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Abstract: This paper presents an analysis of the fouling of a ceramic membrane by a mixture
containing high concentrations of humic acid and colloidal silica during cross-flow ultrafiltration
under various operating conditions. Two types of feed water were tested: feed water containing
humic acid and feed water containing a mixture of humic acid and colloidal silica. The colloidal
silica exacerbated the fouling, yielding lower fluxes (109–394 L m−2 h−1) compared to the humic acid
feed water (205–850 L m−2 h−1), while the retentions were higher except for the highest cross-flow
rate. For the humic acid feed water, the irreversible resistance prevails under the cross-flow rate of
5 L min−1. During the filtration of an organic–inorganic mixture, the reversible resistance due to the
formation of a colloidal cake layer prevails under all operating conditions with an exception. The
exception is the filtration of the organic–inorganic mixture of a 50 mg L−1 humic acid concentration
which resulted in a lower flux than the one of a 150 mg L−1 humic acid concentration under 150 kPa
and a cross-flow rate of 5 L min−1. Here, the irreversible fouling is unexpectedly overcome. This
is unusual and occurs due to the low agglomeration at low concentrations of humic acid under a
high cross-flow rate. Under lower transmembrane pressure and a moderate cross-flow rate, fouling
can be mitigated, and relatively high fluxes are yielded with high retentions even in the presence
of nanoparticles. In this way, colloidal silica influences the minimization of membrane fouling by
organic humic acid contributing to the control of in-pore organic fouling.

Keywords: membrane fouling resistance; wastewater; humic acid; colloidal silica; ultrafiltration; fouling

1. Introduction

It is well-known that membranes are broadly used in water and wastewater treatment
despite the occurrence of membrane fouling, which can reduce the effectiveness of the
filtration process. Depending on the type of fouling, it can be controlled in cross-flow
filtration by adjusting the operating conditions and by choosing the appropriate membrane
type. However, in treated feed waters, various constituents can naturally appear, and their
interaction can even exacerbate the fouling of a membrane. Several processes lead to the
fouling of membranes such as the adsorption of particles from a solution, the deposition of
particles, and gel formation [1,2]. Numerous forms of natural organic and inorganic matter
in wastewater cause fouling of the membrane. One of the organic foulants of the membrane
is humic acid (HA) present in soil and water, while silica particles (SiO2), widely used
nanoparticles in many products, can appear as inorganic foulants [3–8]. Humic substances
can reside in the soil for a very long time due to the interactions with clay minerals and
have an impact on the ecosystem, including carbon cycling, nutrient intake, transport, and
foulant transfer [9]. Additionally, aggregation, deposition, and transformation processes
are naturally occurring, so engineered nanoparticles can be significantly impacted by the
adsorption of organic matter [10]. It was discovered, for example, that the presence of Ca2+

ions can cause the agglomeration of humic acid as a form of natural organic matter present
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in wastewater [6]. Hence, it is important to uncover the mechanisms of fouling by humic
acid and colloidal silica. Most of the fouling studies have focused on the individual organic
or inorganic fouling of a membrane, while mutual fouling effects in membrane filtration
remain relatively unidentified. Additionally, many studies have been oriented to improve
the characteristics of polymer membranes by adding different fillers for the better removal
of humic acid.

Taheri et al. [11] investigated the combined fouling of an ultrafiltration polymeric
membrane with humic acid and colloidal silica during dead-end ultrafiltration (UF) at
a constant pressure of 210 kPa. They found that humic acid and colloidal silica react
differently to intermittent relaxation because of differences in particle size, compressibility,
and metastability. Further, they found that frequent relaxation is more effective since it
prevents the build-up of a thick cake layer that can lead to internal pore fouling with
low compressibility HA. Frequent relaxation is important to minimize the increase in
transmembrane pressure to avoid the onset of a transition to a firmer cake layer. Li and
Elimelech [12] also studied the combined fouling of a thin-film composite membrane,
during the dead-end nanofiltration of Suwannee River humic acid and silica colloids.
Qin et al. [13] investigated the synergistic effect of humic acid, BSA, alginate, and colloidal
silica on the fouling of a polymeric microporous membrane during membrane distillation.
The studied concentrations of humic acid and colloidal silica were lower than 50 and
100 mg L−1, respectively.

