Outstanding Separation Performance of Oil-in-Water Emulsions with TiO2/CNT Nanocomposite-Modified PVDF Membranes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Nanomaterial-Based Modification of the Membrane Surfaces
2.2. Characterization of the Membrane Surfaces
2.3. Production of the Model Oily Wastewater
2.4. Membrane Filtration of the Oil Emulsions
2.5. Calculation of the Flux, the Filtration Resistances, and the Flux Recovery Ratio
2.6. Characterization of the Purification Efficiencies
3. Results and Discussion
3.1. Effects of Surface Modifications on Fluxes and Filtration Resistances at a 0.1 MPa Transmembrane Pressure
3.2. Effects of Transmembrane Pressure on Filtration Properties and Purification Efficiency
3.2.1. Effect of the Transmembrane Pressure on Fluxes and Filtration Resistances
3.2.2. Effect of the Transmembrane Pressure on the Purification Efficiency
3.3. Future Research Directions
- Investigation of possibilities with nanocomposites containing TiO2 and –OH and/or –COOH-functionalized (oxidized) CNTs, as the functionalization may ensure even more negative zeta potentials and reduced hydrophobicity of CNTs [31].
- Exploration of the achievable advantages and limitations of these nanocomposite-based membrane modifications in terms of the properties of the water matrix (pH, ion content, etc.) since these are also significant influencing factors [43].
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Beithou, N.; Qandil, A.; Khalid, M.B.; Horvatinec, J.; Ondrasek, G. Review of Agricultural-Related Water Security in Water-Scarce Countries: Jordan Case Study. Agronomy 2022, 12, 1643. [Google Scholar] [CrossRef]
- Hameed, M.; Moradkhani, H.; Ahmadalipour, A.; Moftakhari, H.; Abbaszadeh, P.; Alipour, A. A Review of the 21st Century Challenges in the Food-Energy-Water Security in the Middle East. Water 2019, 11, 682. [Google Scholar] [CrossRef]
- Manikandan, S.; Subbaiya, R.; Saravanan, M.; Ponraj, M.; Selvam, M.; Pugazhendhi, A. A critical review of advanced nanotechnology and hybrid membrane based water recycling, reuse, and wastewater treatment processes. Chemosphere 2022, 289, 132867. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.; Mavukkandy, M.O.; Giwa, A.; Elektorowicz, M.; Katsou, E.; Khelifi, O.; Naddeo, V.; Hasan, S.W. Recent developments in hazardous pollutants removal from wastewater and water reuse within a circular economy. NPJ Clean Water 2022, 5, 12. [Google Scholar] [CrossRef]
- López-Serrano, M.J.; Velasco-Muñoz, J.F.; Aznar-Sánchez, J.A.; Román-Sánchez, I.M. Sustainable Use of Wastewater in Agriculture: A Bibliometric Analysis of Worldwide Research. Sustainability 2020, 12, 8948. [Google Scholar] [CrossRef]
- Ma, D.; Zou, X.; Zhao, Z.; Zhou, J.; Li, S.; Yin, H.; Wang, J. Hydrophilic PAA-g-MWCNT/TiO2@PES nano-matrix composite membranes: Anti-fouling, antibacterial and photocatalytic. Eur. Polym. J. 2022, 168, 111006. [Google Scholar] [CrossRef]
