Physicochemical and Antimicrobial Characterization of Chitosan and Native Glutinous Rice Starch-Based Composite Edible Films: Influence of Different Essential Oils Incorporation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Film Formation
2.1.1. Color Characteristics, Opacity, and Appearance
2.1.2. Thickness
2.1.3. Textural Properties
2.1.4. Moisture Content and Water Vapor Permeability
2.1.5. Microstructural Analysis
2.1.6. FTIR
2.1.7. Antimicrobial Analysis
2.1.8. Statistical Analysis
3. Results
3.1. Color Profile, Opacity, and Appearance
3.2. Thickness and Textural Properties
3.3. Moisture Content and Water Vapor Permeability
3.4. FTIR Spectra
3.5. Microstructural Observations
3.6. Antimicrobial Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Galus, S.; Arik Kibar, E.A.; Gniewosz, M.; Kraśniewska, K. Novel materials in the preparation of edible films and coatings—A review. Coatings 2020, 10, 674. [Google Scholar] [CrossRef]
- Siracusa, V.; Blanco, I. Bio-polyethylene (Bio-PE), bio-polypropylene (Bio-PP) and Bio-Poly(ethylene terephthalate) (Bio-Pet): Recent developments in bio-based polymers analogous to petroleum-derived ones for packaging and engineering applications. Polymers 2020, 12, 1641. [Google Scholar] [CrossRef] [PubMed]
- Saranya, R.; Shaiju, P.; Kevin, E.; Ramesh Babu, P. Bio-based and biodegradable polymers—State-of-the-art, challenges and emerging trends. Curr. Opin. Green Sustain. Chem. 2020, 21, 75–81. [Google Scholar] [CrossRef]
- Hassan, B.; Chatha, S.A.; Hussain, A.I.; Zia, K.M.; Akhtar, N. Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review. Int. J. Biol. Macromol. 2018, 109, 1095–1107. [Google Scholar] [CrossRef] [PubMed]
- Alzagameem, A.; El Khaldi-Hansen, B.; Kamm, B.; Schulze, M. Lignocellulosic biomass for energy, biofuels, biomaterials, and chemicals. In Biomass and Green Chemistry; Vaz, S., Jr., Ed.; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Maftoonazad, N.; Badii, F. Use of edible films and coatings to extend the shelf life of food products. Recent Pat. Food Nutr. Agric. 2009, 1, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Teixeira-Costa, B.E.; Andrade, C.T. Natural polymers used in edible food packaging—History, function and application trends as a sustainable alternative to synthetic plastic. Polysaccharides 2022, 3, 32–58. [Google Scholar] [CrossRef]
- Huang, X.; Liu, H.; Ma, Y.; Mai, S.; Li, C. Effects of extrusion on starch molecular degradation, order–disorder structural transition and digestibility—A review. Foods 2022, 11, 2538. [Google Scholar] [CrossRef]
- Singh, G.P.; Bangar, S.P.; Yang, T.; Trif, M.; Kumar, V.; Kumar, D. Effect on the Properties of Edible Starch-Based Films by the Incorporation of Additives: A Review. Polymers 2022, 14, 1987. [Google Scholar] [CrossRef]
- Dharini, V.; Periyar Selvam, S.; Jayaramudu, J.; Sadiku Emmanuel, R. Functional properties of clay nanofillers used in the biopolymer-based composite films for active food packaging applications—Review. Appl. Clay Sci. 2022, 226, 106555. [Google Scholar] [CrossRef]
