Transport of Chromium(VI) across a Supported Liquid Membrane Containing Cyanex 921 or Cyanex 923 Dissolved in Solvesso 100 as Carrier Phase: Estimation of Diffusional Parameters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Transport
2.2.2. Distribution Coefficient of Chromium(VI)
3. Results and Discussion
3.1. Transport of Chromium(VI) Using Cyanex921-Solvesso 100 Solutions as Carrier Phases
3.1.1. Influence of Stirring Speed (Feed Phase)
3.1.2. Influence of Stirring Speed (Stripping Phase)
3.1.3. Influence of Stripping Phase Composition
3.1.4. Influence of HCl Concentration (Feed Phase)
3.1.5. Influence of Extractant Concentration (Membrane Phase)
3.1.6. Influence of Initial Chromium(VI) Concentration in the Feed Phase
3.2. Transport of Chromium(VI) Using Cyanex923-Solvesso 100 Solutions as Carrier Phases
3.2.1. Influence of Stirring Speed (Feed Phase)
3.2.2. Influence of Stirring Speed (Stripping Phase)
3.2.3. Influence of Stripping Phase Composition
3.2.4. Variation in HCl Concentration in the Feed Phase
3.2.5. Influence of Cyanex 923 Concentration on Chromium(VI) Transport
3.2.6. Effect of Varying the Initial Chromium(VI) Concentration in the Feed Phase on Metal Transport
3.3. Estimation of Diffusional Parameters in the Cr(VI)-Cyanex 921-Solvesso 100 and Cr(VI)-Cyanex 923-Solvesso 100 Transport Systems
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cieślak-Golonka, M. Toxic and mutagenic effects of chromium(VI). A review. Polyhedron 1996, 15, 3667–3689. [Google Scholar] [CrossRef]
- Achmad, R.T.; Budiawan; Auerkari, E.I. Effects of chromium on human body. Ann. Res. Rev. Biol. 2017, 13, 33462. [Google Scholar] [CrossRef]
- Cuong, A.M.; Le Na, N.Y.; Thang, P.N.; Diep, T.N.; Thuy, L.B.; Thanh, N.L.; Thang, N.D. Melanin-embedded materials effectively remove hexavalent chromium (CrVI) from aqueous solution. Environ. Health Prev. Med. 2018, 23, 9. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Chromium Compounds. Available online: https://www.epa.gov/sites/default/files/2016-09/documents/chromium-compounds.pdf (accessed on 22 January 2023).
- United Kingdom Government. Guidance Chromium: Toxicological Overview. 2022. Available online: https://www.gov.uk/government/publications/chromium-general-information-incident-management-and-toxicology/chromium-toxicological-overview (accessed on 22 January 2023).
- U.S. Environmental Protection Agency. Chromium in Drinking Water. Available online: https://www.epa.gov/sdwa/chromium-drinking-water (accessed on 22 January 2023).
- Tumolo, M.; Ancona, V.; De Paola, D.; Lossaco, D.; Campanale, C.; Massarelli, C.; Uricchio, V.F. Chromium pollution in European water, sources, health risk, and remediation strategies: An overview. Int. J. Environ. Res. Public Health 2020, 17, 5438. [Google Scholar] [CrossRef]
- Itankar, N.; Patil, Y. Assessing physicochemical technologies for removing hexavalent chromium from contaminated waters—An overview and future research directions. Water Air Soil Poll. 2022, 233, 355. [Google Scholar] [CrossRef]
- Choudhury, P.; Kar, A.; Das, S.; Swain, N.; Devi, N. Extractive removal of chromium(VI) from aqueous solution using TOPO, Cyanex 272, and their mixtures. Russ. J. Phys. Chem. 2022, 96, 340–346. [Google Scholar] [CrossRef]
- Ying, Z.; Chen, M.; Wu, G.; Li, J.; Liu, J.; Wei, Q.; Ren, X. Separation and recovery vanadium (V) and chromium (VI) using amide extractants based on the steric hindrance effect. J. Environ. Chem. Eng. 2021, 9, 105939. [Google Scholar] [CrossRef]
- Ying, Z.; Song, Y.; Wu, G.; Ju, Y.; Sun, X.; Ren, X.; Wei, Q. Recovery of chromium (VI) from hazardous APV wastewater using a novel synergistic extraction system. Sci. Total Environ. 2022, 839, 156278. [Google Scholar] [CrossRef]