- Nawi, N.I.M.; Sait, N.R.; Bilad, M.R.; Shamsuddin, N.; Jaafar, J.; Nordin, N.A.H.; Narkkun, T.; Faungnawakij, K.; Mohshim, D.F. Polyvinylidene Fluoride Membrane Via Vapour Induced Phase Separation for Oil/Water Emulsion Filtration. Polymers 2021, 13, 427. [Google Scholar] [CrossRef]
- Howard, I.; Okpara, K.; Techato, K. Toxicity and Risks Assessment of Polycyclic Aromatic Hydrocarbons in River Bed Sediments of an Artisanal Crude Oil Refining Area in the Niger Delta, Nigeria. Water 2021, 13, 3295. [Google Scholar] [CrossRef]
- Medeiros, A.D.L.M.D.; Silva Junior, C.J.G.D.; Amorim, J.D.P.D.; Durval, I.J.B.; Costa, A.F.D.S.; Sarubbo, L.A. Oily Wastewater Treatment: Methods, Challenges, and Trends. Processes 2022, 10, 743. [Google Scholar] [CrossRef]
- Varjani, S.; Joshi, R.; Srivastava, V.K.; Ngo, H.H.; Guo, W. Treatment of wastewater from petroleum industry: Current practices and perspectives. Environ. Sci. Pollut. Res. Int. 2020, 27, 27172–27180. [Google Scholar] [CrossRef]
- Nascimbén Santos, É.; László, Z.; Hodúr, C.; Arthanareeswaran, G.; Veréb, G. Photocatalytic membrane filtration and its advantages over conventional approaches in the treatment of oily wastewater: A review. Asia-Pac. J. Chem. Eng. 2020, 15, e2533. [Google Scholar] [CrossRef]
- Nordvik, A.B.; Simmons, J.L.; Bitting, K.R.; Lewis, A.; Strøm-Kristiansen, T. Oil and water separation in marine oil spill clean-up operations. Spill Sci. Technol. Bull. 1996, 3, 107–122. [Google Scholar] [CrossRef]
- Al-Shamrani, A.A.; James, A.; Xiao, H. Separation of oil from water by dissolved air flotation. Colloids Surf. A Physicochem. Eng. Asp. 2002, 209, 15–26. [Google Scholar] [CrossRef]
- Yalcinkaya, F.; Boyraz, E.; Maryska, J.; Kucerova, K. A Review on Membrane Technology and Chemical Surface Modification for the Oily Wastewater Treatment. Materials 2020, 13, 493. [Google Scholar] [CrossRef]
- Bolto, B.; Zhang, J.; Wu, X.; Xie, Z. A Review on Current Development of Membranes for Oil Removal from Wastewaters. Membranes 2020, 10, 65. [Google Scholar] [CrossRef]
- Zarghami, S.; Mohammadi, T.; Sadrzadeh, M.; Van der Bruggen, B. Superhydrophilic and underwater superoleophobic membranes—A review of synthesis methods. Prog. Polym. Sci. 2019, 98, 101166. [Google Scholar] [CrossRef]
- Razak, N.A.A.; Fuzil, N.S.; Jamal, N.A.S.R.A.; Othman, N.H.; Alias, N.H.; Shahruddin, M.Z.; Sayuthi, M.S.M.; Ismail, A.F.; Lau, W.J.; Sean, G.P.; et al. Nanomaterials Incorporated Membranes for Oil–Water Separation. In Oil−Water Mixtures and Emulsions, Volume 1: Membrane Materials for Separation and Treatment; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2022; Volume 1407, pp. 83–117. [Google Scholar]
- Yang, Y.; Lai, Q.; Mahmud, S.; Lu, J.; Zhang, G.; Huang, Z.; Wu, Q.; Zeng, Q.; Huang, Y.; Lei, H.; et al. Potocatalytic antifouling membrane with dense nano-TiO2 coating for efficient oil-in-water emulsion separation and self-cleaning. J. Membr. Sci. 2022, 645, 120204. [Google Scholar] [CrossRef]