- Cheung, R.C.F.; Ng, T.B.; Wong, J.H.; Chan, W.Y. Chitosan: An update on potential biomedical and pharmaceutical applications. Mar. Drugs 2015, 13, 5156–5186. [Google Scholar] [CrossRef]
- Yilmaz Atay, H. Antibacterial activity of chitosan-based systems. In Functional Chitosan; Springer: Berlin/Heidelberg, Germany, 2020; Volume 6, pp. 457–489. [Google Scholar] [CrossRef]
- Chawla, R.; Sivakumar, S.; Kaur, H. Antimicrobial edible films in food packaging: Current scenario and recent nanotechnological advancements-a review. Carbohydr. Polym. 2021, 2, 100024. [Google Scholar] [CrossRef]
- Basavegowda, N.; Baek, K.-H. Synergistic antioxidant and antibacterial advantages of essential oils for food packaging applications. Biomolecules 2021, 11, 1267. [Google Scholar] [CrossRef]
- Ju, J.; Xie, Y.; Guo, Y.; Cheng, Y.; Qian, G.; Yao, W. Application of edible coating with essential oil in food preservation. Crit. Rev. Food Sci. Nutr. 2019, 59, 2467–2480. [Google Scholar] [CrossRef] [PubMed]
- Pranoto, Y.; Rakshit, S.K.; Salokhe, V.M. Enhancing antimicrobial activity of chitosan films by incorporating garlic oil, potassium sorbate and nisin. LWT-Food Sci. Technol. 2005, 38, 859–865. [Google Scholar] [CrossRef]
- Circella, E.; Casalino, G.; D’Amico, F.; Pugliese, N.; Dimuccio, M.M.; Camarda, A.; Bozzo, G. In Vitro Antimicrobial Effectiveness Tests Using Garlic (Allium sativum) against Salmonella enterica Subspecies enterica Serovar Enteritidis. Antibiotics 2022, 11, 1481. [Google Scholar] [CrossRef]
- Thakhiew, W.; Devahastin, S.; Soponronnarit, S. Physical and mechanical properties of chitosan films as affected by drying methods and addition of antimicrobial agent. J. Food Eng. 2013, 119, 140–149. [Google Scholar] [CrossRef]
- Lei, L.; Wan, K.; Zhang, L.; Cong, M.; Wang, Y.; Fu, Y.; Wang, L.; Ren, L. Practical application effect of bionic design replicating from dry lotus leaves surface based on carboxymethyl chitosan incorporated black carrot powder on fried shrimp. Mat. Today Com. 2022, 33, 104673. [Google Scholar] [CrossRef]
- Li, Z.; Lin, S.; An, S.; Liu, L.; Hu, Y.; Wan, L. Preparation, characterization and anti-aflatoxigenic activity of chitosan packaging films incorporated with turmeric essential oil. Int. J. Biol. Macromol. 2019, 131, 420–434. [Google Scholar] [CrossRef]
- Yusof, M.N.; Jai, J.; Pinijsuwan, S. Evaluation of the effect of Curcuma longa L. essential oil in chitosan-starch edible coating. IOP Conf. Ser. Mat. Sci. Eng. 2018, 395, 012020. [Google Scholar] [CrossRef]
- Manshor, N.; Jai, J.; Hamzah, F. Moisture sorption of cassava starch film incorporated with kaffir lime oil and the prediction models. AIP Conf. Proceed. 2021, 2332, 020001. [Google Scholar] [CrossRef]
- Manshor, M.N.; Jai, J.; Hamzah, F.; Somwangthanaroj, A.; Tongdeesoontorn, W. Rheological properties of film solution from cassava starch and kaffir lime oil. J. Phys. Conf. Ser. 2019, 1349, 012045. [Google Scholar] [CrossRef]