In addition, the research to date has been based on the investigation of a mixture
of the effect of HA and colloidal SiO2 mostly on polymer membranes during dead-end
filtration. To our knowledge, there is still no research on the effect of this mixture on
ceramic membranes by cross-flow UF. Lee et al. [14] described the critical differences
between polymeric and ceramic membranes. Ceramic membranes have significantly less
irreversible fouling than polymeric ones. The major reason for this is the lower interaction
of the foulant with ceramic membranes than with polymeric membranes, due to the more
hydrophilic nature of ceramic membranes. Polymer membranes are more economically
acceptable, and due to the economy and the possibility of a higher ability to modify their
surface chemistry, many studies have focused on improving the characteristics of polymer
membranes by impregnating different fillers for the better removal of humic acid [15,16].
However, ceramic membranes have longer lifespans compared to polymeric membranes.
Made of inorganic materials, ceramic membranes have a much higher chemical resistivity,
enabling much more aggressive cleaning approaches without the risk of damaging the
integrity of the membrane.

This paper presents the investigation of the cross-flow ultrafiltration of a complex
organic–inorganic mixture on a ceramic membrane. The aim was to analyze fouling by feed
water containing humic acid and colloidal silica in high concentrations. Also, the influence
of operating conditions, such as transmembrane pressure and cross-flow rate, was studied.
New insights were gained into the fouling and retention of HA due to the presence of
colloidal silica and its specific interaction with humic acid under a certain combination of
operating conditions and concentrations of HA.

2. Materials and Methods
2.1. Filtration Experiments

All the experiments were carried out using the microfiltration/ultrafiltration experi-
mental setup made of stainless steel (Figure 1). The transmembrane pressure (TMP) and
cross-flow rate (Q) were regulated using the bypass valve and the main flow valve and
monitored by digital manometers and a rotameter. The temperature was monitored by
a digital thermometer. The permeate was gathered in the container placed on the digital
balance (EW 1500-2 M, KERN, Balingen, DE Germany) and continuously weighed; the
obtained data were transferred to a personal computer.
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The single-channel ceramic membrane with a molecular weight cut-off size (MWCO)
of 100 kDa, made of a ZrO2 filtering layer on an α-alumina support (Atech, Aachen, DE)
was used. The ceramic membrane had a length of 250 mm, 6 mm ID (internal diameter),
and 10 mm OD (outside diameter). The active membrane surface was 4.71 × 10−3 m2.
The membrane was characterized by pH stability in the range of 0–14 and suitability
for steam sterilization at 121 ◦C. The resistance of the clean membrane (Rm) amounts to
5.39 × 1011 m−1, received from the water flux measurement at various TMPs.

Two types of feed water were filtered: organic feed water containing humic acid
(Sigma-Aldrich, Saint Louis, MO, USA) and an organic–inorganic feed containing humic
acid and colloidal silica (Centrohem, Stara Pazova, Serbia). Model systems of feed waters
were prepared by stirring humic acid and colloidal silica in distilled water to obtain 7 L of
feed. To ensure proper dissolution, 1 L of distilled water was mixed on a magnetic stirrer
(AMTAST Basic, Qingdao, China) for 10 min. The remaining 6 L of distilled water was then
added and mixed using an overhead stirrer (VELP scientific, Usmate Velate, IT) for 15 min
before being poured into the tank. The studied concentrations of humic acid (HA) were 50,
100, and 150 mg L−1, and for colloidal silica, the concentrations were 500 and 1000 mg L−1.
The experiments were performed under various transmembrane pressures (TMP) (50, 100,
and 150 kPa) and cross-flow rates (Q) (1, 3, and 5 L min−1). The temperature was kept
constant at 25 ± 0.5 ◦C during all experiments. The pH values in the feed and permeate
samples were measured (HACH, Loveland, CO, USA). The pH was 6.6 ± 0.5 during all
experiments. The experiments were done in triplicate and the average values were used
for calculation.

