Chitosan–sEPDM and Melatonin–Chitosan–sEPDM Composite Membranes for Melatonin Transport and Release
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Methods and Procedures
2.2.1. Obtaining the Composite Membranes Based on SEPDM
2.2.2. Transport and Release of the Melatonin through/from Composite Membranes Based on SEPDM
Transport Performance of the Obtained Membranes
Release Performance of the Obtained Membranes
2.3. Equipment
3. Results and Discussion
3.1. Morphological and Structural Membrane Characteristics
3.1.1. Scanning Electron Microscopy (SEM)
3.1.2. Fourier Transform InfraRed Spectroscopy (FTIR) Membrane Characteristics
3.1.3. Thermal Characteristics of the Prepared Membranes
3.2. Transport and Release of the Melatonin through Prepared Membranes
3.2.1. Transport of Melatonin Transport through the Obtained Membranes (M1 and M2)
3.2.2. Release of Melatonin through the Obtained Membranes
3.2.3. Melatonin Release from Melatonin-chitosan-sulfonated Ethylene-propylene-diene Terpolymer Composite Membranes (Mel-Chi-sEPDM, M3)
3.3. Aspects Regarding the Administration Method of Melatonin Using the Principle of the Studied Systems
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Minich, D.M.; Henning, M.; Darley, C.; Fahoum, M.; Schuler, C.B.; Frame, J. Is Melatonin the “Next Vitamin D”?: A Review of Emerging Science, Clinical Uses, Safety, and Dietary Supplements. Nutrients 2022, 14, 3934. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.X.; Xu, B.; Zhou, X.; Reiter, R.J. Pineal Calcification, Melatonin Production, Aging, Associated Health Consequences and Rejuvenation of the Pineal Gland. Molecules 2018, 23, 301. [Google Scholar] [CrossRef]
- Chitimus, D.M.; Popescu, M.R.; Voiculescu, S.E.; Panaitescu, A.M.; Pavel, B.; Zagrean, L.; Zagrean, A.-M. Melatonin’s Impact on Antioxidative and Anti-Inflammatory Reprogramming in Homeostasis and Disease. Biomolecules 2020, 10, 1211. [Google Scholar] [CrossRef] [PubMed]
- Hardeland, R. Aging, Melatonin, and the Pro- and Anti-Inflammatory Networks. Int. J. Mol. Sci. 2019, 20, 1223. [Google Scholar] [CrossRef] [PubMed]
- Fowler, S.; Hoedt, E.C.; Talley, N.J.; Keely, S.; Burns, G.L. Circadian Rhythms and Melatonin Metabolism in Patients with Disorders of Gut-Brain Interactions. Front. Neurosci. 2022, 16, 825246. [Google Scholar] [CrossRef]
- Iguchi, H.; Kato, K.-I.; Ibayashi, H. Age-Dependent Reduction in Serum Melatonin Concentrations in Healthy Human Subjects. J. Clin. Endocrinol. Metab. 1982, 55, 27–29. [Google Scholar] [CrossRef]
- Martínez-Águila, A.; Martín-Gil, A.; Carpena-Torres, C.; Pastrana, C.; Carracedo, G. Influence of Circadian Rhythm in the Eye: Significance of Melatonin in Glaucoma. Biomolecules 2021, 11, 340. [Google Scholar] [CrossRef]