- Chang, Q.; Zhou, J.-E.; Wang, Y.; Liang, J.; Zhang, X.; Cerneaux, S.; Wang, X.; Zhu, Z.; Dong, Y. Application of ceramic microfiltration membrane modified by nano-TiO2 coating in separation of a stable oil-in-water emulsion. J. Membr. Sci. 2014, 456, 128–133. [Google Scholar] [CrossRef]
- Ong, C.S.; Lau, W.J.; Goh, P.S.; Ng, B.C.; Ismail, A.F. Preparation and characterization of PVDF–PVP–TiO2 composite hollow fiber membranes for oily wastewater treatment using submerged membrane system. Desalination Water Treat. 2015, 53, 1213–1223. [Google Scholar] [CrossRef]
- Tan, B.Y.L.; Tai, M.H.; Juay, J.; Liu, Z.; Sun, D. A study on the performance of self-cleaning oil–water separation membrane formed by various TiO2 nanostructures. Sep. Purif. Technol. 2015, 156, 942–951. [Google Scholar] [CrossRef]
- Shi, H.; He, Y.; Pan, Y.; Di, H.; Zeng, G.; Zhang, L.; Zhang, C. A modified mussel-inspired method to fabricate TiO2 decorated superhydrophilic PVDF membrane for oil/water separation. J. Membr. Sci. 2016, 506, 60–70. [Google Scholar] [CrossRef]
- Veréb, G.; Kálmán, V.; Gyulavári, T.; Kertész, S.; Beszédes, S.; Kovács, G.; Hernádi, K.; Pap, Z.; Hodúr, C.; László, Z. Advantages of TiO2/carbon nanotube modified photocatalytic membranes in the purification of oil-in-water emulsions. Water Sci. Technol. Water Supply 2018, 19, 1167–1174. [Google Scholar] [CrossRef]
- Wang, B.; Chen, C.; Liu, H.; Xia, B.; Fan, Y.; Chen, T. WO3/TiO2 superhydrophilic and underwater superoleophobic membrane for effective separation of oil-in-water emulsions. Thin Solid Films 2018, 665, 9–16. [Google Scholar] [CrossRef]
- Nascimben Santos, E.; Ágoston, Á.; Kertész, S.; Hodúr, C.; László, Z.; Pap, Z.; Kása, Z.; Alapi, T.; Krishnan, S.A.G.; Arthanareeswaran, G.; et al. Investigation of the applicability of TiO2, BiVO4, and WO3 nanomaterials for advanced photocatalytic membranes used for oil-in-water emulsion separation. Asia-Pac. J. Chem. Eng. 2020, 15, e2549. [Google Scholar] [CrossRef]
- Venkatesh, K.; Arthanareeswaran, G.; Bose, A.C.; Kumar, P.S. Hydrophilic hierarchical carbon with TiO2 nanofiber membrane for high separation efficiency of dye and oil-water emulsion. Sep. Purif. Technol. 2020, 241, 116709. [Google Scholar] [CrossRef]
- Vereb, G.; Kassai, P.; Nascimben Santos, E.; Arthanareeswaran, G.; Hodur, C.; Laszlo, Z. Intensification of the ultrafiltration of real oil-contaminated (produced) water with pre-ozonation and/or with TiO2, TiO2/CNT nanomaterial-coated membrane surfaces. Environ. Sci. Pollut. Res. Int. 2020, 27, 22195–22205. [Google Scholar] [CrossRef]
- Zhang, J.; Zheng, M.; Zhou, Y.; Yang, L.; Zhang, Y.; Wu, Z.; Liu, G.; Zheng, J. Preparation of Nano-TiO2-Modified PVDF Membranes with Enhanced Antifouling Behaviors via Phase Inversion: Implications of Nanoparticle Dispersion Status in Casting Solutions. Membranes 2022, 12, 386. [Google Scholar] [CrossRef]
- Zhang, J.; Jian, Z.; Jiang, M.; Peng, B.; Zhang, Y.; Wu, Z.; Zheng, J. Influence of Dispersed TiO2 Nanoparticles via Steric Interaction on the Antifouling Performance of PVDF/TiO2 Composite Membranes. Membranes 2022, 12, 1118. [Google Scholar] [CrossRef]