- De Souza Soares, L.; de Faria, J.T.; Amorim, M.L.; de Araújo, J.M.; Minim, L.A.; dos Reis Coimbra, J.S.; de Carvalho Teixeira, A.V.N.; de Oliveira, E.B. Rheological and physicochemical studies on emulsions formulated with chitosan previously dispersed in aqueous solutions of lactic acid. Food Biophys. 2017, 12, 109–118. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Liu, J.; Qian, C.; Kan, J.; Jin, C. Effect of grafting method on the physical property and antioxidant potential of chitosan film functionalized with gallic acid. Food Hydrocoll. 2019, 89, 1–10. [Google Scholar] [CrossRef]
- Keawpeng, I.; Lekjing, S.; Paulraj, B.; Venkatachalam, K. Application of Clove Oil and Sonication Process on the Influence of the Functional Properties of Mung Bean Flour-Based Edible Film. Membranes 2022, 12, 535. [Google Scholar] [CrossRef]
- Keawpeng, I.; Paulraj, B.; Venkatachalam, K. Antioxidant and antimicrobial properties of mung bean phyto-film combined with longkong pericarp extract and sonication. Membranes 2022, 12, 379. [Google Scholar] [CrossRef] [PubMed]
- Pereda, M.; Ponce, A.G.; Marcovich, N.E.; Ruseckaite, R.A.; Martucci, J.F. Chitosan-gelatin composites and bi-layer films with potential antimicrobial activity. Food Hydrocoll. 2011, 25, 1372–1381. [Google Scholar] [CrossRef]
- Bhatia, S.; Al-Harrasi, A.; Al-Azri, M.S.; Ullah, S.; Bekhit, A.E.-D.A.; Pratap-Singh, A.; Chatli, M.K.; Anwer, M.K.; Aldawsari, M.F. Preparation and physiochemical characterization of bitter orange oil loaded sodium alginate and casein based edible films. Polymers 2022, 14, 3855. [Google Scholar] [CrossRef]
- Amankwaah, C.; Li, J.; Lee, J.; Pascall, A.M. Antimicrobial activity of chitosan-based films enriched with green tea extracts on murine norovirus, Escherichia coli, and Listeria innocua. Int. J. Food Sci. 2020, 2020, 3941924. [Google Scholar] [CrossRef]
- Olawuyi, I.F.; Lee, W.Y. Development and characterization of bio-composite films based on polysaccharides derived from okra plant waste for food packaging application. Polymers 2022, 14, 4884. [Google Scholar] [CrossRef] [PubMed]
- Socaciu, M.-I.; Fogarasi, M.; Semeniuc, C.A.; Socaci, S.A.; Rotar, M.A.; Mureşan, V.; Pop, O.L.; Vodnar, D.C. Formulation and characterization of antimicrobial edible films based on whey protein isolate and tarragon essential oil. Polymers 2020, 12, 1748. [Google Scholar] [CrossRef]
- Rachtanapun, P.; Luangkamin, S.; Tanprasert, K.; Suriyatem, R. Carboxymethyl cellulose film from durian rind. LWT-Food Sci. Technol. 2012, 48, 52. [Google Scholar] [CrossRef]
- Basiak, E.; Lenart, A.; Debeaufort, F. Effect of starch type on the physico-chemical properties of edible films. Int. J. Biol. Macromol. 2017, 98, 348–356. [Google Scholar] [CrossRef]
- Atarés, L.; Chiralt, A. Essential oils as additives in biodegradable films and coatings for active food packaging. Trends Food Sci. Technol. 2016, 48, 51–62. [Google Scholar] [CrossRef]
- Shah, U.; Naqash, F.; Gani, A.; Masoodi, A. Art and science behind modified starch edible films and coatings: A review. Comprehen. Rev. Food Sci. Food Saf. 2016, 15, 568–580. [Google Scholar] [CrossRef]
- Kaya, M.; Ravikumar, P.; Ilk, S.; Mujtaba, M.; Akyuz, L.; Labidi, J.; Salaberria, A.M.; Cakmak, Y.S.; Erkul, S.K. Production and characterization of chitosan based edible films from Berberis crataegina’s fruit extract and seed oil. Innov. Food Sci. Emerg. Technol. 2018, 45, 287–297. [Google Scholar] [CrossRef]