- Ramos, E.; Gil-Martín, E.; Ríos, C.D.L.; Egea, J.; López-Muñoz, F.; Pita, R.; Juberías, A.; Torrado, J.J.; Serrano, D.R.; Reiter, R.J.; et al. Melatonin as Modulator for Sulfur and Nitrogen Mustard-Induced Inflammation, Oxidative Stress and DNA Damage: Molecular Therapeutics. Antioxidants 2023, 12, 397. [Google Scholar] [CrossRef]
- Beck, W.R.; Scariot, P.P.M.; Gobatto, C.A. Melatonin is an ergogenic aid for exhaustive aerobic exercise only during the wakefulness period. Int. J. Sport. Med. 2016, 37, 71–76. [Google Scholar] [CrossRef]
- Luchetti, F.; Balduini, W.; Carloni, S.; Nasoni, M.; Reiter, R. Melatonin, tunneling nanotubes, mesenchymal cells, and tissue regeneration. Neural Regen. Res. 2023, 18, 760. [Google Scholar] [CrossRef]
- Juliana, N.; Azmi, L.; Effendy, N.M.; Teng, N.I.M.F.; Abu, I.F.; Abu Bakar, N.N.; Azmani, S.; Abu Yazit, N.A.; Kadiman, S.; Das, S. Effect of Circadian Rhythm Disturbance on the Human Musculoskeletal System and the Importance of Nutritional Strategies. Nutrients 2023, 15, 734. [Google Scholar] [CrossRef]
- Lee, J.G.; Woo, Y.S.; Park, S.W.; Seog, D.-H.; Seo, M.K.; Bahk, W.-M. The Neuroprotective Effects of Melatonin: Possible Role in the Pathophysiology of Neuropsychiatric Disease. Brain Sci. 2019, 9, 285. [Google Scholar] [CrossRef]
- Arioz, B.; Tarakcioglu, E.; Olcum, M.; Genc, S. The Role of Melatonin on NLRP3 Inflammasome Activation in Diseases. Antioxidants 2021, 10, 1020. [Google Scholar] [CrossRef]
- Lauritzen, E.S.; Kampmann, U.; Smedegaard, S.B.; Støy, J. Effects of daily administration of melatonin before bedtime on fasting insulin, glucose and insulin sensitivity in healthy adults and patients with metabolic diseases. A systematic review and meta-analysis. Clin. Endocrinol. 2021, 95, 691–701. [Google Scholar] [CrossRef]
- Shafabakhsh, R.; Reiter, R.J.; Mirzaei, H.; Teymoordash, S.N.; Asemi, Z. Melatonin: A new inhibitor agent for cervical cancer treatment. J. Cell Physiol. 2019, 234, 21670–21682. [Google Scholar] [CrossRef]
- Xie, L.-L.; Li, S.-S.; Fan, Y.-J.; Qi, M.-M.; Li, Z.-Z. Melatonin alleviates traumatic brain injury-induced anxiety-like behaviors in rats: Roles of the protein kinase A/cAMP-response element binding signaling pathway. Exp. Ther. Med. 2022, 23, 11173. [Google Scholar] [CrossRef]
- Lissoni, P.; Barni, S.; Cattaneo, G.; Tancini, G.; Esposti, G.; Fraschini, F. Clinical Results with the Pineal Hormone Melatonin in Advanced Cancer Resistant to Standard Antitumor Therapies. Oncology 1991, 48, 448–450. [Google Scholar] [CrossRef]
- Srinivasan, V.; Spence, D.W.; Pandi-Perumal, S.R.; Trakht, I.; Cardinali, D.P. Jet lag: Therapeutic use of melatonin and possible application of melatonin analogs. Travel Med. Infect. Dis. 2008, 6, 17–28. [Google Scholar] [CrossRef]
- Zarezadeh, M.; Khorshidi, M.; Emami, M.; Janmohammadi, P.; Kord-Varkaneh, H.; Mousavi, S.M.; Mohammed, S.H.; Saedisomeolia, A.; Alizadeh, S. Melatonin supplementation and pro-inflammatory mediators: A systematic review and meta-analysis of clinical trials. Eur. J. Nutr. 2019, 59, 1803–1813. [Google Scholar] [CrossRef]
