Progress towards Stable and High-Performance Polyelectrolyte Multilayer Nanofiltration Membranes for Future Wastewater Treatment Applications
Abstract
:1. Introduction
1.1. Nanofiltration
1.2. Nanofiltration for Wastewater Treatment Applications
1.3. Polyelectrolyte Multilayer Membranes: The Layer-by-Layer (LbL) Method
2. Parameters of the Layer-by-Layer Fabrication Process
2.1. Substrate
2.2. Polyelectrolyte Properties
2.3. Layer-by-Layer Deposition Parameters
2.4. Post-Treatment after LbL
2.5. Adding a Function to the PEM
2.6. Asymmetric PEM Membranes
3. Advantages of PEM Membranes
3.1. Superior Selectivity
3.2. Fouling Resistance
3.3. Chemical Stability and Cleaning
4. Disadvantages of PEM Membranes
4.1. Limitations with High-Salinity Feeds
4.2. Sensitivity to High-Affinity Ionic Species
4.3. Pressure Limitations
4.4. Concentration Polarization
5. Studies of PEM NF Involving Real Wastewater
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nanofiltration: The Up-And-Coming Membrane Process. Available online: https://www.wateronline.com/doc/nanofiltration-the-up-and-coming-membrane-process-0001 (accessed on 9 March 2023).
- Schäfer, A.I.; Fane, A.G. Nanofiltration: Principles, Applications, and New Materials, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
- Shon, H.K.; Phuntsho, S.; Chaudhary, D.S.; Vigneswaran, S.; Cho, J. Nanofiltration for Water and Wastewater Treatment—A Mini Review. Drink. Water Eng. Sci. 2013, 6, 47–53. [Google Scholar] [CrossRef] [Green Version]
- Oatley-Radcliffe, D.L.; Walters, M.; Ainscough, T.J.; Williams, P.M.; Mohammad, A.W.; Hilal, N. Nanofiltration Membranes and Processes: A Review of Research Trends over the Past Decade. J. Water Process Eng. 2017, 19, 164–171. [Google Scholar] [CrossRef] [Green Version]
- Mohammad, A.W.; Teow, Y.H.; Ang, W.L.; Chung, Y.T.; Oatley-Radcliffe, D.L.; Hilal, N. Nanofiltration Membranes Review: Recent Advances and Future Prospects. Desalination 2015, 356, 226–254. [Google Scholar] [CrossRef]
- Hilal, N.; Al-Zoubi, H.; Darwish, N.A.; Mohamma, A.W.; Abu Arabi, M. A Comprehensive Review of Nanofiltration Membranes: Treatment, Pretreatment, Modelling, and Atomic Force Microscopy. Desalination 2004, 170, 281–308. [Google Scholar] [CrossRef]
- Yang, Z.; Zhou, Y.; Feng, Z.; Rui, X.; Zhang, T.; Zhang, Z. A Review on Reverse Osmosis and Nanofiltration Membranes for Water Purification. Polymers 2019, 11, 1252–1274. [Google Scholar] [CrossRef] [Green Version]
- Park, H.B.; Kamcev, J.; Robeson, L.M.; Elimelech, M.; Freeman, B.D. Maximizing the Right Stuff: The Trade-off between Membrane Permeability and Selectivity. Science 2017, 356, 1137–1147. [Google Scholar] [CrossRef] [Green Version]
- Epsztein, R. Intrinsic Limitations of Nanofiltration Membranes to Achieve Precise Selectivity in Water-Based Separations. Front. Membr. Sci. Technol. 2022, 1, 1048416–1048425. [Google Scholar] [CrossRef]
- Khoo, Y.S.; Goh, P.S.; Lau, W.J.; Ismail, A.F.; Abdullah, M.S.; Mohd Ghazali, N.H.; Yahaya, N.K.E.M.; Hashim, N.; Othman, A.R.; Mohammed, A.; et al. Removal of Emerging Organic Micropollutants via Modified-Reverse Osmosis/Nanofiltration Membranes: A Review. Chemosphere 2022, 305, 135151. [Google Scholar] [CrossRef]
- Devaisy, S.; Kandasamy, J.; Nguyen, T.V.; Johir, M.A.H.; Ratnaweera, H.; Vigneswaran, S. Comparison of Membrane-Based Treatment Methods for the Removal of Micro-Pollutants from Reclaimed Water. Water 2022, 14, 3708–3723. [Google Scholar] [CrossRef]
- Ribera, G.; Llenas, L.; Rovira, M.; de Pablo, J.; Martinez-Llado, X. Pilot Plant Comparison Study of Two Commercial Nanofiltration Membranes in a Drinking Water Treatment Plant. Desalination Water Treat. 2013, 51, 448–457. [Google Scholar] [CrossRef]
- Van Der Bruggen, B.; Vandecasteele, C.; Van Gestel, T.; Doyen, W.; Leysen, R. A Review of Pressure-Driven Membrane Processes in Wastewater Treatment and Drinking Water Production. Environ. Prog. 2003, 22, 46–56. [Google Scholar] [CrossRef]
- Keucken, A.; Wang, Y.; Tng, K.H.; Leslie, G.L.; Persson, K.M.; Köhler, S.J.; Spanjer, T. Evaluation of Novel Hollow Fibre Membranes for NOM Removal by Advanced Membrane Autopsy. Water Supply 2016, 16, 628–640. [Google Scholar] [CrossRef]
- Köhler, S.J.; Lavonen, E.; Keucken, A.; Schmitt-Kopplin, P.; Spanjer, T.; Persson, K. Upgrading Coagulation with Hollow-Fibre Nanofiltration for Improved Organic Matter Removal during Surface Water Treatment. Water Res. 2016, 89, 232–240. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, N.N.R.; Ang, W.L.; Teow, Y.H.; Mohammad, A.W.; Hilal, N. Nanofiltration Membrane Processes for Water Recycling, Reuse and Product Recovery within Various Industries: A Review. J. Water Process Eng. 2022, 45, 102478. [Google Scholar] [CrossRef]
- Yadav, D.; Hazarika, S.; Ingole, P.G. Recent Development in Nanofiltration (NF) Membranes and Their Diversified Applications. Emergent Mater. 2021, 5, 1311–1328. [Google Scholar] [CrossRef]
- Membrane Filtration Market Size, Growth, Report 2022–2030. Available online: https://www.precedenceresearch.com/membrane-filtration-market (accessed on 8 February 2023).