- Mohamed, A.; Ramaswamy, H.S. Characterization of caseinate–carboxymethyl chitosan-based edible films formulated with and without transglutaminase enzyme. J. Compos. Sci. 2022, 6, 216. [Google Scholar] [CrossRef]
- Bonilla, J.; Atares, L.; Vargas, M.; Chiralt, A. Effect of essential oils and homogenization conditions on properties of chitosan-based films. Food Hydrocol. 2012, 26, 9–16. [Google Scholar] [CrossRef]
- Hatmi, U.R.; Apriyati, E.; Cahyaningrum, N. Edible coating quality with three types of starch and sorbitol plasticizer. E3S Web Conf. 2020, 142, 1–9. [Google Scholar] [CrossRef]
- Jaderi, Z.; Yazdi, T.F.; Mortazavi, A.S.; Koocheki, A. Effects of glycerol and sorbitol on a novel biodegradable edible film based on Malva sylvestris flower gum. Food Sci. Nut. 2022, 1–10. [Google Scholar] [CrossRef]
- Santacruz, S.; Rivadeneira, C.; Castro, M. Edible films based on starch and chitosan. Effect of starch source and concentration, plasticizer, surfactant’s hydrophobic tail and mechanical treatment. Food Hydrocoll. 2015, 49, 89–94. [Google Scholar] [CrossRef]
- Hammam, A.R.A. Technological, applications, and characteristics of edible films and coatings: A review. SN Appl. Sci. 2019, 1, 632. [Google Scholar] [CrossRef] [Green Version]
- Skurtys, O.; Acevedo, C.; Pedreschi, F.; Enronoe, J.; Osorio, F.; Aguilera, J.M. Food Hydrocolloid Edible Films and Coatings; NOVA: Hauppauge, NY, USA, 2011; pp. 1–66. [Google Scholar]
- Liu, Z.; Han, J.H. Film-forming characteristics of starches. J. Food Sci. 2005, 70, E31–E36. [Google Scholar] [CrossRef]
- Yekta, R.; Mirmoghtadaie, L.; Hosseini, H.; Norouzbeigi, S.; Hosseini, S.M.; Shojaee-Aliabadi, S. Development and characterization of a novel edible film based on Althaea rosea flower gum: Investigating the reinforcing effects of bacterial nanocrystalline cellulose. Int. J. Biol. Macromol. 2020, 158, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Sutput, D.; Lazic, V.; Pezo, L.; Markov, S.; Vastag, Z.; Popovic, L.; Radulovic, A.; Ostojic, S.; Zlatanovic, S.; Popovic, S. Characterization of starch edible films with different essential oils addition. Pol. J. Food Nutr. Sci. 2016, 66, 277–285. [Google Scholar] [CrossRef]
- Arham, R.; Salengke, S.; Metusalach, M.; Mulyati, M.T. Optimization of agar and glycerol concentration in the manufacture of edible film. Int. Food Res. J. 2018, 25, 1845–1851. [Google Scholar]
- Buso-Rios, O.I.; Velazquez, G.; Jarquin-Enriquez, L.; Flores-Martinez, N.L. Effect of the concentration of starch and clove essential oil on the physicochemical properties of biodegradable films. Rev. Mex. De Ing. Quim. 2020, 19, 1315–1326. [Google Scholar] [CrossRef]
- Tarique, J.; Sapuan, S.M.; Khalina, A. Effect of glycerol plasticizer loading on the physical, mechanical, thermal, and barrier properties of arrowroot (Maranta arundinacea) starch biopolymers. Sci. Rep. 2021, 11, 13900. [Google Scholar] [CrossRef]
- Huri, D.; Nisa, F.C. The effect of glycerol and apple peel waste extract concentration on physical and chemical characteristic of edible film. J. Pangan Agroindustri 2014, 2, 29–40. [Google Scholar]