- Reiter, R.J.; Sharma, R.; Simko, F.; Dominguez-Rodriguez, A.; Tesarik, J.; Neel, R.L.; Slominski, A.T.; Kleszczynski, K.; Martin-Gimenez, V.M.; Manucha, W.; et al. Melatonin: Highlighting its use as a potential treatment for SARS-CoV-2 infection. Cell Mol. Life Sci. 2022, 79, 143. [Google Scholar] [CrossRef]
- Won, E.; Na, K.-S.; Kim, Y.-K. Associations between Melatonin, Neuroinflammation, and Brain Alterations in Depression. Int. J. Mol. Sci. 2021, 23, 305. [Google Scholar] [CrossRef]
- Schrire, Z.M.; Phillips, C.L.; Chapman, J.L.; Duffy, S.L.; Wong, G.; D’Rozario, A.L.; Comas, M.; Raisin, I.; Saini, B.; Gordon, C.J.; et al. Safety of higher doses of melatonin in adults: A systematic review and meta-analysis. J. Pineal Res. 2021, 72, 12782. [Google Scholar] [CrossRef]
- Moroni, I.; Garcia-Bennett, A.; Chapman, J.; Grunstein, R.R.; Gordon, C.J.; Comas, M. Pharmacokinetics of exogenous melatonin in relation to formulation, and effects on sleep: A systematic review. Sleep Med. Rev. 2021, 57, 101431. [Google Scholar] [CrossRef]
- Balaji, T.; Varadarajan, S.; Jagannathan, R.; Mahendra, J.; Fageeh, H.; Fageeh, H.; Mushtaq, S.; Baeshen, H.; Bhandi, S.; Gupta, A.; et al. Melatonin as a Topical/Systemic Formulation for the Management of Periodontitis: A Systematic Review. Materials 2021, 14, 2417. [Google Scholar] [CrossRef]
- Atkinson, G.; Drust, B.; Reilly, T.; Waterhouse, J. The relevance of melatonin to sports medicine and science. Sport. Med. 2003, 33, 809–831. [Google Scholar] [CrossRef]
- Gancitano, G.; Reiter, R.J. The Multiple Functions of Melatonin: Applications in the Military Setting. Biomedicines 2022, 11, 5. [Google Scholar] [CrossRef]
- Teitz, C.C.; Hu, S.S.; Arendt, E.A. The Female Athlete: Evaluation and Treatment of Sports-Related Problems. J. Am. Acad. Orthop. Surg. 1997, 5, 87–96. [Google Scholar] [CrossRef]
- Pramusita, A.; Nugraha, A.P.; Yuliyanasari, N.; Ardani, I.G.A.W.; Triwardhani, A. The potential capability of melatonin to anticipate postorthodontic treatment relapse: A literature review. Biochem. Cell. Arch. 2020, 20, 3061–3066. [Google Scholar]
- Schröder, A.; Alefeld, A.; Forneck, A.; Spanier, G.; Deschner, J.; Proff, P.; Kirschneck, C. Impact of melatonin on periodontal ligament fibroblasts during mechanical strain. Eur. J. Orthod. 2022, 44, 659–668. [Google Scholar] [CrossRef]
- Souissi, A.; Dergaa, I. An Overview of the Potential Effects of Melatonin Supplementation on Athletic Performance. Int. J. Sport Stud. Health 2022, 4, 121714. [Google Scholar] [CrossRef]
- Chuffa, L.; Seiva, F.; Novais, A.; Simão, V.; Giménez, V.M.; Manucha, W.; Zuccari, D.; Reiter, R. Melatonin-Loaded Nanocarriers: New Horizons for Therapeutic Applications. Molecules 2021, 26, 3562. [Google Scholar] [CrossRef]