- Ying, Z.; Song, Y.; Zhu, K.; Wu, G.; Ju, Y.; Wei, Q.; Ren, X. A cleaner and sustainable method to recover vanadium and chromium from the leaching solution based on solvent extraction. J. Environ. Chem. Eng. 2022, 10, 107384. [Google Scholar] [CrossRef]
- Thamaraiselvan, C.; Thakur, A.K.; Gupta, A.; Arnusch, C.J. Electrochemical removal of organic and inorganic pollutants using robust laser-induced graphene membranes. ACS Appl. Mater. Interfaces 2021, 13, 1452–1462. [Google Scholar] [CrossRef]
- Sun, Y.; Gui, Q.; Zhang, A.; Shi, S.; Chen, X. Polyvinylamine-grafted polypropylene membranes for adsorptive removal of Cr(VI) from water. React. Funct. Polym. 2022, 170, 105108. [Google Scholar] [CrossRef]
- Bashir, M.S.; Ramzan, N.; Najam, T.; Abbas, G.; Gu, X.; Arif, M.; Qasim, M.; Bashir, H.; Shah, S.S.A.; Sillanpää, M. Metallic nanoparticles for catalytic reduction of toxic hexavalent chromium from aqueous medium: A state-of-the-art review. Sci. Total Environ. 2022, 829, 154475. [Google Scholar] [CrossRef] [PubMed]
- Ngo, T.S.; Chantal, T.; Navrotskaya, A.G.; Bukhtiyarov, A.V.; Krivoshapkin, P.V.; Krivoshapkina, E.F. Reusable carbon dot/chitin nanocrystal hybrid sorbent for the selective detection and removal of Cr(VI) and Co(II) ions from wastewater. Carbohydr. Polym. 2023, 304, 120471. [Google Scholar] [CrossRef]
- Zhang, J.; Wei, J.; Hu, T.; Du, L.; Chen, Z.; Zhang, Y.; Zhang, W. Polystyrene microplastics reduce Cr(VI) and decrease its aquatic toxicity under simulated sunlight. J. Hazard. Mater. 2023, 445, 130483. [Google Scholar] [CrossRef] [PubMed]
- Bukhari, A.; Ijaz, I.; Zain, H.; Mehmood, U.; Mudassir, I.M.; Gilani, E.; Nazir, A. Introduction of CdO nanoparticles into graphene and graphene oxide nanosheets for increasing adsorption capacity of Cr from wastewater collected from petroleum refinery. Arab. J. Chem. 2023, 16, 104445. [Google Scholar] [CrossRef]
- Hlihor, R.M.; Roşca, M.; Drăgoi, E.N.; Simion, I.M.; Favier, L.; Gavrilescu, M. New insights into the application of fungal biomass for chromium(VI) bioremoval from aqueous solutions using design of experiments and differential evolution based neural network approaches. Chem. Eng. Res. Des. 2023, 190, 233–254. [Google Scholar] [CrossRef]
- Shabelskaya, N.; Egorova, M.; Radjabov, A.; Burachevskaya, M.; Lobzenko, I.; Minkina, T.; Sushkova, S. Formation of biochar nanocomposite materials based on CoFe2O4 for purification of aqueous solutions from chromium compounds (VI). Water 2023, 15, 93. [Google Scholar] [CrossRef]
- Hamdan, M.A.; Sublaban, E.T.; Al-Asfar, J.J.; Banisaid, M.A. Wastewater treatment using activated carbon produced from oil shale. J. Ecol. Eng. 2023, 24, 131–139. [Google Scholar] [CrossRef]
- Tan, L.N.; Nguyen, N.C.T.; Trinh, A.M.H.; Do, N.H.N.; Le, K.A.; Le, P.K. Eco-friendly synthesis of durable aerogel composites from chitosan and pineapple leaf-based cellulose for Cr(VI) removal. Sep. Purif. Technol. 2023, 304, 122415. [Google Scholar] [CrossRef]
- Ehsanpour, S.; Riahi, S.M.; Toghraie, D. Removal of chromium(VI) from aqueous solution using Eggshell/poly pyrrole composite. Alex. Eng. J. 2023, 64, 581–589. [Google Scholar] [CrossRef]
- Masry, B.A.; Madbouly, H.A.; Daoud, J.A. Studies on the potential use of activated carbon from guava seeds (AC-GS) as a prospective sorbent for the removal of Cr(VI) from aqueous acidic medium. Int. J. Environ. Anal. Chem. 2023, 103, 378–395. [Google Scholar] [CrossRef]
- Garg, A.; Yadav, B.K.; Ranjan, S.; Vatsa, A.; Das, D.B.; Kumar, D. Impact of nonaqueous phase liquid on Cr(VI) removal by nano zerovalent iron particles: Effects of contact time, pollution load, and pH. J. Hazard. Toxic Radioact. Waste 2023, 27, 04023001. [Google Scholar] [CrossRef]
