A Modern Computer Application to Model Rare Earth Element Ion Behavior in Adsorptive Membranes and Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Lagergren Kinetic Models
2.2. The Elovich Model
2.3. Mechanism Insights
2.3.1. Intraparticle Diffusion
2.3.2. The Diffusion-Chemisorption Model
2.3.3. The Boyd Equation
2.4. Analysed Materials
3. Results and Discussion
- Main window for model selection (Figure 1). Individual models are selected from the combo box.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Taggart, R.K.; Hower, J.C.; Hsu-Kim, H. Effects of Roasting Additives and Leaching Parameters on the Extraction of Rare Earth Elements from Coal Fly Ash. Int. J. Coal Geol. 2018, 196, 106–114. [Google Scholar] [CrossRef]
- Balaram, V. Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geosci. Front. 2019, 10, 1285–1303. [Google Scholar] [CrossRef]
- Kogarko, L.N.; Kononova, V.A.; Orlova, M.P.; Woolley, A.R. Alkaline Rocks of the World, Part 2: Former Soviet Union; Chapman & Hall: London, UK, 1995. [Google Scholar]
- Mihalasky, M.J.; Tucker, R.D.; Renaud, K.; Verstraeten, I.M. Rare Earth Element and Rare Metal Inventory of Central Asia; USGS: Reston, VA, USA, 2018; Fact Sheet 2017–3089, p. 4. [Google Scholar]
- Xiong, X.; Liu, X.; Yu, I.K.M.; Wang, L.; Zhou, J.; Sun, X.; Rinklebe, J.; Shaheen, S.M.; Sik Ok, Y.; Lin, Z.; et al. Potentially toxic elements in solid waste streams: Fate and management approaches. Environ. Pollut. 2019, 253, 680–707. [Google Scholar] [CrossRef]
- Honaker, R.Q.; Groppo, J.; Yoon, R.-H.; Luttrell, G.H.; Noble, A.; Herbst, J. Process evaluation and flowsheet development for the recovery of rare earth elements from coal and associated byproducts. Miner. Metall. Proc. 2017, 34, 107–115. [Google Scholar] [CrossRef]
- Rybak, A.; Rybak, A. Characteristics of Some Selected Methods of Rare Earth Elements Recovery from Coal Fly Ashes. Metals 2021, 11, 142. [Google Scholar] [CrossRef]
- Lin, R.; Howard, B.H.; Roth, E.A.; Bank, T.L.; Granite, E.J.; Soong, Y. Enrichment of rare earth elements from coal and coal by-products by physical separations. Fuel 2017, 200, 506–520. [Google Scholar] [CrossRef]
- Kashiwakura, S.; Kumagai, Y.; Kubo, H.; Wagatsuma, K. Dissolution of Rare Earth Elements from Coal Fly Ash Particles in a Dilute H2SO4 Solvent. Open J. Phys. Chem. 2013, 3, 69–75. [Google Scholar] [CrossRef]
- Peiravi, M.; Ackah, A.; Guru, R.; Liu, J.; Mohanty, M. Chemical extraction of rare earth elements from coal ash. Miner. Metall. Process. 2017, 34, 170–177. [Google Scholar] [CrossRef]
- Cao, S.; Zhou, C.; Pan, J.; Liu, C.; Tang, M.; Ji, W.; Hu, T.; Zhang, N. Study on Influence Factors of Leaching of Rare Earth Elements from Coal Fly Ash. Energy Fuels 2018, 327, 8000–8005. [Google Scholar] [CrossRef]
- Bradło, D.; Żukowski, W.; Czupryński, P.; Witkowski, K. Potential of Metal Recovery from Coal Combustion Products. Part II. Leaching of Selected Elements. J. Pol. Miner. Eng. Soc. 2015, 16, 163–170. [Google Scholar]
- Lin, R.; Stuckman, M.; Howard, B.H.; Bank, T.L.; Roth, E.A.; Macala, M.K.; Lopano, C.; Soong, Y.; Granite, E.J. Application of sequential extraction and hydrothermal treatment for characterization and enrichment of rare earth elements from coal fly ash. Fuel 2018, 232, 124–133. [Google Scholar] [CrossRef]
- Sahoo, P.K.; Kim, K.; Powell, M.A.; Equeenuddin, S.M. Recovery of metals and other beneficial products from coal fly ash: A sustainable approach for fly ash management. Int. J. Coal Sci. Technol. 2016, 3, 267–283. [Google Scholar] [CrossRef]