- Mirza-Aghazadeh-Attari, M.; Mihanfar, A.; Yousefi, B.; Majidinia, M. Nanotechnology-based advances in the efficient delivery of melatonin. Cancer Cell Int. 2022, 22, 43. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.-J.; Parrott, K.A.; Ayres, J.W.; Sack, R.L. Design and evaluation of an oral controlled release delivery system for melatonin in human subjects. Int. J. Pharm. 1995, 124, 119–127. [Google Scholar] [CrossRef]
- Flo, A.; Calpena, A.C.; Halbaut, L.; Araya, E.I.; Fernández, F.; Clares, B. Melatonin Delivery: Transdermal and Transbuccal Evaluation in Different Vehicles. Pharm. Res. 2016, 33, 1615–1627. [Google Scholar] [CrossRef] [PubMed]
- Duttagupta, D.S.; Jadhav, M.V.; Kadam, J.V. Chitosan: A propitious biopolymer for drug delivery. Curr. Drug Deliv. 2015, 12, 369–381. [Google Scholar] [CrossRef]
- Hafner, A.; Lovrić, J.; Pepić, I.; Filipović-Grčić, J. Lecithin/chitosan nanoparticles for transdermal delivery of melatonin. J. Microencapsul. 2011, 28, 807–815. [Google Scholar] [CrossRef]
- Hidayati, N.; Harmoko, T.; Mujiburohman, M.; Purnama, H. Characterization of sPEEK/chitosan membrane for the direct methanol fuel cell. In Proceedings of the AIP Conference Proceedings, Leuven, Belgium, 8–10 April 2019; AIP Publishing LLC.: Melville, NY, USA, 2019; Volume 2114, p. 060008. [Google Scholar] [CrossRef]
- Nalika, N.; Waseem, M.; Kaushik, P.; Salman, M.; Andrabi, S.S.; Parvez, S. Role of melatonin and quercetin as countermeasures to the mitochondrial dysfunction induced by titanium dioxide nanoparticles. Life Sci. 2023, 121403. [Google Scholar] [CrossRef] [PubMed]
- Alahri, M.B.; Ibrahim, A.J.; Barani, M.; Arkaban, H.; Shadman, S.M.; Salarpour, S.; Zarrintaj, P.; Jaberi, J.; Jalil, A.T. Management of Brain Cancer and Neurodegenerative Disorders with Polymer-Based Nanoparticles as a Biocompatible Platform. Molecules 2023, 28, 841. [Google Scholar] [CrossRef]
- Cimbru, A.M.; Rikabi, A.A.K.K.; Oprea, O.; Grosu, A.R.; Tanczos, S.-K.; Simonescu, M.C.; Pașcu, D.; Grosu, V.-A.; Dumitru, F.; Nechifor, G. pH and pCl Operational Parameters in Some Metallic Ions Separation with Composite Chitosan/Sulfonated Polyether Ether Ketone/Polypropylene Hollow Fibers Membranes. Membranes 2022, 12, 833. [Google Scholar] [CrossRef]
- Nechifor, A.; Goran, A.; Grosu, V.-A.; Bungău, C.; Albu, P.; Grosu, A.; Oprea, O.; Păncescu, F.; Nechifor, G. Improving the Performance of Composite Hollow Fiber Membranes with Magnetic Field Generated Convection Application on pH Correction. Membranes 2021, 11, 445. [Google Scholar] [CrossRef]
- Urducea, C.B.; Nechifor, A.C.; Dimulescu, I.A.; Oprea, O.; Nechifor, G.; Totu, E.E.; Isildak, I.; Albu, P.C.; Bungău, S.G. Control of Nanostructured Polysulfone Membrane Preparation by Phase Inversion Method. Nanomaterials 2020, 10, 2349. [Google Scholar] [CrossRef] [PubMed]
- Nechifor, A.; Panait, V.; Naftanaila, L.; Batalu, D.; Voicu, S.I. Symmetrically polysulfone membranes obtained by solvent evaporation using carbon nanotubes as additives. Synthesis, characterization and applications. Dig. J. Nanomater. Biostruc. 2013, 8, 875–884. [Google Scholar]
