Analysis of PEM Water Electrolyzer Failure Due to Induced Hydrogen Crossover in Catalyst-Coated PFSA Membranes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Setup and Cell Assembly
2.2. Membrane Accelerated Stress Test
2.3. Performance Characterization
2.4. Characterization Techniques
2.4.1. Hydrogen Crossover
2.4.2. Fluoride Emission Rate
2.4.3. Scanning Electron Microscopy
3. Results and Discussion
3.1. Performance Characterization
3.2. Hydrogen Crossover
j (A·cm–2) | H2 Volume Fraction in O2 / % | ||||
---|---|---|---|---|---|
Experimental | Literature | ||||
60 °C | BoT | 0.2 | 1.1 ± 0.002 | ~1.5 % | Omrani et al. (2021) |
0.5 | 0.8 ± 0.001 | ~1.1 % | |||
1.0 | 0.4 ± 0.004 | ~0.9 % | |||
EoT | 0.2 | 0.9 ± 0.003 | - | ||
0.5 | 0.8 ± 0.001 | - | |||
1.0 | 0.4 ± 0.003 | - | |||
80 °C | BoT | 0.2 | 0.8 ± 0.005 | ~0.9 % | Martin et al. (2022) |
0.5 | 0.5 ± 0.004 | ~0.6 % | |||
1.0 | 0.4 ± 0.003 | ~0.5 % | |||
EoT | 0.2 | 0.9 ± 0.006 | - | ||
0.5 | 0.7 ± 0.006 | - | |||
1.0 | 0.5 ± 0.002 | - |
3.3. Fluoride Emission Rate
3.4. Correlation of Fluoride Emission and Hydrogen Crossover
3.5. Scanning Electron Microscopy
3.5.1. Cross-sectional Analysis
3.5.2. Surface Morphology Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deng, Y.; Yang, L.; Wang, Y.; Zeng, L.; Yu, J.; Chen, B.; Zhang, X.; Zhou, W. Ruthenium nanoclusters anchored on cobalt phosphide hollow microspheres by green phosphating process for full water splitting in acidic electrolyte. Chin. Chem. Lett. 2020, 32, 511–515. [Google Scholar] [CrossRef]
- Garche, J.; Dyer, C.K.; Moseley, P.T.; Ogumi, Z.; Rand, D.A.J.; Scrosati, B. Encyclopedia of Electrochemical Power Sources; Elsevier Science: Amsterdam, The Netherlands, 2013; ISBN 9780444527455. [Google Scholar]
- Van Pham, C.; Escalera-López, D.; Mayrhofer, K.; Cherevko, S.; Thiele, S. Essentials of High Performance Water Electrolyzers – From Catalyst Layer Materials to Electrode Engineering. Adv. Energy Mater. 2021, 11, 2101998. [Google Scholar] [CrossRef]
- Weiß, A.; Siebel, A.; Bernt, M.; Shen, T.-H.; Tileli, V.; Gasteiger, H.A. Impact of Intermittent Operation on Lifetime and Performance of a PEM Water Electrolyzer. J. Electrochem. Soc. 2019, 166, F487–F497. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, A.; Mehrpooya, M. A comprehensive review on coupling different types of electrolyzer to renewable energy sources. Energy 2018, 158, 632–655. [Google Scholar] [CrossRef]
- Buttler, A.; Spliethoff, H. Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review. Renew. Sustain. Energy Rev. 2018, 82, 2440–2454. [Google Scholar] [CrossRef]
- Feng, Q.; Yuan, X.; Liu, G.; Wei, B.; Zhang, Z.; Li, H.; Wang, H. A review of proton exchange membrane water electrolysis on degradation mechanisms and mitigation strategies. J. Power Sources 2017, 366, 33–55. [Google Scholar] [CrossRef]
- Khan, M.I.; Shanableh, A.; Shahida, S.; Lashari, M.H.; Manzoor, S.; Fernandez, J. SPEEK and SPPO Blended Membranes for Proton Exchange Membrane Fuel Cells. Membranes 2022, 12, 263. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wen, Q.; Qin, J.; Zou, S.; Ning, F.; Bai, C.; Pan, S.; Jin, H.; Xu, P.; Shen, M.; et al. A high-efficient and low-consumption nanoimprint method to prepare large-area and high-quality Nafion array for the ordered MEA of fuel cell. Chem. Eng. J. 2023, 451, 138722. [Google Scholar] [CrossRef]
- Kusoglu, A.; Weber, A.Z. New Insights into Perfluorinated Sulfonic-Acid Ionomers. Chem. Rev. 2017, 117, 987–1104. [Google Scholar] [CrossRef]