- Bolong, N.; Ismail, A.F.; Salim, M.R.; Matsuura, T. A Review of the Effects of Emerging Contaminants in Wastewater and Options for Their Removal. Desalination 2009, 239, 229–246. [Google Scholar] [CrossRef]
- Ouyang, L.; Malaisamy, R.; Bruening, M.L. Multilayer Polyelectrolyte Films as Nanofiltration Membranes for Separating Monovalent and Divalent Cations. J. Membr. Sci. 2008, 310, 76–84. [Google Scholar] [CrossRef]
- Abtahi, S.M.; Ilyas, S.; Joannis Cassan, C.; Albasi, C.; de Vos, W.M. Micropollutants Removal from Secondary-Treated Municipal Wastewater Using Weak Polyelectrolyte Multilayer Based Nanofiltration Membranes. J. Membr. Sci. 2018, 548, 654–666. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Dai, R.; Xie, M.; Peng, L.E.; Yao, Z.; Yang, Z.; Nghiem, L.D.; Snyder, S.A.; Wang, Z.; Tang, C.Y. Tweak in Puzzle: Tailoring Membrane Chemistry and Structure toward Targeted Removal of Organic Micropollutants for Water Reuse. Environ. Sci. Technol. Lett. 2022, 9, 247–257. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, K.; Zhou, Z.; Wei, X.; Xia, S.; Wang, X.; Xie, Y.F.; Huang, X. Boosting the Performance of Nanofiltration Membranes in Removing Organic Micropollutants: Trade-Off Effect, Strategy Evaluation, and Prospective Development. Environ. Sci. Technol. 2022, 56, 15220–15237. [Google Scholar] [CrossRef]
- Nir, O.; Sengpiel, R.; Wessling, M. Closing the Cycle: Phosphorus Removal and Recovery from Diluted Effluents Using Acid Resistive Membranes. Chem. Eng. J. 2018, 346, 640–648. [Google Scholar] [CrossRef]
- Abdel-Fatah, M.A. Nanofiltration Systems and Applications in Wastewater Treatment: Review Article. Ain Shams Eng. J. 2018, 9, 3077–3092. [Google Scholar] [CrossRef]
- Jiang, S.; Li, Y.; Ladewig, B.P. A Review of Reverse Osmosis Membrane Fouling and Control Strategies. Sci. Total Environ. 2017, 595, 567–583. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Yu, S. A Review of Recent Advance in Fouling Mitigation of NF/RO Membranes in Water Treatment: Pretreatment, Membrane Modification, and Chemical Cleaning. Desalination Water Treat. 2015, 55, 870–891. [Google Scholar] [CrossRef]
- Arumugham, T.; Kaleekkal, N.J.; Gopal, S.; Nambikkattu, J.; Rambabu, K.; Aboulella, A.M.; Ranil Wickramasinghe, S.; Banat, F. Recent Developments in Porous Ceramic Membranes for Wastewater Treatment and Desalination: A Review. J. Environ. Manag. 2021, 293, 112925. [Google Scholar] [CrossRef]
- Mallya, D.S.; Abdikheibari, S.; Dumée, L.F.; Muthukumaran, S.; Lei, W.; Baskaran, K. Removal of Natural Organic Matter from Surface Water Sources by Nanofiltration and Surface Engineering Membranes for Fouling Mitigation—A Review. Chemosphere 2023, 321, 138070. [Google Scholar] [CrossRef]
- Van der Bruggen, B.; Mänttäri, M.; Nyström, M. Drawbacks of Applying Nanofiltration and How to Avoid Them: A Review. Sep. Purif. Technol. 2008, 63, 251–263. [Google Scholar] [CrossRef]
- Arola, K.; der Bruggen, B.V.; Mänttäri, M.; Kallioinen, M. Treatment Options for Nanofiltration and Reverse Osmosis Concentrates from Municipal Wastewater Treatment: A Review. Crit. Rev. Environ. Sci. Technol. 2019, 49, 2049–2116. [Google Scholar] [CrossRef]
- Zhang, H.; He, Q.; Luo, J.; Wan, Y.; Darling, S.B. Sharpening Nanofiltration: Strategies for Enhanced Membrane Selectivity. ACS Appl. Mater. Interfaces 2020, 12, 39948–39966. [Google Scholar] [CrossRef]
- Decher, G. Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites. Science 1997, 277, 1232–1237. [Google Scholar] [CrossRef]
- Schlenoff, J.B.; Dubas, S.T. Mechanism of Polyelectrolyte Multilayer Growth: Charge Overcompensation and Distribution. Macromolecules 2001, 34, 592–598. [Google Scholar] [CrossRef]
- Krasemann, L.; Tieke, B. Selective Ion Transport across Self-Assembled Alternating Multilayers of Cationic and Anionic Polyelectrolytes. Langmuir 2000, 16, 287–290. [Google Scholar] [CrossRef]
- Harris, J.J.; Stair, J.L.; Bruening, M.L. Layered Polyelectrolyte Films as Selective, Ultrathin Barriers for Anion Transport. Chem. Mater. 2000, 12, 1941–1946. [Google Scholar] [CrossRef]
- Stanton, B.W.; Harris, J.J.; Miller, M.D.; Bruening, M.L. Ultrathin, Multilayered Polyelectrolyte Films as Nanofiltration Membranes. Langmuir 2003, 19, 7038–7042. [Google Scholar] [CrossRef]
- Sinclair, T.R.; Robles, D.; Raza, B.; van den Hengel, S.; Rutjes, S.A.; de Roda Husman, A.M.; de Grooth, J.; de Vos, W.M.; Roesink, H.D.W. Virus Reduction through Microfiltration Membranes Modified with a Cationic Polymer for Drinking Water Applications. Colloids Surf. A Physicochem. Eng. Asp. 2018, 551, 33–41. [Google Scholar] [CrossRef]
- White, N.; Misovich, M.; Alemayehu, E.; Yaroshchuk, A.; Bruening, M.L. Highly Selective Separations of Multivalent and Monovalent Cations in Electrodialysis through Nafion Membranes Coated with Polyelectrolyte Multilayers. Polymer 2016, 103, 478–485. Available online: https://scinapse.io/papers/2261674184 (accessed on 30 September 2019). [CrossRef] [Green Version]
- Luo, T.; Abdu, S.; Wessling, M. Selectivity of Ion Exchange Membranes: A Review. J. Membr. Sci. 2018, 555, 429–454. [Google Scholar] [CrossRef]