- Zaharia, I.; Aboul-Enein, H.Y.; Diaconu, I.; Ruse, E.; Bunaciu, A.A.; Nechifor, G. Facilitated transport of 5-aminosalicylic acid through bulk liquid membrane. J. Iran. Chem. Soc. 2013, 10, 1129–1136. [Google Scholar] [CrossRef]
- AMCTB No. 96; Analytical Methods Committee. What’s novel in the new Eurachem guide on uncertainty from sampling? Anal. Methods 2020, 12, 2295–2297. [Google Scholar] [CrossRef] [PubMed]
- Miccoli, A.; Restani, P.; Floroian, L.; Taus, N.; Badea, M.; Cioca, G.; Bungau, S. Sensitive Electrochemical Detection Method of Melatonin in Food Supplements. Rev. Chim. 2018, 69, 854–859. [Google Scholar] [CrossRef]
- Nechifor, G.; Grosu, A.R.; Dinu, A.F.; Tanczos, S.-K.; Goran, A.; Grosu, V.-A.; Bungău, S.G.; Păncescu, F.M.; Albu, P.C.; Nechifor, A.C. Simultaneous Release of Silver Ions and 10–Undecenoic Acid from Silver Iron–Oxide Nanoparticles Impregnated Membranes. Membranes 2022, 12, 557. [Google Scholar] [CrossRef]
- Sorouraddin, M.-H.; Rashidi, M.-R.; Ghorbani-Kalhor, E.; Asadpour-Zeynali, K. Simultaneous spectrofluorimetric and spectrophotometric determination of melatonin and pyridoxine in pharmaceutical preparations by multivariate calibration methods. Il Farm. 2005, 60, 451–458. [Google Scholar] [CrossRef]
- Szczepański, P.; Diaconu, I. Transport of p-Nitrophenol through an Agitated Bulk Liquid Membrane. Sep. Sci. Technol. 2012, 47, 1725–1732. [Google Scholar] [CrossRef]
- Szczepański, P.; Tanczos, S.K.; Ghindeanu, L.D.; Wódzki, R. Transport of p-nitrophenol in an agitated bulk liquid membrane system–Experimental and theoretical study by network analysis. Sep. Purif. Technol. 2014, 132, 616–626. [Google Scholar] [CrossRef]
- Diaconu, I.; Nechifor, G.; Nechifor, A.C.; Totu, E.E.; Ruse, E. The transport of nitrophenols through liquid membranes. Rev. Chim. 2009, 60, 1243–1246. [Google Scholar]
- Nechifor, A.C.; Pîrțac, A.; Albu, P.C.; Grosu, A.R.; Dumitru, F.; Dimulescu (Nica), I.A.; Oprea, O.; Pașcu, D.; Nechifor, G.; Bungău, S.G. Recuperative Amino Acids Separation through Cellulose Derivative Membranes with Microporous Polypropylene Fiber Matrix. Membranes 2021, 11, 429. [Google Scholar] [CrossRef] [PubMed]
- Motelica, L.; Ficai, D.; Oprea, O.-C.; Ficai, A.; Ene, V.-L.; Vasile, B.-S.; Andronescu, E.; Holban, A.-M. Antibacterial Biodegradable Films Based on Alginate with Silver Nanoparticles and Lemongrass Essential Oil–Innovative Packaging for Cheese. Nanomaterials 2021, 11, 2377. [Google Scholar] [CrossRef] [PubMed]
- Bartlam, C.; Morsch, S.; Heard, K.W.; Quayle, P.; Yeates, S.G.; Vijayaraghavan, A. Nanoscale infrared identification and mapping of chemical functional groups on graphene. Carbon 2018, 139, 317–324. [Google Scholar] [CrossRef]