- Liu, F.; Lou, Y.; Xia, F.; Hu, B. Immobilizing nZVI particles on MBenes to enhance the removal of U(VI) and Cr(VI) by adsorption-reduction synergistic effect. Chem. Eng. J. 2023, 454, 140318. [Google Scholar] [CrossRef]
- Jing, Q.; You, W.; Qiao, S.; Ma, Y.; Ren, Z. Comprehensive understanding of adsorption and reduction on 2,4-DCP and Cr(VI) removal process by NZVI-rGO: Performance and mechanism. J. Water Proc. Eng. 2023, 51, 103413. [Google Scholar] [CrossRef]
- Liu, F.; Wang, S.; Hu, B. Electrostatic self-assembly of nanoscale FeS onto MXenes with enhanced reductive immobilization capability for U(VI) and Cr(VI). Chem. Eng. J. 2023, 456, 141100. [Google Scholar] [CrossRef]
- Semalti, P.; Saroha, J.; Tawale, J.S.; Sharma, S.N. Visible-light driven noble metal (Au, Ag) permeated multicomponent Cu2ZnSnS4 nanocrystals: A potential low-cost photocatalyst for textile effluents and heavy metal removal. Environ. Res. 2023, 217, 114875. [Google Scholar] [CrossRef]
- Zhang, C.; Zhuang, Q.; Wang, H.; Ying, X.; Ji, R.; Sheng, D.; Dong, W.; Xie, A. Constructing an acidic microenvironment by sulfonated polymers for photocatalytic reduction of hexavalent chromium under neutral conditions. J. Colloid Interface Sci. 2023, 630, 235–248. [Google Scholar] [CrossRef]
- Goh, S.S.; Morad, N.; Ismail, N.; Rafatullah, M. Developments in supported liquid membranes for treatment of metal-bearing wastewater. Sep. Purif. Rev. 2022, 51, 38–56. [Google Scholar] [CrossRef]
- Sastre, A.M.; Kumar, A.; Shukla, J.P.; Singh, R.K. Improved techniques in liquid membrane separations: An overview. Sep. Purif. Mehods 1998, 27, 213–298. [Google Scholar] [CrossRef]
- Bolne, P.C.; Ghodke, S.A.; Bhanvase, B.A. Intensified hydrodynamic cavitation-based process for the production of liquid emulsion membrane (LEM) for the extraction of chromium(VI) ions. Int. J. Environ. Res. 2021, 15, 313–320. [Google Scholar] [CrossRef]
- Bortot, C.; Fabrício, E.; Oliveira, V.S.; Araújo, E.M.R.; Balarini, J.C.; Konzen, C.; Salum, A.; Miranda, T.L.S. Treatment of a wastewater from a galvanizing industry containing chromium(VI) and zinc(II) by liquid surfactant membranes technique. J. Environ. Sci. Health Part A Toxic/Hazard. Subst. Environ. Eng. 2021, 56, 289–302. [Google Scholar] [CrossRef]
- Goh, S.S.; Rafatullah, M.; Ismail, N.; Alam, M.; Siddiqui, M.R.; Seow, E.-K. Separation of chromium (VI), copper and zinc: Chemistry of transport of metal ions across supported liquid membrane. Membranes 2022, 12, 685. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhong, Y.; Wu, J.; Shao, Q.; Chen, X.; Zhu, Y. Transportation of chromium(VI) from hydrochloric acid medium via a dispersion supported liquid membrane using N235. In Sustainable Development of Water and Environment; Jeon, H.-Y., Ed.; Springer Nature: Cham, Switzerland, 2021; ISBN 978-3-030-75278-1. [Google Scholar]
- Dziwinski, E.; Szymanowski, J. Composition of CYANEX 923, CYANEX 925, CYANEX 921 and TOPO. Solvent Extr. Ion Exch. 1998, 16, 1515–1525. [Google Scholar] [CrossRef]
- El Aamrani, F.Z.; Kumar, A.; Beyer, L.; Florido, A.; Sastre, A.M. Mechanistic study of active transport of silver(I) using sulfur containing novel carriers across a liquid membrane. J. Membr. Sci. 1999, 152, 263–275. [Google Scholar] [CrossRef]
- Bohrer, M.P. Diffusional boundary layer resistance for membrane transport. Ind. Eng. Chem. Fundam. 1983, 22, 72–78. [Google Scholar] [CrossRef]
- Alguacil, F.J.; Martinez, S. Permeation of iron(III) by an immobilised liquid membrane using Cyanex 923 as mobile carrier. J. Membr. Sci. 2000, 176, 249–255. [Google Scholar] [CrossRef]