- Rijnaarts, T.; Reurink, D.M.; Radmanesh, F.; de Vos, W.M.; Nijmeijer, K. Layer-by-Layer Coatings on Ion Exchange Membranes: Effect of Multilayer Charge and Hydration on Monovalent Ion Selectivities. J. Membr. Sci. 2019, 570–571, 513–521. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, M.; Tang, C.; Yang, L.; Yaroshchuk, A.; Bruening, M.L. Layer-by-Layer Modification of Aliphatic Polyamide Anion-Exchange Membranes to Increase Cl−/SO42− Selectivity. J. Membr. Sci. 2019, 578, 209–219. [Google Scholar] [CrossRef]
- Liu, C.; Shi, L.; Wang, R. Enhanced Hollow Fiber Membrane Performance via Semi-Dynamic Layer-by-Layer Polyelectrolyte Inner Surface Deposition for Nanofiltration and Forward Osmosis Applications. React. Funct. Polym. 2015, 86, 154–160. [Google Scholar] [CrossRef]
- Liu, G.; Jiang, Z.; Chen, C.; Hou, L.; Gao, B.; Yang, H.; Wu, H.; Pan, F.; Zhang, P.; Cao, X. Preparation of Ultrathin, Robust Membranes through Reactive Layer-by-Layer (LbL) Assembly for Pervaporation Dehydration. J. Membr. Sci. 2017, 537, 229–238. [Google Scholar] [CrossRef]
- Zhao, Q.; An, Q.F.; Ji, Y.; Qian, J.; Gao, C. Polyelectrolyte Complex Membranes for Pervaporation, Nanofiltration and Fuel Cell Applications. J. Membr. Sci. 2011, 379, 19–45. [Google Scholar] [CrossRef]
- Xu, G.-R.; Wang, S.-H.; Zhao, H.-L.; Wu, S.-B.; Xu, J.-M.; Li, L.; Liu, X.-Y. Layer-by-Layer (LBL) Assembly Technology as Promising Strategy for Tailoring Pressure-Driven Desalination Membranes. J. Membr. Sci. 2015, 493, 428–443. [Google Scholar] [CrossRef]
- Malaisamy, R.; Talla-Nwafo, A.; Jones, K.L. Polyelectrolyte Modification of Nanofiltration Membrane for Selective Removal of Monovalent Anions. Sep. Purif. Technol. 2011, 77, 367–374. [Google Scholar] [CrossRef]
- Cheng, W.; Liu, C.; Tong, T.; Epsztein, R.; Sun, M.; Verduzco, R.; Ma, J.; Elimelech, M. Selective Removal of Divalent Cations by Polyelectrolyte Multilayer Nanofiltration Membrane: Role of Polyelectrolyte Charge, Ion Size, and Ionic Strength. J. Membr. Sci. 2018, 559, 98–106. [Google Scholar] [CrossRef] [Green Version]
- Son, M.; Yang, W.; Bucs, S.S.; Nava-Ocampo, M.F.; Vrouwenvelder, J.S.; Logan, B.E. Polyelectrolyte-Based Sacrificial Protective Layer for Fouling Control in Reverse Osmosis Desalination. Environ. Sci. Technol. Lett. 2018, 5, 584–590. [Google Scholar] [CrossRef]
- Ba, C.; Ladner, D.A.; Economy, J. Using Polyelectrolyte Coatings to Improve Fouling Resistance of a Positively Charged Nanofiltration Membrane. J. Membr. Sci. 2010, 347, 250–259. [Google Scholar] [CrossRef]
- Kochan, J.; Wintgens, T.; Wong, J.E.; Melin, T. Polyelectrolyte-Modified Polyethersulfone Ultrafiltration Membranes for Wastewater Treatment Applications. Desalination Water Treat. 2009, 9, 175–180. [Google Scholar] [CrossRef]
- Remmen, K.; Müller, B.; Köser, J.; Wessling, M.; Wintgens, T. Assessment of Layer-By-Layer Modified Nanofiltration Membrane Stability in Phosphoric Acid. Membranes 2020, 10, 61. [Google Scholar] [CrossRef] [Green Version]
- Bruening, M.L.; Dotzauer, D.M.; Jain, P.; Ouyang, L.; Baker, G.L. Creation of Functional Membranes Using Polyelectrolyte Multilayers and Polymer Brushes. Langmuir 2008, 24, 7663–7673. [Google Scholar] [CrossRef]
- Joseph, N.; Ahmadiannamini, P.; Hoogenboom, R.; Vankelecom, I.F.J. Layer-by-Layer Preparation of Polyelectrolyte Multilayer Membranes for Separation. Polym. Chem. 2014, 5, 1817–1831. [Google Scholar] [CrossRef]
- Ng, L.Y.; Mohammad, A.W.; Ng, C.Y. A Review on Nanofiltration Membrane Fabrication and Modification Using Polyelectrolytes: Effective Ways to Develop Membrane Selective Barriers and Rejection Capability. Adv. Colloid Interface Sci. 2013, 197–198, 85–107. [Google Scholar] [CrossRef] [PubMed]
- Paul, M.; Jons, S.D. Chemistry and Fabrication of Polymeric Nanofiltration Membranes: A Review. Polymer 2016, 103, 417–456. [Google Scholar] [CrossRef]
- Ji, Y.-L.; Gu, B.-X.; An, Q.-F.; Gao, C.-J. Recent Advances in the Fabrication of Membranes Containing “Ion Pairs” for Nanofiltration Processes. Polymers 2017, 9, 715. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Zhang, W.; Su, Y.; Jiang, Z. Composite Polyelectrolyte Multilayer Membranes for Oligosaccharides Nanofiltration Separation. Carbohydr. Polym. 2013, 94, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Malaisamy, R.; Bruening, M.L. High-Flux Nanofiltration Membranes Prepared by Adsorption of Multilayer Polyelectrolyte Membranes on Polymeric Supports. Langmuir 2005, 21, 10587–10592. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, C.; Zhu, G.; Zacharia, N.S. Self-Healing of Bulk Polyelectrolyte Complex Material as a Function of PH and Salt. ACS Appl. Mater. Interfaces 2016, 8, 26258–26265. [Google Scholar] [CrossRef]
- Wang, X.; Liu, F.; Zheng, X.; Sun, J. Water-Enabled Self-Healing of Polyelectrolyte Multilayer Coatings. Angew. Chem. Int. Ed. 2011, 50, 11378–11381. [Google Scholar] [CrossRef]
- Pentair X-Flow Introduces Hollow Fiber Nanofiltration for Removal Natural Organic Matter|Dutch Water Sector. Available online: https://www.dutchwatersector.com/news/pentair-x-flow-introduces-hollow-fiber-nanofiltration-for-removal-natural-organic-matter (accessed on 9 February 2023).