- Shin, D.; Kim, J.; Kim, B.-S.; Jeong, J.; Lee, J.-C. Use of phosphate solubilizing Bacteria to leach rare earth elements from monazite-bearing ore. Minerals 2015, 5, 189–202. [Google Scholar] [CrossRef]
- Ibrahim, H.; El-Sheikh, E. Bioleaching treatment of Abu Zeneima uraniferous gibbsite ore material for recovering U, REEs, Al and Zn. Res. J. Chem. Sci. 2011, 1, 55–66. [Google Scholar]
- Hassanien, W.A.G.; Desouky, O.A.N.; Hussien, S.S.E. Bioleaching of some rare earth elements from Egyptian monazite using Aspergillus ficuum and Pseudomonas aeruginosa. Walailak J. Sci. Technol. 2013, 11, 809–823. [Google Scholar]
- Muravyov, M.I.; Bulaev, A.G.; Melamud, V.S.; Kondrat’eva, T.F. Leaching of Rare Earth Elements from Coal Ashes Using Acidophilic Chemolithotrophic Microbial Communities. Microbiology 2015, 84, 194–201. [Google Scholar] [CrossRef]
- Zheng, X.; Zhang, F.; Liu, E.; Xu, X.; Yan, Y. Efficient recovery of neodymium in acidic system by free-standing dual-template docking oriented ionic imprinted mesoporous films. ACS Appl. Mater. Inter. 2017, 9, 730–739. [Google Scholar] [CrossRef]
- Liu, E.; Xu, X.; Zheng, X.; Zhang, F.; Liu, E.; Li, C. An ion imprinted macroporous chitosan membrane for efficiently selective adsorption of dysprosium. Sep. Purif. Technol. 2017, 189, 288–295. [Google Scholar] [CrossRef]
- Kononova, O.N.; Bryuzgina, G.L.; Apchitaeva, O.V.; Kononov, Y.S. Ion Exchange Recovery of Chromium (VI) and Manganese (II) from Aqueous Solutions. Arab. J. Chem. 2019, 12, 2713–2720. [Google Scholar] [CrossRef]
- Mollah, A.; Begum, A.; Rahman, M. Removal of Radionuclides from Low Level Radioactive Liquid Waste by Precipitation. J. Radioanal. Nucl. Chem. 1998, 229, 187–189. [Google Scholar] [CrossRef]
- Montaña, M.; Camacho, A.; Serrano, I.; Devesa, R.; Matia, L.; Vallés, I. Removal of Radionuclides in DrinkingWater by Membrane Treatment Using Ultrafiltration, Reverse Osmosis and Electrodialysis Reversal. J. Environ. Radioact. 2013, 125, 86–92. [Google Scholar] [CrossRef]
- Wang, J.; Zhuang, S. Removal of Various Pollutants from Water and Wastewater by Modified Chitosan Adsorbents. Crit. Rev. Environ. Sci. Technol. 2017, 47, 2331–2386. [Google Scholar] [CrossRef]
- Lakherwa, D. Adsorption of heavy metals: A review. Int. J. Environ. Res. 2014, 4, 2249–3131. [Google Scholar]
- Malik, D.S.; Jain, C.K.; Yadav, A. Removal of heavy metals from emerging cellulosic low-cost adsorbents: A review. Appl Water Sci. 2016, 7, 2113–2136. [Google Scholar] [CrossRef] [Green Version]
- Khulbe, K.C.; Matsuura, T. Removal of heavy metals and pollutants by membrane adsorption techniques. Appl. Wat. Sci. 2018, 8, 19. [Google Scholar] [CrossRef]
- Zheng, G.; Ye, H.; Zhang, Y.; Li, H.; Lin, L.; Ding, X. Removal of heavy metal in drinking water resource with cation-exchange resins (Type 110-H) mixed PES membrane adsorbents. J. Hazard Toxic Radioact Waste 2014, 19, 1–6. [Google Scholar] [CrossRef]
- El Ouardi, Y.; Lamsayah, M.; Butylina, S.; Geng, S.; Esmaeili, M.; Giove, A.; Mouele, E.S.M.; Virolainen, S.; El Barkany, S.; Ouammou, A.; et al. Sustainable composite material based on glutenin biopolymeric-clay for efficient separation of rare earth elements. Chem. Eng. J. 2022, 440, 135959. [Google Scholar] [CrossRef]
- Wang, L.; Gao, Y.; Chai, Y.; Sun, X. Recovery of rare earth by electro-sorption with sodium diphenylamine sulfonate modified activated carbon electrode. Sep. Purif. Technol. 2022, 292, 121005. [Google Scholar] [CrossRef]