- Rashid, M.H.; Ralph, S.F. Carbon Nanotube Membranes: Synthesis, Properties, and Future Filtration Applications. Nanomaterials 2017, 7, 99. [Google Scholar] [CrossRef]
- Moslehyani, A.; Ismail, A.F.; Othman, M.H.D.; Matsuura, T. Design and performance study of hybrid photocatalytic reactor-PVDF/MWCNT nanocomposite membrane system for treatment of petroleum refinery wastewater. Desalination 2015, 363, 99–111. [Google Scholar] [CrossRef]
- Réti, B.; Major, Z.; Szarka, D.; Boldizsár, T.; Horváth, E.; Magrez, A.; Forró, L.; Dombi, A.; Hernádi, K. Influence of TiO2 phase composition on the photocatalytic activity of TiO2/MWCNT composites prepared by combined sol-gel/hydrothermal method. J. Mol. Catal. A Chem. 2016, 414, 140–147. [Google Scholar] [CrossRef]
- Gao, B.; Chen, G.Z.; Li Puma, G. Carbon nanotubes/titanium dioxide (CNTs/TiO2) nanocomposites prepared by conventional and novel surfactant wrapping sol–gel methods exhibiting enhanced photocatalytic activity. Appl. Catal. B 2009, 89, 503–509. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, D.; Hu, X.; Qian, Y.; Li, D. Preparation of TiO(2)/Carbon Nanotubes/Reduced Graphene Oxide Composites with Enhanced Photocatalytic Activity for the Degradation of Rhodamine B. Nanomaterials 2018, 8, 431. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, R.; Wang, Q.; Zheng, Y.; Li, G.; Sun, D.; Wu, T.; Li, Y. Superwetting TiO2-decorated single-walled carbon nanotube composite membrane for highly efficient oil-in-water emulsion separation. Korean J. Chem. Eng. 2020, 37, 2054–2063. [Google Scholar] [CrossRef]
- Darvishzadeh, T.; Priezjev, N.V. Effects of crossflow velocity and transmembrane pressure on microfiltration of oil-in-water emulsions. J. Membr. Sci. 2012, 423-424, 468–476. [Google Scholar] [CrossRef]
- Chen, M.; Heijman, S.G.J.; Luiten-Olieman, M.W.J.; Rietveld, L.C. Oil-in-water emulsion separation: Fouling of alumina membranes with and without a silicon carbide deposition in constant flux filtration mode. Water Res 2022, 216, 118267. [Google Scholar] [CrossRef]
- Veréb, G.; Zakar, M.; Kovács, I.; Sziládi, K.P.; Kertész, S.; Hodúr, C.; László, Z. Effects of pre-ozonation in case of microfiltration of oil contaminated waters using polyethersulfone membrane at various filtration conditions. Desalination Water Treat. 2017, 73, 409–414. [Google Scholar] [CrossRef]
- Esfahani, M.R.; Tyler, J.L.; Stretz, H.A.; Wells, M.J.M. Effects of a dual nanofiller, nano-TiO2 and MWCNT, for polysulfone-based nanocomposite membranes for water purification. Desalination 2015, 372, 47–56. [Google Scholar] [CrossRef]
- Hudaib, B.; Abu-Zurayk, R.; Waleed, H.; Ibrahim, A.A. Fabrication of a Novel (PVDF/MWCNT/Polypyrrole) Antifouling High Flux Ultrafiltration Membrane for Crude Oil Wastewater Treatment. Membranes 2022, 12, 751. [Google Scholar] [CrossRef]
- Brant, J.A.; Childress, A.E. Assessing short-range membrane–colloid interactions using surface energetics. J. Membr. Sci. 2002, 203, 257–273. [Google Scholar] [CrossRef]