- de Grooth, J.; Haakmeester, B.; Wever, C.; Potreck, J.; de Vos, W.M.; Nijmeijer, K. Long Term Physical and Chemical Stability of Polyelectrolyte Multilayer Membranes. J. Membr. Sci. 2015, 489, 153–159. [Google Scholar] [CrossRef]
- Ng, L.Y.; Mohammad, A.W.; Ng, C.Y.; Leo, C.P.; Rohani, R. Development of Nanofiltration Membrane with High Salt Selectivity and Performance Stability Using Polyelectrolyte Multilayers. Desalination 2014, 351, 19–26. [Google Scholar] [CrossRef]
- Dillmann, S.; Kaushik, S.A.; Stumme, J.; Ernst, M. Characterization and Performance of LbL-Coated Multibore Membranes: Zeta Potential, MWCO, Permeability and Sulfate Rejection. Membranes 2020, 10, 412. [Google Scholar] [CrossRef] [PubMed]
- Ilyas, S.; Joseph, N.; Szymczyk, A.; Volodin, A.; Nijmeijer, K.; de Vos, W.M.; Vankelecom, I.F.J. Weak Polyelectrolyte Multilayers as Tunable Membranes for Solvent Resistant Nanofiltration. J. Membr. Sci. 2016, 514, 322–331. [Google Scholar] [CrossRef]
- Kamp, J.; Emonds, S.; Wessling, M. Designing Tubular Composite Membranes of Polyelectrolyte Multilayer on Ceramic Supports with Nanofiltration and Reverse Osmosis Transport Properties. J. Membr. Sci. 2020, 620, 118851. [Google Scholar] [CrossRef]
- Wolters, R.; Hubrich, M.; Kozariszczuk, M.; Mund, P.; Kamp, J.; Wessling, M. Kühl- und Prozesswasserbehandlung in der Stahlindustrie. Chem. Ing. Tech. 2019, 91, 1445–1453. [Google Scholar] [CrossRef]
- Radeva, J.; Roth, A.G.; Göbbert, C.; Niestroj-Pahl, R.; Dähne, L.; Wolfram, A.; Wiese, J. Hybrid Ceramic Membranes for the Removal of Pharmaceuticals from Aqueous Solutions. Membranes 2021, 11, 280–298. [Google Scholar] [CrossRef]
- Vergara-Araya, M.; Oeltze, H.; Radeva, J.; Roth, A.G.; Göbbert, C.; Niestroj-Pahl, R.; Dähne, L.; Wiese, J. Operation of Hybrid Membranes for the Removal of Pharmaceuticals and Pollutants from Water and Wastewater. Membranes 2022, 12, 502–521. [Google Scholar] [CrossRef]
- de Grooth, J.; Oborný, R.; Potreck, J.; Nijmeijer, K.; de Vos, W.M. The Role of Ionic Strength and Odd–Even Effects on the Properties of Polyelectrolyte Multilayer Nanofiltration Membranes. J. Membr. Sci. 2015, 475, 311–319. [Google Scholar] [CrossRef]
- te Brinke, E.; Reurink, D.M.; Achterhuis, I.; de Grooth, J.; de Vos, W.M. Asymmetric Polyelectrolyte Multilayer Membranes with Ultrathin Separation Layers for Highly Efficient Micropollutant Removal. Appl. Mater. Today 2019, 18, 100471. [Google Scholar] [CrossRef]
- Scheepers, D.; Casimiro, A.; Borneman, Z.; Nijmeijer, K. Addressing Specific (Poly)Ion Effects for Layer-by-Layer Membranes. ACS Appl. Polym. Mater. 2023, 5, 3. [Google Scholar] [CrossRef]
- Stumme, J.; Ashokkumar, O.; Dillmann, S.; Niestroj-Pahl, R.; Ernst, M. Theoretical Evaluation of Polyelectrolyte Layering during Layer-by-Layer Coating of Ultrafiltration Hollow Fiber Membranes. Membranes 2021, 11, 106. [Google Scholar] [CrossRef]
- de Grooth, J.; Reurink, D.M.; Ploegmakers, J.; de Vos, W.M.; Nijmeijer, K. Charged Micropollutant Removal With Hollow Fiber Nanofiltration Membranes Based On Polycation/Polyzwitterion/Polyanion Multilayers. ACS Appl. Mater. Interfaces 2014, 6, 17009–17017. [Google Scholar] [CrossRef] [PubMed]
- de Grooth, J.; Dong, M.; de Vos, W.M.; Nijmeijer, K. Building Polyzwitterion-Based Multilayers for Responsive Membranes. Langmuir 2014, 30, 5152–5161. [Google Scholar] [CrossRef] [PubMed]
- Rmaile, H.H.; Schlenoff, J.B. Optically Active Polyelectrolyte Multilayers as Membranes for Chiral Separations. J. Am. Chem. Soc. 2003, 125, 6602–6603. [Google Scholar] [CrossRef] [PubMed]
- Szabó, T.; Péter, Z.; Illés, E.; Janovák, L.; Talyzin, A. Stability and Dye Inclusion of Graphene Oxide/Polyelectrolyte Layer-by-Layer Self-Assembled Films in Saline, Acidic and Basic Aqueous Solutions. Carbon 2017, 111, 350–357. [Google Scholar] [CrossRef]
- Wang, L.; Wang, N.; Yang, H.; An, Q.; Zeng, T.; Ji, S. Enhanced PH and Oxidant Resistance of Polyelectrolyte Multilayers via the Confinement Effect of Lamellar Graphene Oxide Nanosheets. Sep. Purif. Technol. 2018, 193, 274–282. [Google Scholar] [CrossRef]
- Menne, D.; Üzüm, C.; Koppelmann, A.; Wong, J.E.; van Foeken, C.; Borre, F.; Dähne, L.; Laakso, T.; Pihlajamäki, A.; Wessling, M. Regenerable Polymer/Ceramic Hybrid Nanofiltration Membrane Based on Polyelectrolyte Assembly by Layer-by-Layer Technique. J. Membr. Sci. 2016, 520, 924–932. [Google Scholar] [CrossRef]
- Gherasim, C.V.; Luelf, T.; Roth, H.; Wessling, M. Dual-Charged Hollow Fiber Membranes for Low-Pressure Nanofiltration Based on Polyelectrolyte Complexes: One-Step Fabrication with Tailored Functionalities. ACS Appl. Mater. Interfaces 2016, 8, 19145–19157. [Google Scholar] [CrossRef]
- Ghiorghita, C.-A.; Mihai, M. Recent Developments in Layer-by-Layer Assembled Systems Application in Water Purification. Chemosphere 2021, 270, 129477. [Google Scholar] [CrossRef]