- Qin, W.; Yu, A.; Han, X.; Wang, J.; Sun, J.; Zhang, J.; Weng, Y. Postsynthetic of MIL-101-NH2 MOFs supported on PVDF membrane for REEs recovery from waste phosphor. RSC Adv. 2022, 12, 24670–24680. [Google Scholar] [CrossRef]
- Bashiri, A.; Nikzad, A.; Malek, R.; Asadnia, M.; Razmjou, A. Rare Earth Elements Recovery Using Selective Membranes via Extraction and Rejection. Membranes 2022, 12, 80. [Google Scholar] [CrossRef]
- Li, L.; Yu, B.; Davis, K.; King, A.; Dal-Cin, M.; Nicalek, A.; Du, N. Separation of Neodymium (III) and Lanthanum (III) via a Flat Sheet-Supported Liquid Membrane with Different Extractant-Acid Systems. Membranes 2022, 12, 1197. [Google Scholar] [CrossRef]
- Molina-Calderón, L.; Basualto-Flores, C.; Paredes, V.; Venegas-Yazigi, D. Advances of magnetic nanohydrometallurgy using superparamagnetic nanomaterials as rare earth ions adsorbents: A grand opportunity for sustainable rare earth recovery. Sep. Purif. Technol. 2022, 299, 121708. [Google Scholar] [CrossRef]
- Yadav, A.G.; Gujar, R.B.; Valsala, T.P.; Mohapatra, P.K. Comparative study on the uptake of lanthanides from acidic feeds using extraction chromatography resins containing N,N,N’,N’-tetra-n-alkyl diglycolamides with varying alkyl chain length in an ionic liquid. J. Chromatogr. A 2022, 1687, 463683. [Google Scholar] [CrossRef]
- Xiao, J.; Li, B.; Qiang, R.; Qiu, H.; Chen, J. Highly selective adsorption of rare earth elements by honeycomb-shaped covalent organic frameworks synthesized in deep eutectic solvents. Environ. Res. 2022, 214, 113977. [Google Scholar] [CrossRef]
- Liu, J.S.; Wang, X. Novel silica-based hybrid adsorbents: Lead (II) adsorption isotherms. Sci. World J. 2013, 6, 897159. [Google Scholar] [CrossRef]
- Liu, J.; Song, L.; Shao, G. Novel zwitterionic inorganic–organic hybrids: Kinetic and equilibrium model studies on Pb2+ removal from aqueous solution. J. Chem. Eng. Data 2011, 56, 2119–2127. [Google Scholar] [CrossRef]
- Dong, Q.; Liu, J.S.; Song, L.; Shao, G.Q. Novel zwitterionic inorganic-organic hybrids: Synthesis of hybrid adsorbents and their applications for Cu2+ removal. J. Hazard Mater 2011, 186, 1335–1342. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Wang, X.; Liu, J.S.; Wu, L.L. Removal of copper (Cu2+) from water using novel hybrid adsorbents: Kinetics and isotherms. J. Chem. Eng. Data 2013, 58, 1141–1150. [Google Scholar] [CrossRef]
- Zhu, W.; Liu, J.; Li, M. Fundamental studies of novel zwitterionic hybrid membranes: Kinetic model and mechanism insights into strontium removal. Sci. World J. 2014, 7, 485820. [Google Scholar] [CrossRef]
- Zhu, Y.; Hu, J.; Wang, J. Removal of Co2+ from radioactive wastewater by polyvinyl alcohol PVA/chitosan magnetic composite. Prog. Nucl. Energy 2014, 71, 172–178. [Google Scholar] [CrossRef]
- Rybak, A.; Rybak, A.; Sysel, P. Modeling of Gas Permeation through Mixed-Matrix Membranes Using Novel Computer Application MOT. Appl. Sci. 2018, 8, 1166. [Google Scholar] [CrossRef]
- Kusumkar, V.; Galamboš, M.; Viglašová, E.; Da, M.; Šmelková, J. Ion-Imprinted Polymers: Synthesis, Characterization, and Adsorption of Radionuclides. Materials 2021, 14, 1083. [Google Scholar] [CrossRef]
- Tarley, C.R.T.; Corazza, M.Z.; Somera, B.F.; Segatelli, M.G. Preparation of New Ion-Selective Cross-Linked Poly (Vinylimidazole-Co-Ethylene Glycol Dimethacrylate) Using a Double-Imprinting Process for the Preconcentration of Pb2+ Ions. J. Colloid Interface Sci. 2015, 450, 254–263. [Google Scholar] [CrossRef]