- Abdollahi, M.; Rezaei, M.; Farzi, G. Improvement of active chitosan film properties with rosemary essential oil for food packaging. Int. J. Food Sci. Tech. 2012, 47, 847–853. [Google Scholar] [CrossRef]
- Phan, T.D.; Debeaufort, F.; Luu, D.; Voilley, A. Functional properties of edible agar-based and starch-based films for food quality preservation. J. Agric. Food Chem. 2005, 53, 973–981. [Google Scholar] [CrossRef]
- Mahdavi, V.; Hosseini, S.E.; Sharifan, A. Effect of edible chitosan film enriched with anise (Pimpinella anisum L.) essential oil on shelf life and quality of the chicken burger. Food Sci. Nutr. 2018, 6, 269–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anis, A.; Pal, K.; Al-Zahrani, S.M. Essential oil-containing polysaccharide-based edible films and coatings for food security applications. Polymers 2021, 13, 575. [Google Scholar] [CrossRef]
- Hong, T.; Yin, J.; Nie, S.; Xie, M. Application of infrared spectroscopy in polysaccharide structural analysis progress, challenge, and perspective. Food Chem. X 2021, 12, 100168. [Google Scholar] [CrossRef] [PubMed]
- Abdul Ghani, S.; Baker, A.A.; Samsudin, S.A. Mechanical properties of chitosan modified montmorillonite filled tapioca starch nanocomposite films. Adv. Mater. Res. 2013, 686, 145–154. [Google Scholar] [CrossRef]
- Nobrega, M.M.; Olivato, B.J.; Muller, O.M.C.; Yamashita, F. Biodegradable starch-based films containing saturated fatty acids: Thermal, infrared, and Raman spectroscopic characterization. Polímeros Ciência E Tecnol. 2012, 22, 475–480. [Google Scholar] [CrossRef]
- Zhou, W.; He, Y.; Liu, F.; Liano, L.; Huang, X.; Li, R.; Zou, Y.; Zhou, L.; Zou, L.; Liu, Y.; et al. Carboxymethyl chitosan-pullulan edible films enriched with galangal essential oil: Characterization and application in mango preservation. Carbohydr. Polym. 2021, 256, 117579. [Google Scholar] [CrossRef]
- Davoodi, N.M.; Milani, M.J.; Farahmandfar, R. Preparation and characterization of a novel biodegradable film based on sulfated polysaccharide extracted from seaweed Ulva intestinalis. Food Sci. Nutr. 2021, 9, 4108–4116. [Google Scholar] [CrossRef]
- Zhang, P.; Zhao, Y.; Shi, Q. Characterization of a novel edible film based on gum ghatti: Effect of plasticizer type and concentration. Carbohydr. Polym. 2016, 153, 345–355. [Google Scholar] [CrossRef]
- Fernandes Queiroz, M.; Melo, K.R.T.; Sabry, D.A.; Sassaki, G.L.; Rocha, H.A.O. Does the Use of Chitosan Contribute to Oxalate Kidney Stone Formation? Mar. Drugs 2015, 13, 141–158. [Google Scholar] [CrossRef]
- Choudhury, R.A.; Saluja, P.; Prasad, G.S. Pullulan production by an osmotolerant Aureobasidium pullulans RBF-4A3 isolated from flowers of Caesulia axillaris. Carbohydr. Polym. 2011, 83, 1547–1552. [Google Scholar] [CrossRef]
- Ning, W.; Jiugao, Y.; Xiaofei, M.; Ying, W. The influence of citric acid on the properties of thermoplastic starch/linear low-density polyethylene blends. Carbohydr. Polym. 2007, 67, 446. [Google Scholar] [CrossRef]