- Liu, C.; Shi, L.; Wang, R. Crosslinked Layer-by-Layer Polyelectrolyte Nanofiltration Hollow Fiber Membrane for Low-Pressure Water Softening with the Presence of SO42− in Feed Water. J. Membr. Sci. 2015, 486, 169–176. [Google Scholar] [CrossRef]
- Dirir, Y.I.; Hanafi, Y.; Ghoufi, A.; Szymczyk, A. Theoretical Investigation of the Ionic Selectivity of Polyelectrolyte Multilayer Membranes in Nanofiltration. Langmuir 2015, 31, 451–457. [Google Scholar] [CrossRef]
- DuChanois, R.M.; Epsztein, R.; Trivedi, J.A.; Elimelech, M. Controlling Pore Structure of Polyelectrolyte Multilayer Nanofiltration Membranes by Tuning Polyelectrolyte-Salt Interactions. J. Membr. Sci. 2019, 581, 413–420. [Google Scholar] [CrossRef]
- Casimiro, A.; Weijers, C.; Scheepers, D.; Borneman, Z.; Nijmeijer, K. Kosmotropes and Chaotropes: Specific Ion Effects to Tailor Layer-by-Layer Membrane Characteristics and Performances. J. Membr. Sci. 2023, 672, 121446. [Google Scholar] [CrossRef]
- Kamp, J.; Emonds, S.; Seidenfaden, M.; Papenheim, P.; Kryschewski, M.; Rubner, J.; Wessling, M. Tuning the Excess Charge and Inverting the Salt Rejection Hierarchy of Polyelectrolyte Multilayer Membranes. J. Membr. Sci. 2021, 639, 119636. [Google Scholar] [CrossRef]
- Burke, S.E.; Barrett, C.J. Acid−Base Equilibria of Weak Polyelectrolytes in Multilayer Thin Films. Langmuir 2003, 19, 3297–3303. [Google Scholar] [CrossRef]
- Deng, H.-Y.; Xu, Y.-Y.; Zhu, B.-K.; Wei, X.-Z.; Liu, F.; Cui, Z.-Y. Polyelectrolyte Membranes Prepared by Dynamic Self-Assembly of Poly (4-Styrenesulfonic Acid-Co-Maleic Acid) Sodium Salt (PSSMA) for Nanofiltration (I). J. Membr. Sci. 2008, 323, 125–133. [Google Scholar] [CrossRef]
- Scheepers, D.; de Keizer, J.; Borneman, Z.; Nijmeijer, K. The PH as a Tool to Tailor the Performance of Symmetric and Asymmetric Layer-by-Layer Nanofiltration Membranes. J. Membr. Sci. 2023, 670, 121320. [Google Scholar] [CrossRef]
- Dubas, S.T.; Schlenoff, J.B. Swelling and Smoothing of Polyelectrolyte Multilayers by Salt. Langmuir 2001, 17, 7725–7727. [Google Scholar] [CrossRef]
- Ghostine, R.A.; Jisr, R.M.; Lehaf, A.; Schlenoff, J.B. Roughness and Salt Annealing in a Polyelectrolyte Multilayer. Langmuir 2013, 29, 11742–11750. [Google Scholar] [CrossRef] [PubMed]
- Fares, H.M.; Ghoussoub, Y.E.; Surmaitis, R.L.; Schlenoff, J.B. Toward Ion-Free Polyelectrolyte Multilayers: Cyclic Salt Annealing. Langmuir 2015, 31, 5787–5795. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, Y.; Antila, H.S.; Lutkenhaus, J.L.; Sammalkorpi, M. Role of Salt and Water in the Plasticization of PDAC/PSS Polyelectrolyte Assemblies. J. Phys. Chem. B 2017, 121, 322–333. [Google Scholar] [CrossRef]
- Abtahi, S.M.; Marbelia, L.; Gebreyohannes, A.Y.; Ahmadiannamini, P.; Joannis-Cassan, C.; Albasi, C.; de Vos, W.M.; Vankelecom, I.F.J. Micropollutant Rejection of Annealed Polyelectrolyte Multilayer Based Nanofiltration Membranes for Treatment of Conventionally-Treated Municipal Wastewater. Sep. Purif. Technol. 2019, 209, 470–481. [Google Scholar] [CrossRef]
- Reurink, D.M.; Haven, J.P.; Achterhuis, I.; Lindhoud, S.; Roesink, E.H.D.W.; de Vos, W.M. Annealing of Polyelectrolyte Multilayers for Control over Ion Permeation. Adv. Mater. Interfaces 2018, 5, 1800651. [Google Scholar] [CrossRef] [Green Version]
- Kelly, K.D.; Fares, H.M.; Abou Shaheen, S.; Schlenoff, J.B. Intrinsic Properties of Polyelectrolyte Multilayer Membranes: Erasing the Memory of the Interface. Langmuir 2018, 34, 3874–3883. [Google Scholar] [CrossRef]
- Ng, L.Y.; Mohammad, A.W.; Ng, C.Y.; Hairom, N.H.H. Stability and Performance Study of Polyethersulfone Membranes Modified Using Polyelectrolytes. J. Teknol. 2013, 65, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Yusoff, I.I.; Rohani, R.; Ng, L.Y.; Mohammad, A.W. Conductive Polyelectrolyte Multilayers PANI Membranes Synthesis for Tunable Filtration Ranges. J. Mater. Sci. 2019, 54, 12988–13005. [Google Scholar] [CrossRef]
- Li, X.; Liu, C.; Yin, W.; Chong, T.H.; Wang, R. Design and Development of Layer-by-Layer Based Low-Pressure Antifouling Nanofiltration Membrane Used for Water Reclamation. J. Membr. Sci. 2019, 584, 309–323. [Google Scholar] [CrossRef]
- Cho, K.L.; Hill, A.J.; Caruso, F.; Kentish, S.E. Chlorine Resistant Glutaraldehyde Crosslinked Polyelectrolyte Multilayer Membranes for Desalination. Adv. Mater. 2015, 27, 2791–2796. [Google Scholar] [CrossRef]
- Saeki, D.; Imanishi, M.; Ohmukai, Y.; Maruyama, T.; Matsuyama, H. Stabilization of Layer-by-Layer Assembled Nanofiltration Membranes by Crosslinking via Amide Bond Formation and Siloxane Bond Formation. J. Membr. Sci. 2013, 447, 128–133. [Google Scholar] [CrossRef]
- Dickhout, J.M.; Moreno, J.; Biesheuvel, P.M.; Boels, L.; Lammertink, R.G.H.; de Vos, W.M. Produced Water Treatment by Membranes: A Review from a Colloidal Perspective. J. Colloid Interface Sci. 2017, 487, 523–534. [Google Scholar] [CrossRef]