The retention of the membrane for humic acid was determined based on the difference
in the concentrations of HA in the feed water and permeate. The sampling of the permeate
was carried out at certain time intervals up to 120 min (10, 20, 30, 45, 60, 90, and 120 min) to
measure the concentration of humic acid. To accurately determine the concentrations of humic
acid in the samples, a calibration with standard solutions was performed. A series of standard
solutions with humic acid were prepared in distilled water. Then, the absorbance of each
standard solution, which was placed in a 4 mL quartz cuvette, was measured at a wavelength
of 254 nm, using a UV-visible spectrophotometer (T80 UV/VIS, Hric Group International,
London, UK). After measuring the absorbance values of the standard solutions, a graph was
plotted to illustrate the relationship between the concentrations of the standard solutions and
their corresponding absorbance values. The obtained standard calibration curve (y = 86.53
and R2 = 0.996) was used to determine the concentrations of humic acid in the samples. Also,
microscopic images of the organic–inorganic feed water were produced on a light microscope
(Olympus BX41, Tokyo, Japen) under a 10× g magnification.

After the filtration part of the experiment, the membrane was rinsed with distilled
water for 15 min under the same conditions that the filtration was conducted under to
remove surface fouling. Then, the fresh distilled water was fed, and the flux of water
(Jpire) was measured under the same conditions that the filtration was conducted under.
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This flux served to determine the irreversible and reversible resistances of the membrane.
After each experiment, the membrane was cleaned by applying the three-step base-acid-
base procedure.

2.2. Calculations

The flux of the permeate (Jp) was calculated by the following equation:

Jp =
V

t ∗ Aac

[
L m−2 h−1

]
(1)

where V isthe volume of permeate (L); tis the time for which the volume was collected (h);
Aac isthe active surface area of the membrane (m2) [17].

Retention (R) was calculated by the following equation:

R =

(
1 −

Cp

C0

)
∗ 100[%] (2)

where Cp is the concentration of the component in the permeate (mg L−1), and C0 is
theconcentration of the component in the feed mixture (mg L−1) [18,19].

The fouling resistance (Rf ), the total hydraulic resistance (Rt), and irreversible resis-
tance (Rirr) were determined according to Darcy’s law and the resistance in-series model
as follows:

R f =
TMP
µ ∗ Jp

− Rm
[
m−1

]
(3)

Rirr =
TMP

µ ∗ Jpire
− Rm

[
m−1

]
(4)

Rr = R f − Rirr
[
m−1

]
(5)

Rt = Rm + Rirr + Rr
[
m−1

]
(6)

where µ is the dynamic viscosity of permeate (0.00089 (Pa s) at 25 ◦C); Jpire is the flux of
distilled water under filtration conditions after rinsing the membrane (L m−2 h−1). The
relative value of the individual resistance was determined as the ratio of the reversible
resistance, Rr, or irreversible resistance, Rirr, to the fouling resistance, Rf.

3. Results and Discussion

The analysis of the results was divided into two parts to identify the mechanisms
of combined organic–inorganic fouling. Firstly, the UF of the HA feed water and the
influence of humic acid as a natural organic matter foulant on the flux, retention, and
fouling resistances were discussed. Afterwards, the UF of organic–inorganic feed water
and the influence of the addition of colloidal silica nanoparticles to the natural organic
matter mixture were analyzed.