- Dashipour, A.; Khaskar, R.; Hosseini, H.; Shojaee-Aliabadi, S.; Ghanati, K. Physical, antioxidant and antimicrobial characteristics of carboxymethyl cellulose edible film cooperated with clove essential oil. Zahedan J. Res. Med. Sci. 2014, 16, 34–42. [Google Scholar]
- Amalraj, A.; Hapniuk, T.J.; Thomas, S.; Gopi, S. Preparation, characterization and antimicrobial activity of polyvinyl alcohol/gum arabic/chitosan composite films incorporated with black pepper essential oil and ginger essential oil. Int. J. Biol. Macromol. 2020, 151, 366–375. [Google Scholar] [CrossRef]
- Aljobair, O.M. Chemical composition, antimicrobial properties and antioxidant activity of galangal rhizome. Food Sci. Technol. 2020, 42, e45622. [Google Scholar] [CrossRef]
- Sabphon, C.; Srichoosilp, A.; Wanichwecharungruang, S.; Sukwattanasinitt, M.; Vadhanasindhu, P.; Ngamchuachit, P.; Thiraphibundet, P. Dissolvable and edible film for long-lasting kaffir lime aroma in food. Int. J. Food Sci. Technol. 2020, 55, 1523–1530. [Google Scholar] [CrossRef]
- Zhao, R.; Guan, W.; Zhou, X.; Lao, M.; Cai, L. The physiochemical and preservation properties of anthocyanidin/chitosan nanocomposite-based edible films containing cinnamon-perilla essential oil pickering nanoemulsions. LWT-Food Sci. Technol. 2022, 153, 112506. [Google Scholar] [CrossRef]
- Yusof, M.N.; Jai, J.; Hamzah, F.; Yahya, A.; Pinijsuwan, S. Effect of concentration of Curcuma longa L. on chitosan starch based edible coating. J. Phys. Conf. Ser. 2017, 885, 012008. [Google Scholar] [CrossRef] [Green Version]
- Espitia, P.J.P.; Avena-Bustillos, J.; Du, W.; Chiou, B.; Williams, G.T.; Wood, D.; McHugh, H.T.; Soares, F.F.N. Physical and antimicrobial properties of Acai edible films formulated with thyme essential oil and apple skin polyphenols. J. Food Sci. 2014, 79, M903–M910. [Google Scholar] [CrossRef]
- Yeddes, W.; Djebali, K.; Wannes, W.A.; Horchani-Naifer, K.; Hammami, M.; Younes, I.; Tounsi, M.S. Gelatin-chitosan-pectin films incorporated with rosemary essential oil: Optimized formulation using mixture design and response surface methodology. Int. J. Biol. Macromol. 2020, 154, 92–103. [Google Scholar] [CrossRef] [PubMed]
- Sedlarikova, J.; Janalikova, M.; Peer, P.; Pavlatkova, L.; Minarik, A.; Pleva, P. Zein-based films containing monolaurin/eugenol or essential oils with potential for bioactive packaging application. Int. J. Mol. Sci. 2022, 23, 384. [Google Scholar] [CrossRef]
- Bangar, S.P.; Purewal, S.S.; Trif, M.; Maqsood, S.; Kumar, M.; Manjunatha, V.; Rusu, A.V. Functionality and applicability of starch-based films: An eco-friendly approach. Foods 2021, 10, 2181. [Google Scholar] [CrossRef] [PubMed]
- Goy, C.R.; Britto, D.; Assis, G.B.O. A review of the antimicrobial activity of chitosan. Polímeros Ciência E Tecnol. 2009, 19, 241–247. [Google Scholar] [CrossRef]
- Luan, J.; Wei, X.; Li, Z.; Tang, W.; Yang, F.; Yu, Z.; Li, X. Inhibition of chitosan with different molecular weights on barley-borne Fusarium graminearum during barley malting process for improving malt quality. Foods 2022, 11, 3058. [Google Scholar] [CrossRef] [PubMed]