- Mahony, J.O.; Nolan, K.; Smyth, M.R.; Mizaikoff, B. Molecularly Imprinted Polymers—Potential and Challenges in Analytical Chemistry. Anal. Chim. Acta 2005, 534, 31–39. [Google Scholar] [CrossRef]
- Say, R.; Birlik, E.; Ersöz, A.; Yılmaz, F.; Gedikbey, T.; Denizli, A. Preconcentration of Copper on Ion-Selective Imprinted Polymer Microbeads. Anal. Chim. Acta 2003, 480, 251–258. [Google Scholar] [CrossRef]
- Nicholls, I.A.; Adbo, K.; Andersson, H.S.; Andersson, P.O.; Ankarloo, J.; Hedin-Dahlström, J.; Jokela, P.; Karlsson, J.G.; Olofsson, L.; Rosengren, J.; et al. Can We Rationally Design Molecularly Imprinted Polymers? Anal. Chim. Acta 2001, 435, 9–18. [Google Scholar] [CrossRef]
- Laatikainen, K.; Udomsap, D.; Siren, H.; Brisset, H.; Sainio, T.; Branger, C. Effect of Template Ion–Ligand Complex Stoichiometry on Selectivity of Ion-Imprinted Polymers. Talanta 2015, 134, 538–545. [Google Scholar] [CrossRef]
- Özkara, S.; Andaç, M.; Karakoç, V.; Say, R.; Denizli, A. Ion-imprinted PHEMA Based Monolith for the Removal of Fe3+ Ions from Aqueous Solutions. J. Appl. Polym. Sci. 2011, 120, 1829–1836. [Google Scholar] [CrossRef]
- Rao, T.P.; Daniel, S.; Gladis, J.M. Tailored Materials for Preconcentration or Separation of Metals by Ion-Imprinted Polymers for Solid-Phase Extraction (IIP-SPE). TrAC Trends Anal. Chem. 2004, 23, 28–35. [Google Scholar]
- Alfaro-Cuevas-Villanueva, R.; Hidalgo-V, A.; de Jes, C.; Cort, R. Thermodynamic, kinetic, and equilibrium parameters for the removal of lead and cadmium from aqueous solutions with calcium alginate beads. Sci. World J. 2014, 2014, 647512. [Google Scholar] [CrossRef]
- Krishna, R.H.; Swamy, A. Studies on removal of Cr (VI) from aqueous solutions using powder of mosambi fruit peelings (PMFP) as a low cost sorbent. E-J. Chem. 2012, 9, 1389–1399. [Google Scholar] [CrossRef]
- Osasona, I.; Ajayi, O.; Adebayo, A. Equilibrium, kinetics, and thermodynamics of the biosorption of Zn (II) from aqueous solution using powdered cow hooves. ISRN Phys. Chem. 2013, 2013, 865219. [Google Scholar] [CrossRef]
- Wang, X.S.; Lu, Z.; Miao, H.; He, W.; Shen, H. Kinetics of Pb (II) adsorption on black carbon derived from wheat residue. Chem. Eng. J. 2011, 166, 986–993. [Google Scholar] [CrossRef]
- Chien, S.H.; Clayton, W. Application of Elovich equation to the kinetics of phosphate release and sorption in soils. Soil Sci. Soc. Am. J. 1980, 44, 265–268. [Google Scholar] [CrossRef]
- Atia, A.A.; Donia, A.; Yousif, A. Removal of some hazardous heavy metals from aqueous solution using magnetic chelating resin with iminodiacetate functionality. Sep. Purif. Technol. 2008, 61, 348–357. [Google Scholar] [CrossRef]
- Guibal, E.; Milot, C.; Tobin, J.M. Metal–anion sorption by chitosan beats: Equilibrium and kinetic studies. Ind. Eng. Chem. Res. 1998, 37, 1454–1463. [Google Scholar] [CrossRef]
- Tavlieva, M.P.; Genieva, S.; Georgieva, V.; Vlaev, L.T. Kinetic study of brilliant green adsorption fromaqueous solution onto white rice husk ash. J. Colloid Interface Sci. 2013, 409, 112–122. [Google Scholar] [CrossRef]
- BHameed, H.; El-Khaiary, M.I. Equilibrium, kinetics and mechanism of malachite green adsorption on activated carbon prepared from bamboo by K2CO3 activation and subsequent gasification with CO2. J. Hazard. Mater. 2008, 157, 344–351. [Google Scholar] [CrossRef]
- C´Aceres-Jensen, L.; Rodr, J.; Parra-Rivero, J.; Escudey, M.; Barrientos, L.; Castro-Castillo, V. Sorption kinetics of diuron on volcanic ash derived soils. J. Hazard. Mater. 2013, 261, 602–613. [Google Scholar] [CrossRef]