3.1. Analysis of Fouling during Humic Acid Feed Water

Figure 2 shows the permeate fluxes obtained under the transmembrane pressure of
50 kPa (a) and 150 kPa (b) for various combinations of cross-flow rates (1 and 5 L min−1)
and humic acid concentrations (50 and 150 mg L−1). As expected, the permeate flux
decreased with increasing humic acid concentrations for all combinations of the Q and
TMP values. On the other hand, an increase in TMP and Q values increased the permeate
flux. The difference between the achieved permeate fluxes at higher cross-flow rates and
the influence of the concentration of humic acid was especially pronounced under higher
transmembrane pressure values.
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In Figure 2a, the slight initial decline in the permeate flux can be observed, followed
by the rapid establishment of a steady state. This is for the lower TMP of 50 kPa, the
cross-flow rate of 5 L min−1, and the concentration of HA of 150 mg L−1. A similar result
was found for the concentrations of HA of 50 and 150 mg L−1 at the cross-flow rate of
1 L min−1. The shape of the flux decline in time is practically independent of the operating
conditions, and a steady state is rapidly established in the first minutes of filtration. Further,
under a transmembrane pressure of 50 kPa, at a cross-flow rate of 5 L min−1, and under a
concentration of HA of 50 mg L−1, the steady-state permeate flux of 320 L m−2 h−1 was
established at the very beginning of the filtration, indicating that in-pore fouling may occur.

In Figure 2b, a rapid decline in the permeate flux in the first ten minutes under the
higher TMP of 150 kPa at the cross-flow rate of 1 L min−1 for both concentrations of HA can
be noticed. This indicates that membrane fouling is combined and that after the initial mild
concentration polarization effect, the flux declines slowly due to the further deposition of
HA particles on the membrane surface and within the pores. Due to the low cross-flow
rate, there was no significant removal of HA particles from the membrane surface and
back transport by diffusion. This was especially the case under the higher concentration
of HA due to the low diffusion coefficient of HA agglomerates. Under these conditions,
a steady-state flux is achieved slowly. When increasing the cross-flow rate to 5 L min−1,
the shape of the flux curve changes in the sense that the steady state is reached practically
from the beginning of the filtration for both concentrations of humic acid. The high cross-
flow rate prevents the deposition of particles and increases the back diffusion of particles,
especially for the low concentration of HA. Also, the smaller particles of humic acid enter
into the pores of the membrane due to the high pressure imposed and removed surface
fouling. For the low HA concentration of 50 mg L−1, a slight increase in permeate flux can
be observed followed by a decrease caused by the trade-off between back transport under
a high cross-flow rate and the dragging force of the permeate toward the membrane due to
the high TMP. However, the high cross-flow rate took out larger particles of humic acid,
lowering surface fouling and resulting in a high permeate flux of 850 L m−2 h−1.

Figure 3 shows the relative values of the irreversible (Rirr) and reversible resistances
(Rr) calculated using Equations (3)–(5), while the absolute values are presented in the
Supplementary Materials (Table S1 and Figure S5). The results show that humic acid causes
both internal and surface fouling. Which one is going to be dominant depends on the
operating conditions. Among others, the effect of the cross-flow rate is the key leading
factor in dominantly irreversible fouling. Accordingly, at a cross-flow rate of 5 L min−1,
irreversible fouling prevails compared to the effect of the cross-flow rate of 1 L min−1,
where reversible fouling prevails. Further, the effect of the concentration of humic acid
on the resistance can be observed. At the lower concentration of HA of 50 mg L−1, at the
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cross-flow rate of 5 L min−1, and at both values of TMP (50 and 150 kPa), internal fouling
is more represented. Thus, at the cross-flow rate of 5 L min−1, the TMP of 150 kPa, and
under the 50 mg L−1 HA concentration, the highest relative value of irreversible resistance
of 81.7% was reached. On the other hand, at the cross-flow rate of 1 L min−1, under the
TMP of 150 kPa, and under the HA concentration of 150 mg L−1, the highest relative
value of reversible resistance of 93.4% was reached. Due to the agglomeration of HA,
especially when the concentration is high and under low cross-flow rates, the membrane
fouls mainly reversibly. Because of the establishment of a turbulent regime, under the
rate of 5 L min−1, the agglomerates can be separated, but also, the particles are removed
from the membrane surface by high shear stress. This prevents the formation of a cake
layer, so HA macromolecules enter the pores of the membrane, causing predominantly
irreversible fouling.
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Other scientists have also reported [4,20,21] the tendency of humic acid to agglomerate
and deposit on the surface of the membrane alongside the adsorption and penetration of
small particles into the pores. However, which mechanism will be dominant depends on
the pores’ size. During the UF of HA in a stirred cell, it was found that adsorption and
concentration polarization caused relatively little flux decline while HA aggregates had
a significant effect on fouling only for the membranes with larger cut-offs [4]. Further,
under lower concentrations of HA, the agglomeration is smaller, so the macromolecules
can penetrate the pores of a membrane [4,22,23]. The presence of fouling, especially in-pore
fouling, can affect separation efficiency in terms of reduced retention, so it is necessary to
analyze retention as well.