- Abadikhah, H.; Zokaee Ashtiani, F.; Fouladitajar, A. Nanofiltration of oily wastewater containing salt; experimental studies and optimization using response surface methodology. Desalination Water Treat. 2014, 1–14. [Google Scholar] [CrossRef]
- Veréb, G.; Kovacs, I.; Zakar, M.; Kertész, S.; Hodúr, C.; László, Z. Matrix effect in case of purification of oily waters by membrane separation combined with pre-ozonation. Environ. Sci. Pollut. Res. 2018, 25, 34976–34984. [Google Scholar] [CrossRef] [PubMed]
Flux (L/m2h) | Pressure | Purification Efficiency (%) | Membrane | Oil Content of the Emulsion | Flux Recovery Ratio (%) | Ref. |
---|---|---|---|---|---|---|
245–350 | 0.12–0.24 MPa | – | Ceramic−TiO2 | hydraulic oil (concentration is missing) | not investigated | [19], 2014 |
30–70 | vacuum | 80–99.7 | PVDF−TiO2 | 250 mg/L (cutting oil) | not investigated | [20], 2015 |
380–675 | 0.1–0.4 MPa | ~96–99.8 | PVDF−MWCNT | 100 mg/L oil (synthesized refinery wastewater) | not investigated | [31], 2015 |
382 | 0.09 MPa | ~99 | PVDF−TiO2 | ~10,000 mg/L diesel oil | not investigated | [22], 2016 |
301–362 | 0.1 MPa | 95–99 | PVDF−TiO2/MWCNT, PVDF−TiO2 | 28 mg/L oil (industrial oil-contaminated wastewater) | 64–77 (after water cleaning) | [27], 2020 |
43–55 | 0.05 MPa | 83–94 | * NWF−TiO2 (* nonwoven fabric) | 10,000 mg/L (crude oil) | ~20–50 (after water, 1 g/L NaClO, and UV cleaning) | [18], 2022 |
~30–100 | 0.2 MPa | >99.5 | PVDF−MWCNT−polypyrrole | 500 mg/L (crude oil) | 80–90 (after 0.1 M NaOH cleaning) | [40], 2022 |
510–1340 | 0.1–0.3 MPa | 95.1–99.8 | PVDF−TiO2/MWCNT | 100 mg/L (crude oil) | 47–68 (after water cleaning) | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fekete, L.; Fazekas, Á.F.; Hodúr, C.; László, Z.; Ágoston, Á.; Janovák, L.; Gyulavári, T.; Pap, Z.; Hernadi, K.; Veréb, G. Outstanding Separation Performance of Oil-in-Water Emulsions with TiO2/CNT Nanocomposite-Modified PVDF Membranes. Membranes 2023, 13, 209. https://doi.org/10.3390/membranes13020209
Fekete L, Fazekas ÁF, Hodúr C, László Z, Ágoston Á, Janovák L, Gyulavári T, Pap Z, Hernadi K, Veréb G. Outstanding Separation Performance of Oil-in-Water Emulsions with TiO2/CNT Nanocomposite-Modified PVDF Membranes. Membranes. 2023; 13(2):209. https://doi.org/10.3390/membranes13020209
Chicago/Turabian StyleFekete, Laura, Ákos Ferenc Fazekas, Cecilia Hodúr, Zsuzsanna László, Áron Ágoston, László Janovák, Tamás Gyulavári, Zsolt Pap, Klara Hernadi, and Gábor Veréb. 2023. "Outstanding Separation Performance of Oil-in-Water Emulsions with TiO2/CNT Nanocomposite-Modified PVDF Membranes" Membranes 13, no. 2: 209. https://doi.org/10.3390/membranes13020209
APA StyleFekete, L., Fazekas, Á. F., Hodúr, C., László, Z., Ágoston, Á., Janovák, L., Gyulavári, T., Pap, Z., Hernadi, K., & Veréb, G. (2023). Outstanding Separation Performance of Oil-in-Water Emulsions with TiO2/CNT Nanocomposite-Modified PVDF Membranes. Membranes, 13(2), 209. https://doi.org/10.3390/membranes13020209