- Keçili, R.; Dolak, I.; Gulları, B.; Ersoz, A.; Say, R. Ion imprinted cryogel-based supermacroporous traps for selective separation of cerium (III) in real samples. J. Rare Earths 2018, 36, 857–862. [Google Scholar] [CrossRef]
- Lai, X.; Hu, Y.; Fu, Y.; Wang, L.; Xiong, J. Synthesis and Characterization of Lu (III) Ion Imprinted Polymer. J. Inorg. Organomet. Polym. 2012, 22, 112–118. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, Y.; Gong, A. Preparation of diglycolamide polymer modified silica and its application as adsorbent for rare earth ions. Desig. Monom. Polym. 2019, 22, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Zhang, Y.; Bian, T.; Wang, D.; Li, Z. One-step fabrication of imprinted mesoporous cellulose nanocrystals films for selective separation and recovery of Nd(III). Cellulose 2019, 26, 5571–5582. [Google Scholar] [CrossRef]
REE Ion | Material | Model | qe [mg/g] | K1 [min−1] | K2 [gmg−1min−1] | a | b | Kp [mgg−1 min−1/2] | xi [mg/g] | KDC | De [m2/min] | R2 | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ce | Ce(III) (HEMA-co-(MAAP)2Ce(H2O)2) | I pseudo-order | 1.59 | 0.03 | 0.73 | [62] | |||||||
II pseudo-order | 6.92 | 0.02 | 0.99 | ||||||||||
Elovich | 1.02 | 1.92 | 0.83 | ||||||||||
Intraparticle | 0.27 | 3.87 | 0.69 | ||||||||||
Diffusion-chemisorption | 7.62 | 4.23 | 0.98 | ||||||||||
Boyd | 1.66 × 10−17 | 0.74 | |||||||||||
Lu | Lu(III)–4-vinylpyridine–acetylacetone-EDMA | I pseudo-order | 42.71 | 0.04 | 0.90 | [63] | |||||||
II pseudo-order | 74.63 | 0.002 | 0.99 | ||||||||||
Elovich | 15.69 | 9.87 | 0.97 | ||||||||||
Intraparticle | 10.82 | 6.7 | 0.69 | ||||||||||
Diffusion-chemisorption | 76.33 | 62.11 | 0.98 | ||||||||||
Boyd | 4.23 × 10−17 | 0.90 | |||||||||||
Eu | diglycolamide polymer modified silica | I pseudo-order | 18.90 | 0.02 | 0.96 | [64] | |||||||
II pseudo-order | 23.50 | 0.04 | 0.99 | ||||||||||
Elovich | 0.23 | 20.16 | 0.99 | ||||||||||
Intraparticle | 1.69 | 3.33 | 0.84 | ||||||||||
Diffusion-chemisorption | 25.93 | 10.38 | 0.95 | ||||||||||
Boyd | 6.49 × 10−18 | 0.68 | |||||||||||
Nd | imprinted mesoporous cellulose nanocrystals films (IMCFs) | I pseudo-order | 16.95 | 0.004 | 0.87 | [65] | |||||||
II pseudo-order | 25.00 | 0.0002 | 0.99 | ||||||||||
Elovich | 4.25 | 12.09 | 0.98 | ||||||||||
Intraparticle | 1.69 | 3.33 | 0.80 | ||||||||||
Diffusion-chemisorption | 28.09 | 1.46 | 0.97 | ||||||||||
Boyd | 9.13 × 10−19 | 0.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rybak, A.; Rybak, A.; Kolev, S.D. A Modern Computer Application to Model Rare Earth Element Ion Behavior in Adsorptive Membranes and Materials. Membranes 2023, 13, 175. https://doi.org/10.3390/membranes13020175
Rybak A, Rybak A, Kolev SD. A Modern Computer Application to Model Rare Earth Element Ion Behavior in Adsorptive Membranes and Materials. Membranes. 2023; 13(2):175. https://doi.org/10.3390/membranes13020175
Chicago/Turabian StyleRybak, Aleksandra, Aurelia Rybak, and Spas D. Kolev. 2023. "A Modern Computer Application to Model Rare Earth Element Ion Behavior in Adsorptive Membranes and Materials" Membranes 13, no. 2: 175. https://doi.org/10.3390/membranes13020175
APA StyleRybak, A., Rybak, A., & Kolev, S. D. (2023). A Modern Computer Application to Model Rare Earth Element Ion Behavior in Adsorptive Membranes and Materials. Membranes, 13(2), 175. https://doi.org/10.3390/membranes13020175