- Dimulescu (Nica), I.; Nechifor, A.; Urducea, C.B.; Oprea, O.; Paşcu, D.; Totu, E.; Albu, P.; Nechifor, G.; Bungău, S. Accessible Silver-Iron Oxide Nanoparticles as a Nanomaterial for Supported Liquid Membranes. Nanomaterials 2021, 11, 1204. [Google Scholar] [CrossRef]
- Nechifor, G.; Totu, E.E.; Nechifor, A.C.; Isildak, I.; Oprea, O.; Cristache, C.M. Non-Resorbable Nanocomposite Membranes for Guided Bone Regeneration Based on Polysulfone-Quartz Fiber Grafted with Nano-TiO2. Nanomaterials 2019, 9, 985. [Google Scholar] [CrossRef]
- Nechifor, A.C.; Goran, A.; Tanczos, S.-K.; Păncescu, F.M.; Oprea, O.-C.; Grosu, A.R.; Matei, C.; Grosu, V.-A.; Vasile, B.; Albu, P.C. Obtaining and Characterizing the Osmium Nanoparticles/n–Decanol Bulk Membrane Used for the p–Nitrophenol Reduction and Separation System. Membranes 2022, 12, 1024. [Google Scholar] [CrossRef]
- Florea-Spiroiu, M.; Olteanu, M.; Stanescu, V.; Nechifor, G. Surface tension components of plasma treated polysulphone membranes. An. Univ. Bucureşti–Chim. Anul XVII 2008, 2, 13–18. [Google Scholar]
- Tirla, A.; Islam, F.; Islam, R.; Vicas, S.I.; Cavalu, S. New Insight and Future Perspectives on Nutraceuticals for Improving Sports Performance of Combat Players: Focus on Natural Supplements, Importance and Advantages over Synthetic Ones. Appl. Sci. 2022, 12, 8611. [Google Scholar] [CrossRef]
- Nikolaev, G.; Robeva, R.; Konakchieva, R. Membrane Melatonin Receptors Activated Cell Signaling in Physiology and Disease. Int. J. Mol. Sci. 2021, 23, 471. [Google Scholar] [CrossRef]
- Farjallah, M.; Graja, A.; Mahmoud, L.; Ghattassi, K.; Boudaya, M.; Driss, T.; Jamoussi, K.; Sahnoun, Z.; Souissi, N.; Hammouda, O. Effects of melatonin ingestion on physical performance and biochemical responses following exhaustive running exercise in soccer players. Biol. Sport 2022, 39, 473–479. [Google Scholar] [CrossRef]
- Kalra, S.; Banderwal, R.; Arora, K.; Kumar, S.; Singh, G.; Chawla, P.A.; Behl, T.; Sehgal, A.; Singh, S.; Bhatia, S.; et al. An update on pathophysiology and treatment of sports-mediated brain injury. Environ. Sci. Pollut. Res. 2022, 29, 16786–16798. [Google Scholar] [CrossRef]
- Gonçalves, A.L.; Ferreira, A.M.; Ribeiro, R.T.; Zukerman, E.; Cipolla-Neto, J.; Peres, M.F.P. Randomised clinical trial comparing melatonin 3 mg, amitriptyline 25 mg and placebo for migraine prevention. J. Neurol. Neurosurg. Psychiatry 2016, 87, 1127–1132. [Google Scholar] [CrossRef] [PubMed]
- Reid, K.; Heuvel, C.J.V.D.; Dawson, D. Day-time melatonin administration: Effects on core temperature and sleep onset latency. J. Sleep Res. 1996, 5, 150–154. [Google Scholar] [CrossRef]
- Rusanova, I.; Martínez-Ruiz, L.; Florido, J.; Rodríguez-Santana, C.; Guerra-Librero, A.; Acuña-Castroviejo, D.; Escames, G. Protective Effects of Melatonin on the Skin: Future Perspectives. Int. J. Mol. Sci. 2019, 20, 4948. [Google Scholar] [CrossRef] [PubMed]
- Marón, F.J.M.; Ferder, L.; Reiter, R.J.; Manucha, W. Daily and seasonal mitochondrial protection: Unraveling common possible mechanisms involving vitamin D and melatonin. J. Steroid Biochem. Mol. Biol. 2020, 199, 105595. [Google Scholar] [CrossRef]