- Virga, E.; de Grooth, J.; Žvab, K.; de Vos, W.M. Stable Polyelectrolyte Multilayer-Based Hollow Fiber Nanofiltration Membranes for Produced Water Treatment. ACS Appl. Polym. Mater. 2019, 1, 2230–2239. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.; He, R.; Dong, C.; Sun, N.; Zhao, S.; He, H.; Yu, H.; Zhang, Y.-B.; He, T. Acid Stable Layer-by-Layer Nanofiltration Membranes for Phosphoric Acid Purification. J. Membr. Sci. 2022, 644, 120090–120099. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, C.; Lü, Z.; Yu, S. Modification of Polysulfone Ultrafiltration Membrane by Sequential Deposition of Cross-Linked Poly(Vinyl Alcohol) (PVA) and Sodium Carboxymethyl Cellulose (CMCNa) for Nanofiltration. Desalination Water Treat. 2016, 57, 17658–17669. [Google Scholar] [CrossRef]
- Chen, S.; Mao, C.; Hu, B.; Zhang, W.; Deng, H. Simultaneous Improvement of Flux and Monovalent Selectivity of Multilayer Polyelectrolyte Membranes by Ion-Imprinting. Desalination 2022, 540, 115987. [Google Scholar] [CrossRef]
- Park, J.; Choi, W.; Cho, J.; Chun, B.H.; Kim, S.H.; Lee, K.B.; Bang, J. Carbon Nanotube-Based Nanocomposite Desalination Membranes from Layer-by-Layer Assembly. Desalination Water Treat. 2010, 15, 76–83. [Google Scholar] [CrossRef]
- Liu, L.; Son, M.; Chakraborty, S.; Bhattacharjee, C.; Choi, H. Fabrication of Ultra-Thin Polyelectrolyte/Carbon Nanotube Membrane by Spray-Assisted Layer-by-Layer Technique: Characterization and Its Anti-Protein Fouling Properties for Water Treatment. Desalination Water Treat. 2013, 51, 6194–6200. [Google Scholar] [CrossRef]
- Sun, G.; Chung, T.-S.; Jeyaseelan, K.; Armugam, A. A Layer-by-Layer Self-Assembly Approach to Developing an Aquaporin-Embedded Mixed Matrix Membrane. RSC Adv. 2012, 3, 473–481. [Google Scholar] [CrossRef]
- Dizge, N.; Epsztein, R.; Cheng, W.; Porter, C.J.; Elimelech, M. Biocatalytic and Salt Selective Multilayer Polyelectrolyte Nanofiltration Membrane. J. Membr. Sci. 2018, 549, 357–365. [Google Scholar] [CrossRef]
- Varga, B.; Meiczinger, M.; Jakab, M.; Somogyi, V. Design and Optimization of Laccase Immobilization in Cellulose Acetate Microfiltration Membrane for Micropollutant Remediation. Catalysts 2023, 13, 222. [Google Scholar] [CrossRef]
- Zdarta, J.; Sigurdardóttir, S.B.; Jankowska, K.; Pinelo, M. Laccase Immobilization in Polyelectrolyte Multilayer Membranes for 17α-Ethynylestradiol Removal: Biocatalytic Approach for Pharmaceuticals Degradation. Chemosphere 2022, 304, 135374. [Google Scholar] [CrossRef]
- Reurink, D.M.; te Brinke, E.; Achterhuis, I.; Roesink, H.D.W.; de Vos, W.M. Nafion-Based Low-Hydration Polyelectrolyte Multilayer Membranes for Enhanced Water Purification. ACS Appl. Polym. Mater. 2019, 1, 2543–2551. [Google Scholar] [CrossRef] [Green Version]
- Menne, D.; Kamp, J.; Erik Wong, J.; Wessling, M. Precise Tuning of Salt Retention of Backwashable Polyelectrolyte Multilayer Hollow Fiber Nanofiltration Membranes. J. Membr. Sci. 2016, 499, 396–405. [Google Scholar] [CrossRef]
- Pontie, M.; Bilongo, T.G.; Roesink, E.; de Grooth, J.; Dinaux, C.; Hannachi, A.; Charlot, F.; Oubaid, F.; Mrimi, S.; Shabani, M. Confronting Two Nanofiltration Membranes for Lithium-Calcium Selective Separation in Natural Brines. Emergent Mater. 2022, 5, 1495–1505. [Google Scholar] [CrossRef]
- Rall, D.; Menne, D.; Schweidtmann, A.M.; Kamp, J.; von Kolzenberg, L.; Mitsos, A.; Wessling, M. Rational Design of Ion Separation Membranes. J. Membr. Sci. 2019, 569, 209–219. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.U.; Malaisamy, R.; Bruening, M.L. Separation of Fluoride from Other Monovalent Anions Using Multilayer Polyelectrolyte Nanofiltration Membranes. Langmuir 2007, 23, 1716–1722. [Google Scholar] [CrossRef] [PubMed]
- Bóna, Á.; Bakonyi, P.; Galambos, I.; Bélafi-Bakó, K.; Nemestóthy, N. Separation of Volatile Fatty Acids from Model Anaerobic Effluents Using Various Membrane Technologies. Membranes 2020, 10, 252. [Google Scholar] [CrossRef]
- Zacharof, M.-P.; Mandale, S.J.; Williams, P.M.; Lovitt, R.W. Nanofiltration of Treated Digested Agricultural Wastewater for Recovery of Carboxylic Acids. J. Clean. Prod. 2016, 112, 4749–4761. [Google Scholar] [CrossRef]
- He, R.; Xu, S.; Wang, R.; Bai, B.; Lin, S.; He, T. Polyelectrolyte-Based Nanofiltration Membranes with Exceptional Performance in Mg2+/Li+ Separation in a Wide Range of Solution Conditions. J. Membr. Sci. 2022, 663, 121027. [Google Scholar] [CrossRef]
- Wang, Y.; Zucker, I.; Boo, C.; Elimelech, M. Removal of Emerging Wastewater Organic Contaminants by Polyelectrolyte Multilayer Nanofiltration Membranes with Tailored Selectivity. ACS EST Eng. 2020, 1, 404–414. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Y.; Goh, K.; Tan, C.H.; Wang, R. Dopamine-Intercalated Polyelectrolyte Multilayered Nanofiltration Membranes: Toward High Permselectivity and Ion-Ion Selectivity. J. Membr. Sci. 2022, 648, 120337. [Google Scholar] [CrossRef]