- Ardean, C.; Davidescu, C.M.; Nemes, N.S.; Negrea, A.; Ciopec, M.; Duteanu, N.; Negrea, P.; Duda-Seiman, D.; Musta, V. Factors Influencing the Antibacterial Activity of Chitosan and Chitosan Modified by Functionalization. Int. J. Mol. Sci. 2021, 22, 7449. [Google Scholar] [CrossRef] [PubMed]
- Guarnier, A.; Triunfo, M.; Scieuzo, C.; Lanniciello, D.; Tafi, E.; Hahn, T.; Zibek, S.; Salvia, R.; Bonis, D.B.; Falabella, P. Animicrobial properties of chitosan from different developmental stages of the bioconverter insect Hermetia illucens. Sci. Rep. 2022, 12, 8084. [Google Scholar] [CrossRef] [PubMed]
- Pranoto, Y.; Salokhe, M.V.; Rakshit, K.S. Physical and antibacterial properties of alginate based edible film incorporated with garlic oil. Food Res. Int. 2005, 38, 267–272. [Google Scholar] [CrossRef]
- Perdana, M.I.; Ruamcharoen, J.; Panphon, S.; Leelakriangsak, M. Antimicrobial activity and physical properties of starch/chitosan film incorporated with lemongrass essential oil and its application. LWT-Food Sci. Technol. 2021, 141, 110934. [Google Scholar] [CrossRef]
- Md Othman, S.N.A.; Hassan, M.A.; Nahar, L.; Basar, N.; Jamil, S.; Sarker, S.D. Essential oils from the Malaysian Citrus (Rutaceae) medicinal plants. Medicines 2016, 3, 13. [Google Scholar] [CrossRef] [Green Version]
- Mayachiew, P.; Devahastin, S. Antimicrobial and antioxidant activities of Indian gooseberry and galangal extracts. LWT-Food Sci. Technol. 2008, 41, 1153–1159. [Google Scholar] [CrossRef]
- Seydim, C.A.; Sarikus-Tutal, G.; Sogut, E. Effect of whey protein edible films containing plant essential oils on microbial inactivation of sliced Kasar cheese. Food Packag. Shelf Life 2020, 26, 100567. [Google Scholar] [CrossRef]
- Gómez-Estaca, J.; López de Lacey, A.; Gómez-Guillén, M.C.; LópezCaballero, M.E.; Montero, P. Antimicrobial activity of composite edible films based on fish gelatin and chitosan incorporated with clove essential oil. J. Aquat. Food Prod. Technol. 2009, 18, 46–52. [Google Scholar] [CrossRef]
Treatment | Amount of E. coli Count (CFU/mL) | ||||||
---|---|---|---|---|---|---|---|
0 h | 2 h | 4 h | 8 h | 12 h | 24 h | 48 h | |
Control | TNTC | TNTC | TNTC | TNTC | TNTC | 173.33 ± 23.50 | 0.00 ± 0.0 |
Garlic | TNTC | TNTC | TNTC | TNTC | 0.00 ± 0.0 | 0.00 ± 0.0 | 0.00±0.0 |
Galangal | TNTC | TNTC | TNTC | TNTC | TNTC | 25.03 ± 1.0 | 0.00 ± 0.0 |
Turmeric | TNTC | TNTC | TNTC | TNTC | TNTC | 65.00 ± 0.0 | 45.00 ± 0.0 |
Kaffir lime | TNTC | TNTC | TNTC | TNTC | TNTC | 30.00 ± 0.0 | 21.67 ± 19.3 |
Treatment | Amount of S. Typhimurium count (CFU/mL) | ||||||
0 h | 2 h | 4 h | 8 h | 12 h | 24 h | 48 h | |
Control | TNTC | TNTC | TNTC | TNTC | TNTC | 89.33 ± 48.7 | 28.50 ± 19.0 |
Garlic | TNTC | TNTC | 74.00 ± 0.0 | 0.00 ± 0.0 | 0.00 ± 0.0 | 0.00 ± 0.00 | 0.00 ± 0.0 |
Galangal | TNTC | TNTC | TNTC | TNTC | TNTC | 230.00 ± 0.00 | 61.00 ± 0.0 |
Turmeric | TNTC | TNTC | TNTC | TNTC | TNTC | 65.00 ± 0.00 | 25.67 ± 9.3 |
Kaffir lime | TNTC | TNTC | TNTC | TNTC | TNTC | 60.00 ± 0.00 | 35.60 ± 19.0 |
Treatment | Amount of L. monocytogenes count (CFU/mL) | ||||||
0 h | 2 h | 4 h | 8 h | 12 h | 24 h | 48 h | |
Control | TNTC | TNTC | TNTC | TNTC | TNTC | 246.00 ± 25.9 | 21.67 ± 9.4 |
Garlic | TNTC | TNTC | TNTC | TNTC | TNTC | 83.00 ± 11.0 | 0.00 ± 0.0 |
