted). The
calculation for the water absorption rate was as follows in Equation (1).

Water absorption %age =
Ww − Wd

Wd
× 100 (1)

Antioxidant tests for AI-loaded PVA nanofibers were conducted using a modified
version of the DPPH radical scavenging assay described previously. An equal amount of
PVA nanofibers integrated with AI immersed in a 3 mL ethanol-based DPPH solution of
10−4 M. Samples were kept at room temperature in the darkness for 60 min. Afterward, at
517 nm, the samples’ absorbance was measured using a UV-Vis spectrophotometer (Perkin
Elmer, Waltham, MA, USA). The percentage of antioxidant activity was determined using
the following Equation (2).

Radical Scavenging %age =

[
(Abs cnt − Abs smp)

Abs cnt

]
× 100 (2)

The sample of AI extract containing PVA nanofiber sheets was placed at 37 ◦C in
10 mL of potassium buffer solution (PBS, pH 4.9). At predefined intervals, 1 mL of each
PBS was removed for additional analysis and substituted with 1 mL of PBS to maintain the
release. UV-Vis spectrophotometer (Perkin Elmer, Model # λ 950) was set at a wavelength
of 410 nm and used to study in vitro drug release. The calibration curve for AI extract
was then used to convert the obtained absorbance into a concentration. Skin patch testing
was performed at the Pakistan Council of Scientific and Industrial Research (PCSIR) site
in Lahore. The skin patch testing was conducted in accordance with the Declaration of
Helsinki, and approved by Ethics Review Committee at the Office of Research Innovation
and Commercialization at National Textile University (AC/ORIC/20-43, 7 December 2021).
Small patches of the created nanofibers were applied to sensitive areas (near the armpit)
of the volunteer’s skin and monitored for irritation, sensitivity, and redness [46,47]. The
sample size of 2.5 × 2.5 inches was placed in the armpit area of 30 volunteers (age group
25 to 40) and analyzed for various time intervals (10 min, 30 min, 1 h, 2 h, and 4 h) for skin
patch testing as cited in the literature [48] and the number of volunteers varies according to
the research study.

The antibacterial activity of the developed nanofibers was evaluated to check the effi-
cacy against bacteria and the effect of PVA percentage and AI concentration on the bacteria
by Agar disc diffusion test (qualitative) & Colony-forming unit (CFU) test (quantitative).
In CFU, samples with varied AI concentrations (AI-50%, AI-75%, and AI-100%) having
constant PVA percentage (8% wt/wt), and samples with varied PVA percentages (PVA-6%,
PVA-7%-, and PVA-8%) with the same AI concentration (100% AI) were placed in a flask



Membranes 2023, 13, 156 6 of 18

containing bacterial colonies. These flasks are then placed in a wrist shaker at 250 rpm
overnight. Each flask underwent overnight shaking before being serially dissolved and
placed in the incubator at 37 ◦C. The relative percentage of bacterial colonies was calculated
from the flask with the test sample and the flask without the test sample. For the qualitative
test, the antibacterial activity of samples was checked against the bacteria S. aureus samples
(AI-50%, AI-75%, and AI-100%) and (PVA-6%, PVA-7%-, and PVA-8%) placed in Petri
dishes with bacteria. Each sample’s zone of inhibition was assessed after the Petri dishes
had been in the incubator for 24 h at 37 ◦C.

3. Results and Discussions
3.1. Surface Morphology

SEM analyzed all the optimized samples with different AI and PVA concentrations
for surface morphology. Results showed that fibers are smooth, and no beaded structure
is present in these samples, as shown in Figures 2 and 3. The diameters of developed
nanofibers are 283 ± 54, 329 ± 83, and 376 ± 75 nm for 6, 7, and 8 wt/wt% of PVA, respec-
tively, while using the 100% AI extract, as presented in Figure 2. The PVA concentration
has a direct relation and significant impact on the diameter of the nanofibers. The increases
in the PVA concentration increased the nanofiber diameter, as a higher concentration of
polymer enhances the entanglement of molecular chains, increasing the spinning solution’s
viscosity. Hence the greater viscosity of the polymer solution leads to the formation of
coarser nanofiber, having a greater nanofiber diameter. While at low polymer concentration,
molecular entanglement is minimized, resulting in a less dense solution, and fibers with
fine diameters are formed [49]. The histogram of nanofiber diameter at different PVA
concentrations reveals that nanofibers with uniform diameter distribution were obtained at
8%, with a maximum load of the active agent by using 100% AI extract as solvent.
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Figure 3. SEM images and histogram of diameter distribution of the developed electrospun nanofibers
with different AI/water ratios 50:50, 75:20, and 100:0 while keeping the PVA concentration at
8 wt/wt%.