- Zhang, T.; Gu, H.; Qin, P.; Tan, T. LBL Surface Modification of a Nanofiltration Membrane for Removing the Salts of Glutathione Solutions. Ind. Eng. Chem. Res. 2013, 52, 6517–6523. [Google Scholar] [CrossRef]
- Sun, W.; Zhang, N.; Li, Q.; Li, X.; Chen, S.; Zong, L.; Baikeli, Y.; Lv, E.; Deng, H.; Zhang, X.; et al. Bioinspired Lignin-Based Loose Nanofiltration Membrane with Excellent Acid, Fouling, and Chlorine Resistances toward Dye/Salt Separation. J. Membr. Sci. 2023, 670, 121372. [Google Scholar] [CrossRef]
- Chen, Q.; Yu, P.; Huang, W.; Yu, S.; Liu, M.; Gao, C. High-Flux Composite Hollow Fiber Nanofiltration Membranes Fabricated through Layer-by-Layer Deposition of Oppositely Charged Crosslinked Polyelectrolytes for Dye Removal. J. Membr. Sci. 2015, 492, 312–321. [Google Scholar] [CrossRef]
- Huang, Y.; Sun, J.; Wu, D.; Feng, X. Layer-by-Layer Self-Assembled Chitosan/PAA Nanofiltration Membranes. Sep. Purif. Technol. 2018, 207, 142–150. [Google Scholar] [CrossRef]
- Bartels, C.; Wilf, M.; Casey, W.; Campbell, J. New Generation of Low Fouling Nanofiltration Membranes. Desalination 2008, 221, 158–167. [Google Scholar] [CrossRef]
- Breite, D.; Went, M.; Prager, A.; Schulze, A. Tailoring Membrane Surface Charges: A Novel Study on Electrostatic Interactions during Membrane Fouling. Polymers 2015, 7, 2017–2030. [Google Scholar] [CrossRef] [Green Version]
- Bao, X.; She, Q.; Long, W.; Wu, Q. Ammonium Ultra-Selective Membranes for Wastewater Treatment and Nutrient Enrichment: Interplay of Surface Charge and Hydrophilicity on Fouling Propensity and Ammonium Rejection. Water Res. 2021, 190, 116678. [Google Scholar] [CrossRef]
- Rana, D.; Matsuura, T. Surface Modifications for Antifouling Membranes. Chem. Rev. 2010, 110, 2448–2471. [Google Scholar] [CrossRef]
- Robert Reiss, C.; Taylor, J.S.; Robert, C. Surface Water Treatment Using Nanofiltration—Pilot Testing Results and Design Considerations. Desalination 1999, 125, 97–112. [Google Scholar] [CrossRef]
- Ahmad, N.N.R.; Mohammad, A.W.; Mahmoudi, E.; Ang, W.L.; Leo, C.P.; Teow, Y.H. An Overview of the Modification Strategies in Developing Antifouling Nanofiltration Membranes. Membranes 2022, 12, 1276. [Google Scholar] [CrossRef]
- Schurer, R.; de Ridder, D.J.; Schippers, J.C.; Hijnen, W.A.M.; Vredenbregt, L.; van der Wal, A. Advanced Drinking Water Production by 1 kDa Hollow Fiber Nanofiltration—Biological Activated Carbon Filtration (HFNF–BACF) Enhances Biological Stability and Reduces Micropollutant Levels Compared with Conventional Surface Water Treatment. Chemosphere 2023, 321, 138049. [Google Scholar] [CrossRef]
- Jonkers, W.A.; Cornelissen, E.R.; de Grooth, J.; de Vos, W.M. Hollow Fiber Nanofiltration: From Lab-Scale Research to Full-Scale Applications. J. Membr. Sci. 2022, 669, 121234. [Google Scholar] [CrossRef]
- Sewerin, T.; Elshof, M.G.; Matencio, S.; Boerrigter, M.; Yu, J.; de Grooth, J. Advances and Applications of Hollow Fiber Nanofiltration Membranes: A Review. Membranes 2021, 11, 890. [Google Scholar] [CrossRef]
- Lidén, A.; Persson, K.M. Feasibility Study of Advanced NOM-Reduction by Hollow Fiber Ultrafiltration and Nanofiltration at a Swedish Surface Water Treatment Plant. Water 2016, 8, 150. [Google Scholar] [CrossRef] [Green Version]
- Séon, L.; Lavalle, P.; Schaaf, P.; Boulmedais, F. Polyelectrolyte Multilayers: A Versatile Tool for Preparing Antimicrobial Coatings. Langmuir 2015, 31, 12856–12872. [Google Scholar] [CrossRef] [Green Version]
- Si, X.; Quan, X.; Wu, Y. A Small-Molecule Norspermidine and Norspermidine-Hosting Polyelectrolyte Coatings Inhibit Biofilm Formation by Multi-Species Wastewater Culture. Appl. Microbiol. Biotechnol. 2015, 99, 10861–10870. [Google Scholar] [CrossRef]
- Durmaz, E.N.; Sahin, S.; Virga, E.; de Beer, S.; de Smet, L.C.P.M.; de Vos, W.M. Polyelectrolytes as Building Blocks for Next-Generation Membranes with Advanced Functionalities. ACS Appl. Polym. Mater. 2021, 3, 4347–4374. [Google Scholar] [CrossRef]
- Virga, E.; Parra, M.A.; de Vos, W.M. Fouling of Polyelectrolyte Multilayer Based Nanofiltration Membranes during Produced Water Treatment: The Role of Surfactant Size and Chemistry. J. Colloid Interface Sci. 2021, 594, 9–19. [Google Scholar] [CrossRef]
- Jafari, M.; Vanoppen, M.; van Agtmaal, J.M.C.; Cornelissen, E.R.; Vrouwenvelder, J.S.; Verliefde, A.; van Loosdrecht, M.C.M.; Picioreanu, C. Cost of Fouling in Full-Scale Reverse Osmosis and Nanofiltration Installations in the Netherlands. Desalination 2020, 500, 114865. [Google Scholar] [CrossRef]
- Al Mamun, M.A.; Bhattacharjee, S.; Pernitsky, D.; Sadrzadeh, M. Colloidal Fouling of Nanofiltration Membranes: Development of a Standard Operating Procedure. Membranes 2017, 7, 4. [Google Scholar] [CrossRef] [Green Version]