- Favero, G.; Franceschetti, L.; Bonomini, F.; Rodella, L.F.; Rezzani, R. Melatonin as an Anti-Inflammatory Agent Modulating Inflammasome Activation. Int. J. Endocrinol. 2017, 2017, 1835195. [Google Scholar] [CrossRef]
- D’Angelo, G.; Chimenz, R.; Reiter, R.J.; Gitto, E. Use of Melatonin in Oxidative Stress Related Neonatal Diseases. Antioxidants 2020, 9, 477. [Google Scholar] [CrossRef]
- Walrand, S.; Gaulmin, R.; Aubin, R.; Sapin, V.; Coste, A.; Abbot, M. Nutritional factors in sport-related concussion. Neurochirurgie 2021, 67, 255–258. [Google Scholar] [CrossRef]
- Miricioiu, M.; Niculescu, V.-C.; Filote, C.; Raboaca, M.; Nechifor, G. Coal Fly Ash Derived Silica Nanomaterial for MMMs—Application in CO2/CH4 Separation. Membranes 2021, 11, 78. [Google Scholar] [CrossRef]
- Ochoa, J.J.; Díaz-Castro, J.; Kajarabille, N.; García, C.; Guisado, I.M.; De Teresa, C.; Guisado, R. Melatonin supplementation ameliorates oxidative stress and inflammatory signaling induced by strenuous exercise in adult human males. J. Pineal Res. 2011, 51, 373–380. [Google Scholar] [CrossRef]
- Gitto, E.; Tan, D.-X.; Reiter, R.J.; Karbownik-Lewinska, M.; Manchester, L.C.; Cuzzocrea, S.; Fulia, F.; Barberi, I. Individual and synergistic antioxidative actions of melatonin: Studies with vitamin E, vitamin C, glutathione and desferrrioxamine (desferoxamine) in rat liver homogenates. J. Pharm. Pharmacol. 2001, 53, 1393–1401. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Shao, G.; Liu, X.; Li, Z. Assessment of the Therapeutic Potential of Melatonin for the Treatment of Osteoporosis through a Narrative Review of Its Signaling and Preclinical and Clinical Studies. Front. Pharmacol. 2022, 13, 866625. [Google Scholar] [CrossRef] [PubMed]
- Stacchiotti, A.; Favero, G.; Rodella, L.F. Impact of Melatonin on Skeletal Muscle and Exercise. Cells 2020, 9, 288. [Google Scholar] [CrossRef] [PubMed]
- Bantounou, M.; Plascevic, J.; Galley, H.F. Melatonin and Related Compounds: Antioxidant and Anti-Inflammatory Actions. Antioxidants 2022, 11, 532. [Google Scholar] [CrossRef]
- Mircioiu, C.; Voicu, V.; Anuta, V.; Tudose, A.; Celia, C.; Paolino, D.; Fresta, M.; Sandulovici, R.; Mircioiu, I. Mathematical Modeling of Release Kinetics from Supramolecular Drug Delivery Systems. Pharmaceutics 2019, 11, 140. [Google Scholar] [CrossRef]
- Jafari, H.; Hassanpour, M.; Akbari, A.; Rezaie, J.; Gohari, G.; Mahdavinia, G.R.; Jabbari, E. Characterization of pH-sensitive chitosan/hydroxypropyl methylcellulose composite nanoparticles for delivery of melatonin in cancer therapy. Mater. Lett. 2020, 282, 128818. [Google Scholar] [CrossRef]
- Blažević, F.; Milekić, T.; Romić, M.D.; Juretić, M.; Pepić, I.; Filipović-Grčić, J.; Lovrić, J.; Hafner, A. Nanoparticle-mediated interplay of chitosan and melatonin for improved wound epithelialisation. Carbohydr. Polym. 2016, 146, 445–454. [Google Scholar] [CrossRef]