Figure 4 shows the retention of humic acid by the membrane under the TMP values of
50 kPa (a) and 150 kPa (b) for various combinations of cross-flow rates (1 and 5 L min−1)
and concentrations of HA (50 and 150 mg L−1). At the beginning of the filtration, retention
is usually lower when a low cross-flow rate was imposed. Under the high cross-flow rate,
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retention is almost constant throughout all processes. Upon the achievement of steady-
state conditions, retentions range from 60 to almost 100%, depending on the operating
conditions. The highest retention of almost 100% was yielded under the highest cross-
flow rate of 5 L min−1 and the lowest TMP, 50 kPa, regardless of the HA concentration
(Figure 4a). On the other hand, with increases in the transmembrane pressure, retention
declines (Figure 4b). At the higher TMP of 150 kPa, the higher retentions of about 85% were
yielded for the higher concentration of HA of 150 mg L−1 for both the tested cross-flow
rates. This is due to the greater agglomeration at the higher concentrations of HA. The
lowest retentions of about 65% were obtained under the lowest concentrations of HA of
50 mg L−1 and the lowest cross-flow rate of 1 L min−1 under both values of TMP. The lower
retention is achieved under the higher TMP and cross-flow rate and the lower concentration
of HA due to the smaller agglomeration and the higher force imposed on the membrane
by pressure. This indicates that a certain level of agglomeration and the formation of a
dynamic cake layer at the membrane surface serving as the additional filtering layer can
improve the retention of HA if operating conditions are adjusted properly. Even though
in-pore fouling is predominant when the highest cross-flow rate is imposed, the retentions
are high because of the intensive removal of the particles from the surface of the membrane.
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Figure 4. Time dependency of retention of humic acid at the different operating conditions: (a) trans-
membrane pressure of 50 kPa and (b) transmembrane pressure of 150 kPa. The concentrations of
humic acid (50 and 150 mg L−1) and the cross-flow rates (1 and 5 L min−1) are varied.

Lowe and Hossain [24] studied the cross-flow ultrafiltration of HA-containing feed
water using polymeric membranes of 3, 5, and 10 kDa. Among the tested membranes, the
10 kDa membranes provided the highest permeate flux of about 60 L m−2 h−1 and the
highest removal of HA under the low initial concentration of 15 mg L−1. They observed
that the fouling was mainly reversible for all tested membranes. In our study, the 100 kDa
membrane provided high fluxes while maintaining relatively high retention under the
carefully chosen operating conditions. However, the performance of the membrane process
can change when various constituents are present in feed water due to their interactions.

3.2. Analysis of Fouling during Filtration of Organic–Inorganic Feed Water

Figure 5 shows the time dependency of flux during the UF of a complex organic–
inorganic mixture under the TMP of 50 kPa (a) and 150 kPa (b), under the various combina-
tions of cross-flow rate (1, 3, and 5 L min−1), and under the concentrations of HA (50 and
150 mg L−1) for the colloidal silica concentration of 1000 mg L−1. The obtained fluxes are
significantly lower for organic–inorganic feed water compared to HA feed water due to
the presence of colloidal silica. Thus, the fouling is exacerbated by the addition of SiO2
particles. The exception is the operation under the cross-flow rate of 5 L min−1 and the
low TMP of 50 KPa, where the fluxes are slightly higher for the organic–inorganic feed
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compared to HA feed. Under the cross-flow rate of 5 L min−1, the TMP of 50 kPa, and
the HA concentration of 50 mg L−1, the highest permeate flux value of 340 L m−2 h−1 is
obtained. The reason for this behavior is that the surface fouling caused by colloidal silica
leads to the precipitation of HA agglomerates on the fouling layer, thereby preventing the
entering of macromolecules of HA into the pores under the low TMP of 50 kPa.
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of colloidal silica was constant (1000 mg L−1).