- DeCaluwe, S.C.; Baker, A.M.; Bhargava, P.; Fischer, J.E.; Dura, J.A. Structure-property relationships at Nafion thin-film interfaces: Thickness effects on hydration and anisotropic ion transport. Nano Energy 2018, 46, 91–100. [Google Scholar] [CrossRef]
- Hsu, W.Y.; Gierke, T.D. Ion transport and clustering in nafion perfluorinated membranes. J. Membr. Sci. 1983, 13, 307–326. [Google Scholar] [CrossRef]
- Sedesheva, Y.S.; Ivanov, V.S.; Wozniak, A.I.; Yegorov, A.S. Proton-Exchange Membranes Based on Sulfonated Polymers. Orient. J. Chem. 2016, 32, 2283–2296. [Google Scholar] [CrossRef]
- Kumar, P.; Bharti, R.P.; Kumar, V.; Kundu, P.P. Polymer Electrolyte Membranes for Microbial Fuel Cells: Part A. Nafion-Based Membranes. In Progress and Recent Trends in Microbial Fuel Cells; Elsevier: Amsterdam, The Netherlands, 2018; pp. 47–72. ISBN 978-0-444-64017-8. [Google Scholar]
- Martin, A.; Trinke, P.; Bensmann, B.; Hanke-Rauschenbach, R. Hydrogen Crossover in PEM Water Electrolysis at Current Densities up to 10 A cm−2. J. Electrochem. Soc. 2022, 169, 094507. [Google Scholar] [CrossRef]
- Omrani, R.; Shabani, B. Hydrogen crossover in proton exchange membrane electrolysers: The effect of current density, pressure, temperature, and compression. Electrochimica Acta 2021, 377, 138085. [Google Scholar] [CrossRef]
- Frensch, S.H.; Fouda-Onana, F.; Serre, G.; Thoby, D.; Araya, S.S.; Kær, S.K. Influence of the operation mode on PEM water electrolysis degradation. Int. J. Hydrog. Energy 2019, 44, 29889–29898. [Google Scholar] [CrossRef]
- LaConti, A.B.; Hamdan, M.; McDonald, R.C. Mechanisms of Membrane Degradation. In Handbook of Fuel Cells; Vielstich, W., Lamm, A., Gasteiger, H.A., Yokokawa, H., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2010; p. f303055. ISBN 978-0-470-74151-1. [Google Scholar]
- Frensch, S.H.; Serre, G.; Fouda-Onana, F.; Jensen, H.C.; Christensen, M.L.; Araya, S.S.; Kær, S.K. Impact of iron and hydrogen peroxide on membrane degradation for polymer electrolyte membrane water electrolysis: Computational and experimental investigation on fluoride emission. J. Power Sources 2019, 420, 54–62. [Google Scholar] [CrossRef]
- Chandesris, M.; Médeau, V.; Guillet, N.; Chelghoum, S.; Thoby, D.; Fouda-Onana, F. Membrane degradation in PEM water electrolyzer: Numerical modeling and experimental evidence of the influence of temperature and current density. Int. J. Hydrogen Energy 2015, 40, 1353–1366. [Google Scholar] [CrossRef]
- Fouda-Onana, F.; Chandesris, M.; Médeau, V.; Chelghoum, S.; Thoby, D.; Guillet, N. Investigation on the degradation of MEAs for PEM water electrolysers part I: Effects of testing conditions on MEA performances and membrane properties. Int. J. Hydrogen Energy 2016, 41, 16627–16636. [Google Scholar] [CrossRef]
- Lettenmeier, P.; Wang, R.; Abouatallah, R.; Helmly, S.; Morawietz, T.; Hiesgen, R.; Kolb, S.; Burggraf, F.; Kallo, J.; Gago, A.; et al. Durable Membrane Electrode Assemblies for Proton Exchange Membrane Electrolyzer Systems Operating at High Current Densities. Electrochimica Acta 2016, 210, 502–511. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Joint Research Centre. In EU Harmonised Test Protocols for PEMFC MEA Testing in Single Cell Configuration for Automotive Applications; Publications Office: Luxembourg, 2015. [Google Scholar]
- Departement of Energy DOE CELL COMPONENT ACCELERATED STRESS TEST PROTOCOLS FOR PEM FUEL CELLS. 2007.