Figure 3 indicates the influence of the AI extract on the diameter of the PVA nanofibers
at different AI/water ratios of 50:50, 75:25, and 100:0, whereas the PVA concentration is
kept constant at 8 wt. The mean diameter is noted as 384 ± 83, 380 ± 76, and 376 ± 75,
respectively, for the AI/water ratio 50:50, 75:25, and 100:0. The histogram of all the samples
with different AI/water ratio reveals the uniform nanofiber diameter distribution. Hence,
the impact of the AI/Water ratio on the nanofiber diameter is not as significant as PVA
concentration, and no defined relation is noted between AI/Water ratio and nanofiber
diameter.

3.2. Chemical Composition through FTIR & Particle Size and Distribution

The FTIR Spectra of pristine PVA nanofibers, AI extract, and AI-incorporated PVA
nanofibers are shown in Figure 4a. In PVA nanofiber, the broad transmittance peak at
3302 cm−1 is assigned to the hydroxyl group (O-H), the characteristic peak of pristine PVA
nanofibers [26]. The peaks at 2917 cm−1 and 2848 cm−1 represent the asymmetric and
symmetric CH2 stretching [50]. Due to the existence of unalcoholized acetyl groups, the
peak around 1728 cm−1 was referred to be the result of carbonyl (C=O) stretching [51,52].
The presence of -CH2, -CH3, and C-O vibrational stretching is shown by the peaks at
1425 cm−1, 1368 cm−1, and 1087 cm−1, respectively [53]. In the IR spectrum of AI extract
solution, the characteristic peaks at 3365 cm−1 and 2917 cm−1 are ascribed to stretching
of O-H and vibrational bending of amine (N-H) groups due to polyols [54]. The peak
at 1591 cm−1 is attributed to the C=C stretching of the alkene group, while the peak at
1118 cm−1 corresponds to the C-O stretching of triglyceride content of natural AI [55].
After blending AI extract with PVA, noticeably changed peaks have been observed in the
PVA + AI nanofiber sheet spectrum. The peaks at 3267 cm−1 and 2917 cm−1 are ascribed to
the O-H and N-H overlapping. The peak at 1585 cm−1 represents C=C stretching due to
the alkane group in the structure of AI [56].
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particle size distribution through DLS.

DLS result indicates the particle size distribution histogram in the range of ~50 nm to
~255 nm, as shown in Figure 4b, having the average particle/ingredients size of 123 nm [57].
This result indicates that AI nanoparticles can easily be incorporated into nanofiber sheets.

3.3. Mechanical Properties and Air Permeability Testing

Tensile force and elongation at break were examined to analyze the mechanical prop-
erties of the nanofiber membrane. The effect of PVA concentration on mechanical strength
has been noted, and the results are shown in Figure 5a. It can be noted that as the PVA
concentration is decreased, mechanical strength is also reduced. This is because PVA tends
to form nanofibers with finer diameters at lower concentrations. Additionally, during elec-
trospinning, the larger percentage of solvent in the mixture tends to evaporate, leaving the
polymer. Thus, the mechanical characteristics of electrospun PVA nanofibers decreased [58].
On the other hand, when the extract concentration is changed while keeping the polymer
concentration the same, tensile force and elongation do not change noticeably. This showed
that extract concentration did not affect elongation and tensile force.