Generally, the flux increased with increasing cross-flow rates for both the tested
transmembrane pressures. The influence of humic acid concentration was almost negligible
under the lower TMP (Figure 5a) and under the lowest cross-flow rate under the higher
TMP (Figure 5b). Only when the high cross-flow rate of 5 L min−1 was imposed, a slight
difference in fluxes between the 50 and 150 mg L−1 HA concentrations could be observed
for the TMP of 50 kPa. Under the higher value of TMP of 150 kPa (Figure 5b), the effect of
the HA concentration increased with the increasing the cross-flow rate. The influence of the
HA concentration was negligible under the lowest cross-flow rate of 1 L min−1 since the
same fluxes were obtained for both concentrations. However, unusual behavior occurred
when the high cross-flow rate of 5 L min−1 was imposed. Namely, the flux was higher
under the 150 mg L−1 concentration of HA than for the 50 mg L−1 concentration of HA and
amounted to 394 L m−2 h−1. This indicates that the presence of SiO2 can change the nature
of membrane fouling by HA under high cross-flow rates and transmembrane pressures.

In Figure 5a, the trends of flux decline with time during filtration at the cross-flow
rates of 1 and 3 L min−1 were the same with a rapid initial decline as a consequence of
concentration polarization, followed by a gradual decline until the achievement of a steady
state. The gradual decline of flux is the result of the deposition of colloidal silica particles,
and of the creation of a cake layer on which humic acid particles precipitate especially at a
lower cross-flow rate and transmembrane pressure. On the other hand, at the cross-flow
rate of 5 L min−1, under the TMP of 50 kPa, and under both concentrations of humic acid,
the initial flux decline was not observed. A very slight flux incline followed by a decline
can be observed at the very beginning of filtration. Furthermore, the steady-state flux is
established rapidly. This is because the high cross-flow rate of 5 L min−1 prevented the
initial deposition of particles on the membrane’s surface.

In Figure 5b, under the higher TMP of 150 kPa, the trend of flux decline with time is the
same for all cross-flow rates with the rapid initial decline of the flux due to the concentration
polarization followed by the slow deposition of particles until the achievement of a steady-
state flux. The exception is the filtration of the 50 mg L−1 HA feed under the cross-flow rate
of 5 L min−1, where the initial flux decline was not so expressed. Under other combinations
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of the concentrations of HA and SiO2 and the operating conditions, this was not observed
(see Supplementary Materials, Figure S1b).

Figure 6 shows the values of the irreversible (Rirr) and reversible resistances (Rr)
relative to the overall fouling resistance for the organic–inorganic feed water, while the
absolute values are presented in the Supplementary Materials (Table S2 and Figure S6).
It can be noticed that during the filtration of the organic–inorganic mixture, reversible
fouling was dominant under all the operating conditions except for the HA concentration
of 50 mg L−1 under the TMP of 150 kPa and the cross-flow rate of 5 L min−1. Predominantly
reversible fouling indicates that colloidal silica causes reversible fouling in the form of a
cake layer and partially prevents the penetration of HA macromolecules into the membrane
pores. This is particularly the case under low cross-flow rates and the high transmembrane
pressures. At the cross-flow rates of 1 and 3 L min−1, the reversible resistances had higher
absolute values, in the range of 40.3 × 1010 to 430 × 1010, than the irreversible resistances
did, which were in the range of 13.1 × 1010 to 34.4 × 1010. Also, at a cross-flow rate of
5 L min−1, the reversible resistances had higher values, except under a transmembrane
pressure of 150 kPa and a humic acid concentration of 50 mg L−1, where a significantly
higher absolute value of irreversible resistance (148 × 1010) was obtained compared to
the value of reversible resistance (4.21 × 1010) (Supplementary Materials, Table S2 and
Figure S6). Reversible fouling was predominant under the concentration of 100 mg L−1 of
HA and under the concentration of 500 mg L−1 of SiO2, and it was the lowest under the
cross-flow rate of 5 L min−1 (Supplementary Materials, Figure S3).
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Figure 6. The relative values of irreversible (Rirr) and reversible resistance (Rr) during the ultrafiltra-
tion of a complex mixture of humic acid and colloidal silica.