- Malkow, T. EU Harmonised Polarisation Curve Test Method for Low-Temperature Water Electrolysis; Publications Office: Luxembourg, 2018. [Google Scholar]
- Martin, A.; Abbas, D.; Trinke, P.; Böhm, T.; Bierling, M.; Bensmann, B.; Thiele, S.; Hanke-Rauschenbach, R. Communication—Proving the Importance of Pt-Interlayer Position in PEMWE Membranes for the Effective Reduction of the Anodic Hydrogen Content. J. Electrochem. Soc. 2021, 168, 094509. [Google Scholar] [CrossRef]
- Heidinger, M.; Kuhnert, E.; Mayer, K.; Sandu, D.; Hacker, V.; Bodner, M. Photometric Method to Determine Membrane Degradation in Polymer Electrolyte Fuel Cells. Energies 2023, 16, 1957. [Google Scholar] [CrossRef]
- AiDEXA GmbH EFLUORiX Product Description 2022.
- Holzapfel, P.; Bühler, M.; Van Pham, C.; Hegge, F.; Böhm, T.; McLaughlin, D.; Breitwieser, M.; Thiele, S. Directly coated membrane electrode assemblies for proton exchange membrane water electrolysis. Electrochem. Commun. 2019, 110, 106640. [Google Scholar] [CrossRef]
- Marocco, P.; Sundseth, K.; Aarhaug, T.; Lanzini, A.; Santarelli, M.; Barnett, A.O.; Thomassen, M. Online measurements of fluoride ions in proton exchange membrane water electrolysis through ion chromatography. J. Power Sources 2020, 483, 229179. [Google Scholar] [CrossRef]
- Frensch, S.H.; Olesen, A.C.; Araya, S.S.; Kær, S.K. Model-supported characterization of a PEM water electrolysis cell for the effect of compression. Electrochimica Acta 2018, 263, 228–236. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Liang, X.; Wang, L.; Sun, K.; Wang, Y.; Xie, Z.; Wu, Q.; Bai, X.; Hamdy, M.S.; Chen, H.; et al. Status and perspectives of key materials for PEM electrolyzer. Nano Res. Energy 2022, 1, e9120032. [Google Scholar] [CrossRef]
- Suermann, M.; Pătru, A.; Schmidt, T.J.; Büchi, F.N. High pressure polymer electrolyte water electrolysis: Test bench development and electrochemical analysis. Int. J. Hydrogen Energy 2017, 42, 12076–12086. [Google Scholar] [CrossRef]
- Suermann, M.; Schmidt, T.J.; Büchi, F.N. Cell Performance Determining Parameters in High Pressure Water Electrolysis. Electrochimica Acta 2016, 211, 989–997. [Google Scholar] [CrossRef]
- Lopata, J.; Kang, Z.; Young, J.; Bender, G.; Weidner, J.W.; Shimpalee, S. Effects of the Transport/Catalyst Layer Interface and Catalyst Loading on Mass and Charge Transport Phenomena in Polymer Electrolyte Membrane Water Electrolysis Devices. J. Electrochem. Soc. 2020, 167, 064507. [Google Scholar] [CrossRef]
- Trinke, P.; Bensmann, B.; Hanke-Rauschenbach, R. Experimental evidence of increasing oxygen crossover with increasing current density during PEM water electrolysis. Electrochem. Commun. 2017, 82, 98–102. [Google Scholar] [CrossRef]
- Franz, T.; Papakonstantinou, G.; Sundmacher, K. Transient hydrogen crossover in dynamically operated PEM water electrolysis cells - A model-based analysis. J. Power Sources 2023, 559. [Google Scholar] [CrossRef]