Eichhorn and Sampson studied the relationship between fiber diameter and the pore
size of nanofiber membranes. The role of fiber diameter in controlling pore size networks is
significant [59]. The effect of electrospun nanofiber membranes on various properties, such
as fiber’s size, and surface area diameter, was studied by Matsumoto et al. In biomedical
and cosmetic applications, the open porous structure of nanofiber mats plays a vital role
as it increases the effectiveness of nanofiber-based materials [60,61]. Because of a highly
porous network and interconnected pores, nanofiber mats are considered ideal for such
activities that provide an essential role in transporting oxygen and loaded nutrients to the
skin. Figure 5c shows the air permeability of the developed electrospun nanofibers.

The result shows that the air permeability value increases as the fiber diameter in-
creases. As the concentration of polymer increases, the gaps between the fibers also increase
and vice versa, keeping the thickness of the nanofiber constant. In comparison, samples
with different AI concentrations (50, 75, and 100%) show similar results because extract
concentration does not affect the pore size and gaps between the nanofibers [62].
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3.4. Hydrophobicity Study through Water Contact Angle & Swelling Behavior of the
Developed Sheets

The swelling percentage of nanofibers was much higher in all the samples studied
because electrospun nanofibrous mats have a highly porous nature [63] and have higher
surface energy [64]. The loaded drug molecules in the samples release it much more quickly
and thoroughly to the desired environment due to the increased swelling. Because they
are porous and hydrophilic [65], PVA nanofibers have the highest swelling percentages
ranging from ~470 to ~660% as immersion time increases [66]. The PVA chains were tightly
arranged before the test because they had been dried until their mass was consistent. The
solution of PBS permeated the nanofiber sheet’s pore during the trial, causing into relaxing
of the PVA chains [63]. Additionally, it is evident from Figure 6a,b that as PVA content
rises; water absorption follows suit because PVA with higher weight percentages has more
hydroxyl (-OH) groups, which increases water absorption [67].
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AI/water ratio 100:0.

The hydrophilicity and hydrophobicity of polymeric nanofibers play a significant
role in practical applications [68]. Figure 6c illustrates the results of water droplet contact
angle measurements on electrospun AI-PVA nanofiber surfaces. PVA’s hydrophilic nature
demonstrates that as the PVA percentage increases, the (-OH) groups increase, resulting in
a high affinity with water molecules, which gives nanofibers a higher moisture absorption
capacity and a smaller contact angle [69]. As all samples have a contact angle of <50◦, this
indicates that the indigenous developed nanofibers are hydrophilic [70] and porous in
structure [71].

3.5. In Vitro Drug Release Study & Radical Scavenging Activity through DPPH

Figure 7a,b displays the DPPH test results for the free radical scavenging activity of
an AI-loaded PVA nanofiber sheet.

Absorbance at 517 nm decreases when antioxidant molecules neutralize DPPH free
radicals, turning them into a colorless byproduct. The results indicate that the anti-oxidant
activity highly depends on the extract concentration in the samples; antioxidant activity
increases as the extract concentration in the samples increases, and activity decreases as the
extract concentration decreases [72].

The highest value of ~79% is noted for the sample 8P-100E, followed by ~61% and
~39% for the samples 8P-75E and 8P-50E, respectively. Electrospun nanofibers and liquid
AI extract were studied for their in vitro release profiles during single medium dissolution.
Since the pH of facial skin is between 4–6 [73], a PBS solution with a pH of 4.9 was chosen
as the medium. Figure 7c shows cumulative drug release vs. time curves for samples 100,
75, and 50% at 1, 3, 5, 10, 20, and 30 min. 8P-100E showed burst release of more than 70% of
the drug within 5 min. Similarly, 8P-75E and 8P-50E showed 50% and 35% AI nanoparticles
release, respectively, within the 5 min of dissolution in PBS, followed by the linear pattern
of drug release over the 30 min. The difference in the drug release percentage is due to
the variation of extract loaded in the samples [74]. The burst release of drug is due to the
high surface-to-volume ratio of nanofibers, as nanofibers tend to lower their surface energy
immediately [75], the porosity of fibers [74], and the presence of drug particles near the
fiber surface during electrospinning, which facilitates drug release [76].
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membrane.

The DLS technique was used to investigate the size of AI particles released from the
nanofiber membrane of the developed sample, and it revealed AI nanoparticles having an
average size of 144 nm, as indicated in Figure 7d.