Given that HA agglomerates more at high concentrations and that the colloidal silica
cake layer is compressible, predominantly reversible fouling can be expected even under
a high cross-flow rate. On the other hand, when the concentration of HA is low under a
high cross-flow rate, agglomeration is negligible or absent due to high turbulence. When,
additionally, a high TMP is imposed, HA macromolecules can penetrate the SiO2 cake layer
into the pores, so irreversible fouling becomes dominant. A high transmembrane pressure
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leads to the cake layer’s compression generally, and when a lower cross-flow is imposed,
fouling remains predominantly reversible, while irreversible fouling is significantly reduced
regardless of the HA concentration.

For the confirmation of the observations made in our study, microscopic images of
the feed waters were taken and are shown in Figure 7. Figure 7a shows a microscopic
image of the feed water containing a HA concentration of 150 mg L−1. Figure 7b shows
a microscopic image of the feed water containing the colloidal silica at a concentration of
1000 mg L−1. Figure 7c shows the feed water containing HA and silica in concentrations
of 150 and 1000 mg L−1, respectively. For the feed water containing HA and SiO2, the
deposited agglomerated HA on the colloidal silica layer could be observed. Figure 8
shows the magnified view of agglomerated and precipitated humic acid on the colloidal
layer. Similar evidence of agglomeration and the deposition of humic acid, obtained by a
transmission electron microscope, was given by Li et al. [25]. Also, similar observations
were reported by Qin et al. [13]. They observed that the cake layer was created by the
separate deposition of colloidal silica and humic acid onto the membrane surface during
membrane distillation. Additionally, the fouling layer morphology showed that the humic
acid was layered on top of the colloidal silica.
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under 10× g magnification of a light microscope.

Several researchers discussed the tendencies of HA and colloidal SiO2 to
compress [4,22,23,25]. Humic acid has a low compressibility and causes internal pore
fouling, while colloidal silica is highly compressible and forms a dynamic surface layer.
Also, at a lower concentration of HA (50 mg L−1), lower agglomeration of humic acid
occurs, which leads to the incorporation of macromolecules of HA into the pores.

Figure 9 shows the retention of humic acid, during the filtration of the organic-
inorganic mixture, under the TMP values of 50 kPa (a) and 150 kPa (b), for all combinations
of Q (1,3, and 5 L min−1) and HA concentrations (50 and 150 mg L−1) and at a constant
concentration of colloidal silica—1000 mg L−1. The retentions of HA during the filtration
of the organic–inorganic mixture were generally higher compared to the retentions of HA
during the filtration of the feed water containing HA only. Under the high cross-flow rate
of 5 L min−1, the retention was practically constant during filtration. This was due to the
lower fouling generally. For the low cross-flow rate, the retention was low at the beginning
of the filtration and increased with time but did not reach the values obtained under the
high cross-flow rates. Under these conditions, fouling was intensive, and it took time for
the dynamic filter cake to form. During the filtration under the cross-flow rate of 3 L min−1,
a decrease in retention occurred under the TMP of 50 kPa.

The highest retention of almost 95% was yielded when the concentration of HA was
150 mg L−1, the cross-flow rate was 5 L min−1, and the low TMP was 50 kPa (Figure 9a).
This is a slightly lower value than that of the filtration of the HA feed water despite the
presence of a surface fouling layer at the membrane surface. Under low TMP values,
the surface fouling layer was not compressed enough, so the small HA particles could
penetrate it into the pores. Under the high TMP value of 150 kPa, the retentions ranged
from 80 to 90%, the highest retentions obtained under the cross-flow rate of 3 L min−1