Galangal | TNTC | 202.00 ± 0.0 | 116.00 ± 1.3 | 68.00 ± 7.0 | 10.00 ± 2.8 | 0.00 ± 0.0 | 0.00 ± 0.0 |
Turmeric | TNTC | 22.33 ± 6.0 | 17.00 ± 6.9 | 16.00 ± 8.5 | 13.67 ± 6.03 | 0.00 ± 0.0 | 0.00 ± 0.0 |
Kaffir lime | TNTC | TNTC | TNTC | 0.00 ± 0.0 | 0.00 ± 0.0 | 0.00 ± 0.0 | 0.00 ± 0.0 |
Treatment | Amount of S. aureus count (CFU/mL) | ||||||
0 h | 2 h | 4 h | 8 h | 12 h | 24 h | 48 h | |
Control | TNTC | TNTC | TNTC | TNTC | TNTC | 183.00 ± 48.6 | 170.00 ± 83.4 |
Garlic | TNTC | 132.00 ± 0.0 | 100.00 ± 4.2 | 57.00 ± 0.0 | 1.33 ± 1.5 | 0.00 ± 0.0 | 0.00 ± 0.0 |
Galangal | TNTC | TNTC | TNTC | 7.00 ± 5.6 | 1.00 ± 0.0 | 0.00 ± 0.0 | 0.00 ± 0.0 |
Turmeric | TNTC | TNTC | TNTC | TNTC | TNTC | 40.00 ± 0.0 | 2.33 ± 0.2 |
Kaffir lime | TNTC | TNTC | TNTC | TNTC | TNTC | 25.00 ± 0.0 | 7.50 ± 6.3 |
Treatment | Amount of P. fluorescens count (CFU/mL) | ||||||
0 h | 2 h | 4 h | 8 h | 12 h | 24 h | 48 h | |
Control | TNTC | TNTC | TNTC | TNTC | TNTC | TNTC | 176.00 ± 31.1 |
Garlic | TNTC | TNTC | 44.00 ± 0.0 | 17.33 ± 4.1 | 6.00 ± 5.2 | 0.00 ± 0.0 | 0.00 ± 0.0 |
Galangal | TNTC | 202.00 ± 0.0 | 179.00 ± 0.0 | 125.01 ± 3.1 | 80.00 ± 0.0 | 0.00 ± 0.0 | 0.00 ± 0.0 |
Turmeric | TNTC | TNTC | TNTC | TNTC | TNTC | 166.21 ± 5.4 | 85.10 ± 3.2 |
Kaffir lime | TNTC | TNTC | TNTC | TNTC | TNTC | TNTC | 69.23 ± 11.0 |
Treatment | Amount of L. plantarum count (CFU/mL) | ||||||
0 h | 2 h | 4 h | 8 h | 12 h | 24 h | 48 h | |
Control | TNTC | TNTC | TNTC | TNTC | 169.00 ± 17.69 | 156.67 ± 38.44 | 143.00 ± 13.7 |
Garlic | TNTC | TNTC | TNTC | TNTC | 106.00 ± 27.92 | 85.50 ± 20.51 | 14.50 ± 3.5 |
Galangal | TNTC | TNTC | TNTC | TNTC | 81.66 ± 7.11 | 39.00 ± 0.0 | 21.00 ± 8.4 |
Turmeric | TNTC | TNTC | TNTC | 91.00 ± 0.0 | 43.00 ± 11.54 | 2.00 ± 0.00 | 0.00 ± 0.0 |
Kaffir lime | TNTC | TNTC | TNTC | 191.00 ± 1.3 | 85.50 ± 5.55 | 23.21 ± 3.14 | 0.00 ± 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venkatachalam, K.; Rakkapao, N.; Lekjing, S. Physicochemical and Antimicrobial Characterization of Chitosan and Native Glutinous Rice Starch-Based Composite Edible Films: Influence of Different Essential Oils Incorporation. Membranes 2023, 13, 161. https://doi.org/10.3390/membranes13020161
Venkatachalam K, Rakkapao N, Lekjing S. Physicochemical and Antimicrobial Characterization of Chitosan and Native Glutinous Rice Starch-Based Composite Edible Films: Influence of Different Essential Oils Incorporation. Membranes. 2023; 13(2):161. https://doi.org/10.3390/membranes13020161
Chicago/Turabian StyleVenkatachalam, Karthikeyan, Natthida Rakkapao, and Somwang Lekjing. 2023. "Physicochemical and Antimicrobial Characterization of Chitosan and Native Glutinous Rice Starch-Based Composite Edible Films: Influence of Different Essential Oils Incorporation" Membranes 13, no. 2: 161. https://doi.org/10.3390/membranes13020161
APA StyleVenkatachalam, K., Rakkapao, N., & Lekjing, S. (2023). Physicochemical and Antimicrobial Characterization of Chitosan and Native Glutinous Rice Starch-Based Composite Edible Films: Influence of Different Essential Oils Incorporation. Membranes, 13(2), 161. https://doi.org/10.3390/membranes13020161