3.6. Skin Patch Testing

The patch test is essential for identifying whether a particular cosmetic will cause an
allergic or irritative reaction. The degree of response was measured by grading 0, +, ++, +++
for non-allergic, weak/low allergic, moderate allergic, and strong allergic, respectively [77].
The results written in Table 2 indicated no redness, irritation, or sensitivity, suggesting that
the produced nanofiber sheet can be used safely on human skin [78].

Table 2. Results of skin patch tests.

Sample Type of Allergy Response

8P-100E
(PVA 8% + AI 100%)

Redness 0
Irritation 0

Sensitivity 0
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3.7. In Vitro Antimicrobial Activities

Bacterium is the primary cause of acne and pimples on the face, and S. aureus is one
of the significant bacterias for acne [79]. Figure 8a,b and Figure 9a,b shows the visual
representation of the samples’ qualitative and quantitative samples results against the S.
aureus bacteria, respectively. Figure 8c shows the qualitative results that as the polymer
concentration increases from 6% to 8%, the zone of inhibition changes unnoticeably from
9.6 mm to 9.8 mm, indicating that the change in polymer percentage does not affect the
inhibition zone. In comparison, as the AI concentration increased from 50% to 100% in
the samples, the inhibition zone expanded from 7.1 mm to 9.8 mm, demonstrating that
increasing AI concentration enhances antibacterial properties [80].
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In the quantitative antibacterial efficiency test, results are shown in Figure 8d. They
indicated that as the concentration of AI increased in the samples from 50 to 100%, the
efficiency percentage increased from 97.2 to 99.9%, showing that the AI extract concentration
had an effect on the antibacterial efficiency. However, data showed that increasing the PVA
percentage in the samples from 6 to 8 percent did not mitigate or improve the sample’s
antibacterial effectiveness, indicating that the antibacterial effectiveness was independent
of the PVA wt. (%) of the sample [81].

4. Conclusions

In this study, a biocompatible electrospun AI-integrated PVA nanofiber mask for facial
skin remediation was developed. The composite nanofiber sheet comprises PVA nanofibers
as carriers and AI nanoparticles as antibacterial skin agents. SEM images confirmed the
fabrication of uniform nanofibers with a diameter from 282 to 375 nm at a 6–8% polymer
percentage. The optimized nanofiber membrane, having a diameter of 376 ± 75 nm at
8 wt% PVA with 100:0 AI/water ratio, was used to evaluate the functional characteristics.
According to the FTIR analysis, the successful incorporation of AI into PVA nanofibers
was confirmed by the presence of their functional groups. Based on DLS analysis, AI
ingredients loaded into nanofibers ranges from 50 to 250 nm. The nanofiber sheet also
possesses good air permeability of 15.24 mm/s and tensile strength of 1.67 N, which
improves with an increase in PVA concentration. The WCA of 43.98◦, 22.36◦, and 17.24◦

with the PVA concentration of 6, 7, and 8 wt%, respectively, indicate the hydrophilic nature
of the membrane. The developed nanofiber sheets at 8% PVA of lowest WCA rapidly
swelled via capillary force, reaching the highest swelling percentages of 660% after 10 min
of soaking, whereas the nanofiber membrane with 6 and 7 wt% of PVA showed water
absorption of 490 and 550%, respectively. The optimized nanofiber membrane also exhibits
an excellent antioxidant activity of 79%, evaluated through scavenging of DPPH.

Furthermore, UV-VIS analysis shows that more than 70% of AI nanoparticles (drugs)
are released in just five minutes for an optimized nanofiber membrane. The allergic patch
test demonstrates that nanofibers have no adverse effects on the skin, such as redness,
sensitivity, or irritation, proving their biocompatibility. The qualitative results showed
the excellent antibacterial activity of the nanofiber sheet, whereas the quantitative antibac-
terial test confirmed its 99.9% effectiveness against S. aureus. Based on these functional
characteristics, the best combination sample (8P-100E) with 8% of PVA and a 100:0 ratio
of AI/water is recommended for further application/use. Hence, this innovative green
AI-loaded nanofiber sheet can be applied as an effective facial mask, as demonstrated in
Figure 10, delivering beneficial effects.
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