- Musazzi, U.M.; Dolci, L.S.; Albertini, B.; Passerini, N.; Cilurzo, F. A new melatonin oral delivery platform based on orodis-persible films containing solid lipid microparticles. Int. J. Pharm. 2019, 559, 280–288. [Google Scholar] [CrossRef]
Organic Compounds | Name and Symbol | Molar Mass (g/mol) | Solubility in Water (g/L) | pKa |
---|---|---|---|---|
Melatonin (Mel) | 232.28 | 2g/L; max. 3·10−3 mol/L | 5.7 and 10.2 | |
Chitosan (Chi) | 1526.5 | soluble in acid media (0.5 M HCl: 50 mg/mL) | 6.2 to 7.0 | |
sulfonated ethylene-propylene-diene terpolymer (sEPDM) | 2500–6500 | soluble in toluene | 1.9 to 2.2 |
Material | Membrane Symbols | Thickness (µm) | Membrane View (Photo) | Low Magnitude SEM (Membrane Surface) | Contact Angle (θ°) |
---|---|---|---|---|---|
sEPDM | M1 | 50 ± 2 | 73 ± 3 | ||
Chi-sEPDM | M2 | 51 ± 4 | 42 ± 5 | ||
Mel-Chi-sEPDM | M3 | 49 ± 5 | 33 ± 5 |
Membranes | M1 | M2 | M3 | ||||||
---|---|---|---|---|---|---|---|---|---|
Surface Composition | Weight (%) | Atomic (%) | Error (%) | Weight (%) | Atomic (%) | Error (%) | Weight (%) | Atomic (%) | Error (%) |
C K | 94.48 | 95.88 | 3.07 | 96.37 | 97.3 | 2.29 | 93.16 | 94.92 | 2.88 |
O K | 5.28 | 4.02 | 29.5 | 3.49 | 2.64 | 30.79 | 6.44 | 4.93 | 20.94 |
S K | 0.24 | 0.09 | 62.31 | 0.15 | 0.06 | 61.64 | 0.4 | 0.15 | 16.27 |
3345 cm−1 | 1385 cm−1 | 1050 cm−1 | 728 cm−1 | |
M1 | ||||
M2 | ||||
MM3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Păncescu, F.M.; Rikabi, A.A.K.K.; Oprea, O.C.; Grosu, A.R.; Nechifor, A.C.; Grosu, V.-A.; Tanczos, S.-K.; Dumitru, F.; Nechifor, G.; Bungău, S.G. Chitosan–sEPDM and Melatonin–Chitosan–sEPDM Composite Membranes for Melatonin Transport and Release. Membranes 2023, 13, 282. https://doi.org/10.3390/membranes13030282
Păncescu FM, Rikabi AAKK, Oprea OC, Grosu AR, Nechifor AC, Grosu V-A, Tanczos S-K, Dumitru F, Nechifor G, Bungău SG. Chitosan–sEPDM and Melatonin–Chitosan–sEPDM Composite Membranes for Melatonin Transport and Release. Membranes. 2023; 13(3):282. https://doi.org/10.3390/membranes13030282
Chicago/Turabian StylePăncescu, Florentina Mihaela, Abbas Abdul Kadhim Klaif Rikabi, Ovidiu Cristian Oprea, Alexandra Raluca Grosu, Aurelia Cristina Nechifor, Vlad-Alexandru Grosu, Szidonia-Katalin Tanczos, Florina Dumitru, Gheorghe Nechifor, and Simona Gabriela Bungău. 2023. "Chitosan–sEPDM and Melatonin–Chitosan–sEPDM Composite Membranes for Melatonin Transport and Release" Membranes 13, no. 3: 282. https://doi.org/10.3390/membranes13030282
APA StylePăncescu, F. M., Rikabi, A. A. K. K., Oprea, O. C., Grosu, A. R., Nechifor, A. C., Grosu, V. -A., Tanczos, S. -K., Dumitru, F., Nechifor, G., & Bungău, S. G. (2023). Chitosan–sEPDM and Melatonin–Chitosan–sEPDM Composite Membranes for Melatonin Transport and Release. Membranes, 13(3), 282. https://doi.org/10.3390/membranes13030282