- Pavón, S.; Fortuny, A.; Coll, M.T.; Bertau, M.; Sastre, A.M. Permeability dependencies on the carrier concentration and membrane viscosity for Y(III) and Eu(III) transport by using liquid membranes. Sep. Purif. Technol. 2020, 239, 116573. [Google Scholar] [CrossRef]
- El Aamrani, F.Z.; Kumar, A.; Beyer, L.; Cortina, J.L.; Sastre, A.M. Uphill permeation model of gold(III) and its separation from base metals using thioures derivatives as ionophores across a liquid membrane. Hydrometaluurgy 1998, 50, 315–330. [Google Scholar] [CrossRef]
- Agrawal, A.; Pal, C.; Sahu, K.K. Extractive removal of chromium (VI) from industrial waste solution. J. Hazard. Mater. 2008, 159, 458–464. [Google Scholar] [CrossRef]
- Sastre, A.M.; Alguacil, F.J.; Alonso, M.; Lopez, F.; Lopez-Delgado, A. On cadmium(II) membrane-based extraction using Cyanex 923 as carrier. Solvent Extr. Ion Exch. 2008, 26, 192–207. [Google Scholar] [CrossRef]
- Huang, T.-C.; Juang, R.-S. Rate and mechanism of divalent metal transport through supported liquid membrane containing di(2-ethylhexyl) phosphoric acid as a mobile carrier. J. Chem. Technol. Biotechnol. 2007, 42, 3–17. [Google Scholar] [CrossRef]
- El Aamrani, F.Z.; Kunar, A.; Sastre, A.M. Kinetic modelling of the active transport of copper(II) across liquid membranes using thiourea derivatives immobilized on microporous hydrophobic supports. New J. Chem. 1999, 23, 517–523. [Google Scholar] [CrossRef]
HCl, M | Ko·102 cm/s |
---|---|
0.25 | 0.83 |
0.5 | 0.99 |
0.75 | 1.1 |
1 | 1.1 |
2 | 1.1 |
[Cyanex 921], M | Ko · 102, cm/s |
---|---|
0.01 | 0.14 |
0.02 | 0.28 |
0.04 | 0.54 |
0.06 | 0.79 |
0.13 | 0.99 |
0.25 | 1.0 |
0.38 | 1.0 |
0.5 | 1.1 |
[Cr(VI)]f,0 g/L | Ko·102, cm/s |
---|---|
0.01 | 1.1 |
0.015 | 0.97 |
0.025 | 0.88 |
0.05 | 0.85 |
0.075 | 0.79 |
0.1 | 0.52 |
Cyanex 921 | Cyanex 923 | |
---|---|---|
log Kext (graphical) | 3.34 | 1.94 |
n (graphical) | 1.94 | 1.94 |
r2 | 0.9530 | 0.9763 |
log Kext (numerical) | 3.48 ± 0.21 | 3.27 ± 0.14 |
n (numerical) | 2 | 2 |
U | 0.132 | 0.058 |
Parameter | Cyanex 921 | Cyanex 923 |
---|---|---|
Mass transfer resistance due to membrane phase (s/cm) | 175 | 396 |
Mass transfer resistance due to feed phase (s/cm) | 111 | 114 |
Diffusion coefficient in the membrane phase (cm2/s) | 7.1 × 10−5 | 3.3 × 10−5 |
Diffusion coefficient in the bulk of the membrane phase (cm2/s) | 2.6 × 10−4 | 1.3 × 10−4 |
Metal flux (mol/cm2s) a | 1.9 × 10−9 | 3.0 × 10−9 |
Apparent diffusion coefficient in the membrane phase (cm2/s) b | 9.5 × 10−8 | 1.5 × 10−7 |
Limiting flux (mol/cm2 s) c | 7.2 × 10−7 | 3.2 × 10−7 |
Mass transfer coefficient in the feed phase (cm/s) | 9.0 × 10−3 | 8.8 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alguacil, F.J.; Robla, J.I. Transport of Chromium(VI) across a Supported Liquid Membrane Containing Cyanex 921 or Cyanex 923 Dissolved in Solvesso 100 as Carrier Phase: Estimation of Diffusional Parameters. Membranes 2023, 13, 177. https://doi.org/10.3390/membranes13020177
Alguacil FJ, Robla JI. Transport of Chromium(VI) across a Supported Liquid Membrane Containing Cyanex 921 or Cyanex 923 Dissolved in Solvesso 100 as Carrier Phase: Estimation of Diffusional Parameters. Membranes. 2023; 13(2):177. https://doi.org/10.3390/membranes13020177
Chicago/Turabian StyleAlguacil, Francisco J., and Jose I. Robla. 2023. "Transport of Chromium(VI) across a Supported Liquid Membrane Containing Cyanex 921 or Cyanex 923 Dissolved in Solvesso 100 as Carrier Phase: Estimation of Diffusional Parameters" Membranes 13, no. 2: 177. https://doi.org/10.3390/membranes13020177
APA StyleAlguacil, F. J., & Robla, J. I. (2023). Transport of Chromium(VI) across a Supported Liquid Membrane Containing Cyanex 921 or Cyanex 923 Dissolved in Solvesso 100 as Carrier Phase: Estimation of Diffusional Parameters. Membranes, 13(2), 177. https://doi.org/10.3390/membranes13020177