(Figure 9b). Under these conditions, the dynamic cake layer formed due to the not-so-high
shear stress under the higher cross-flow rates of 5 L min−1, while the high TMP caused
the compression of the cake layer and simultaneously pushed the small HA particles into
the pores. The retention results additionally confirm the complexness of the influence of
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operating conditions on the agglomeration of HA and the formation and compressibility
of a colloidal cake layer. Also, the presence of colloidal silica nanoparticles can increase
the retention of HA by properly adjusting the operating conditions. In other studies where
multi-walled carbon nanotubes and graphene oxide particles were used and incorporated
into the PES membrane, the HA rejection values were 90.8% and 94.8%, respectively [26].
Also, Almanassra et al. [27] used carbon derived from carbide oxidized by acid treatment
(OCDC) as a filler in the production of innovative PES composite membranes. The results
demonstrate a significant advancement in HA rejection rates, with a range between 92.6
to 96.8%.
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Figure 9. Time dependency of retention of humic acid during the ultrafiltration of the mixture of
humic acid and colloidal silica under different operating conditions: (a) transmembrane pressure
of 50 kPa and (b) transmembrane pressure of 150 kPa. The concentrations of humic acid (50 and
150 mg L−1) and cross-flow rates (1, 3, and 5 L min−1) are varied. The concentration of colloidal silica
was constant (1000 mg L−1).

Previous studies on humic acid and mixtures of humic acid and colloidal silica have
primarily focused on polymer membranes. To compare the effectiveness of ceramic and
polymer membranes at removing humic acid, we have provided a comparative table in this
study (Table 1). The removal rate of humic acid is influenced by various factors, including
the type and pore size of the membrane. Our ceramic membrane demonstrated a high
capacity for removing humic acid, both as a single foulant and in combination with colloidal
silica, indicating its effectiveness for water treatment applications.

Table 1. Review of investigated studies on humic acid removal.

Membrane Type Pore Size/MWCO Type of Foulants Rejection of HA (%) References

Ceramic ZrO2 with
α-alumina support 100 kDa

HA 65–99
This workHA-SiO2 75–95

Polymeric UF RC 30 kDa HA-SiO2 55 [4]

Polymeric PES 30, 50, 100, 300 kDa,
0.16 µm Soil-based HA 50–99 [5]

Polymeric PC 0.2 µm HA >80 [20]

Polymeric PES 3, 5 and 10 kDa HA 70–80 [24]

PES/MWCNTs
PES/GO 59 kDa HA 91–95 [26]

PES/CDC 34.9–36.5 nm HA 92.6–96.8 [27]

Polymeric PCTE 100, 300 kDa
Soil-based HA and SRHA 87–95 [28]Polymeric PES 1 M

Polymeric PVDF 0.16 µm
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4. Conclusions

In this study, an analysis of the fouling of a ceramic membrane by complex organic–
inorganic feed water containing high concentrations of humic acid and colloidal silica was
presented. The colloidal SiO2 nanoparticles in the organic–inorganic feed water exacerbated
the fouling of the membrane, yielding lower fluxes (109–394 L m−2 h−1) compared to
the HA feed water (205–850 L m−2 h−1). On the other hand, the retentions obtained
under the presence of SiO2 were higher except for the highest cross-flow rates. Under the
high cross-flow rates, such as 5 L min−1, the agglomeration of HA was the least and the
dynamic fouling layer was disrupted, so the smallest HA particles could penetrate the
pores. Unlike during the filtration of HA where irreversible resistance prevailed under a
highly turbulent regime, during the filtration of the organic–inorganic mixture, reversible
resistance appeared under all the operating conditions, except in one case. The exception
is the filtration of the organic–inorganic mixture of a 50 mg L−1 HA concentration, which
resulted in a lower flux than the one of 150 mg L−1 HA concentration under the TMP of
150 kPa and the cross-flow rate of 5 L min−1. Here, the irreversible fouling was unexpectedly
overcome. This was due to the specific interaction between the humic acid and colloidal
silica, under a certain combination of concentrations of both constituents, transmembrane
pressure, and cross-flow rate. By the proper operation under mild operating conditions,
i.e., lower TMPs and moderate cross-flow rates, fouling can be mitigated, and relatively
high fluxes can be yielded with high retentions even in the presence of nanoparticles.
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