- Klose, C.; Saatkamp, T.; Münchinger, A.; Bohn, L.; Titvinidze, G.; Breitwieser, M.; Kreuer, K.; Vierrath, S. All-Hydrocarbon MEA for PEM Water Electrolysis Combining Low Hydrogen Crossover and High Efficiency. Adv. Energy Mater. 2020, 10. [Google Scholar] [CrossRef]
- Trinke, P.; Bensmann, B.; Hanke-Rauschenbach, R. Current density effect on hydrogen permeation in PEM water electrolyzers. Int. J. Hydrogen Energy 2017, 42, 14355–14366. [Google Scholar] [CrossRef]
- Babic, U.; Tarik, M.; Schmidt, T.J.; Gubler, L. Understanding the effects of material properties and operating conditions on component aging in polymer electrolyte water electrolyzers. J. Power Sources 2020, 451, 227778. [Google Scholar] [CrossRef]
- Grigoriev, S.A.; Bessarabov, D.; Fateev, V.N. Degradation mechanisms of MEA characteristics during water electrolysis in solid polymer electrolyte cells. Russ. J. Electrochem. 2017, 53, 318–323. [Google Scholar] [CrossRef]
- Millet, P.; Ranjbari, A.; de Guglielmo, F.; Grigoriev, S.; Auprêtre, F. Cell failure mechanisms in PEM water electrolyzers. Int. J. Hydrogen Energy 2012, 37, 17478–17487. [Google Scholar] [CrossRef]
- Grigoriev, S.; Dzhus, K.; Bessarabov, D.; Millet, P. Failure of PEM water electrolysis cells: Case study involving anode dissolution and membrane thinning. Int. J. Hydrogen Energy 2014, 39, 20440–20446. [Google Scholar] [CrossRef]
- Kuhnert, E.; Hacker, V.; Bodner, M. A Review of Accelerated Stress Tests for Enhancing MEA Durability in PEM Water Electrolysis Cells. Int. J. Energy Res. 2023, 2023, 1–23. [Google Scholar] [CrossRef]
Slope i/E Curve (Ω·cm2) | High-Frequency Resistance (HFR) (Ω·cm2) | Low-Frequency Resistance (LFR) (Ω·cm2) | ||
---|---|---|---|---|
60 °C | BoT | 0.15 | 0.17 | 0.26 |
EoT | 0.16 | 0.17 | 0.27 | |
80 °C | BoT | 0.15 | 0.15 | 0.23 |
EoT | 0.16 | 0.16 | 0.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuhnert, E.; Heidinger, M.; Sandu, D.; Hacker, V.; Bodner, M. Analysis of PEM Water Electrolyzer Failure Due to Induced Hydrogen Crossover in Catalyst-Coated PFSA Membranes. Membranes 2023, 13, 348. https://doi.org/10.3390/membranes13030348
Kuhnert E, Heidinger M, Sandu D, Hacker V, Bodner M. Analysis of PEM Water Electrolyzer Failure Due to Induced Hydrogen Crossover in Catalyst-Coated PFSA Membranes. Membranes. 2023; 13(3):348. https://doi.org/10.3390/membranes13030348
Chicago/Turabian StyleKuhnert, Eveline, Mathias Heidinger, Daniel Sandu, Viktor Hacker, and Merit Bodner. 2023. "Analysis of PEM Water Electrolyzer Failure Due to Induced Hydrogen Crossover in Catalyst-Coated PFSA Membranes" Membranes 13, no. 3: 348. https://doi.org/10.3390/membranes13030348
APA StyleKuhnert, E., Heidinger, M., Sandu, D., Hacker, V., & Bodner, M. (2023). Analysis of PEM Water Electrolyzer Failure Due to Induced Hydrogen Crossover in Catalyst-Coated PFSA Membranes. Membranes, 13(3), 348. https://doi.org/10.3390/membranes13030348