- Maddah, H.; Chogle, A. Biofouling in Reverse Osmosis: Phenomena, Monitoring, Controlling and Remediation. Appl. Water Sci. 2017, 7, 2637–2651. [Google Scholar] [CrossRef] [Green Version]
- Al-Amoudi, A.S. Factors Affecting Natural Organic Matter (NOM) and Scaling Fouling in NF Membranes: A Review. Desalination 2010, 259, 1–10. [Google Scholar] [CrossRef]
- Evdochenko, E.; Kamp, J.; Dunkel, R.; Nikonenko, V.V.; Wessling, M. Charge Distribution in Polyelectrolyte Multilayer Nanofiltration Membranes Affects Ion Separation and Scaling Propensity. J. Membr. Sci. 2021, 636, 119533. [Google Scholar] [CrossRef]
- Rolf, J.; Cao, T.; Huang, X.; Boo, C.; Li, Q.; Elimelech, M. Inorganic Scaling in Membrane Desalination: Models, Mechanisms, and Characterization Methods. Environ. Sci. Technol. 2022, 56, 7484–7511. [Google Scholar] [CrossRef]
- Remmen, K.; Schäfer, R.; Hedwig, S.; Wintgens, T.; Wessling, M.; Lenz, M. Layer-by-Layer Membrane Modification Allows Scandium Recovery by Nanofiltration. Environ. Sci. Water Res. Technol. 2019, 5, 1683–1688. [Google Scholar] [CrossRef]
- Remmen, K.; Müller, B.; Köser, J.; Wessling, M.; Wintgens, T. Phosphorus Recovery in an Acidic Environment Using Layer-by-Layer Modified Membranes. J. Membr. Sci. 2019, 582, 254–263. [Google Scholar] [CrossRef]
- Paltrinieri, L.; Remmen, K.; Müller, B.; Chu, L.; Köser, J.; Wintgens, T.; Wessling, M.; de Smet, L.C.P.M.; Sudhölter, E.J.R. Improved Phosphoric Acid Recovery from Sewage Sludge Ash Using Layer-by-Layer Modified Membranes. J. Membr. Sci. 2019, 587, 117162. [Google Scholar] [CrossRef]
- Elshof, M.G.; de Vos, W.M.; de Grooth, J.; Benes, N.E. On the Long-Term PH Stability of Polyelectrolyte Multilayer Nanofiltration Membranes. J. Membr. Sci. 2020, 615, 118532. [Google Scholar] [CrossRef]
- Junker, M.A.; Regenspurg, J.A.; Valdes Rivera, C.I.; te Brinke, E.; de Vos, W.M. Effects of Feed Solution PH on Polyelectrolyte Multilayer Nanofiltration Membranes. ACS Appl. Polym. Mater. 2022, 1, 355–370. [Google Scholar] [CrossRef]
- Sui, Z.; Schlenoff, J.B. Phase Separations in PH-Responsive Polyelectrolyte Multilayers: Charge Extrusion versus Charge Expulsion. Langmuir 2004, 20, 6026–6031. [Google Scholar] [CrossRef]
- Rmaile, H.H.; Schlenoff, J.B. “Internal PKa’s” in Polyelectrolyte Multilayers: Coupling Protons and Salt. Langmuir 2002, 18, 8263–8265. [Google Scholar] [CrossRef]
- Tsehaye, M.T.; Velizarov, S.; Van der Bruggen, B. Stability of Polyethersulfone Membranes to Oxidative Agents: A Review. Polym. Degrad. Stab. 2018, 157, 15–33. [Google Scholar] [CrossRef]
- Zhang, X.; Gan, Z.; Wang, Y.; Tang, X.; Li, G.; Liang, H. Effect of Chemical Cleaning on Nanofiltration Process in Treating Surface Water. J. Water Process Eng. 2022, 50, 103271. [Google Scholar] [CrossRef]
- Simon, A.; McDonald, J.A.; Khan, S.J.; Price, W.E.; Nghiem, L.D. Effects of Caustic Cleaning on Pore Size of Nanofiltration Membranes and Their Rejection of Trace Organic Chemicals. J. Membr. Sci. 2013, 447, 153–162. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Luo, J.; Chen, X.; Feng, S.; Wan, Y. New Insights into Effect of Alkaline Cleaning on Fouling Behavior of Polyamide Nanofiltration Membrane for Wastewater Treatment. Sci. Total Environ. 2021, 780, 146632. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Wan, Y. Effects of PH and Salt on Nanofiltration—A Critical Review. J. Membr. Sci. 2013, 438, 18–28. [Google Scholar] [CrossRef]
- García-Pacheco, R.; Landaburu-Aguirre, J.; Lejarazu-Larrañaga, A.; Rodríguez-Sáez, L.; Molina, S.; Ransome, T.; García-Calvo, E. Free Chlorine Exposure Dose (Ppm·h) and Its Impact on RO Membranes Ageing and Recycling Potential. Desalination 2019, 457, 133–143. [Google Scholar] [CrossRef]
- Li, K.; Li, S.; Su, Q.; Wen, G.; Huang, T. Effects of Hydrogen Peroxide and Sodium Hypochlorite Aging on Properties and Performance of Polyethersulfone Ultrafiltration Membrane. Int. J. Environ. Res. Public Health 2019, 16, 3972. [Google Scholar] [CrossRef]
- Ilyas, S.; de Grooth, J.; Nijmeijer, K.; de Vos, W.M. Multifunctional Polyelectrolyte Multilayers as Nanofiltration Membranes and as Sacrificial Layers for Easy Membrane Cleaning. J. Colloid Interface Sci. 2015, 446, 386–393. [Google Scholar] [CrossRef]
- Ang, W.S.; Lee, S.; Elimelech, M. Chemical and Physical Aspects of Cleaning of Organic-Fouled Reverse Osmosis Membranes. J. Membr. Sci. 2006, 272, 198–210. [Google Scholar] [CrossRef]
- Madaeni, S.S.; Rostami, E.; Rahimpour, A. Surfactant Cleaning of Ultrafiltration Membranes Fouled by Whey. Int. J. Dairy Technol. 2010, 63, 273–283. [Google Scholar] [CrossRef]
- Kang, J.; Dähne, L. Strong Response of Multilayer Polyelectrolyte Films to Cationic Surfactants. Langmuir 2011, 27, 4627–4634. [Google Scholar] [CrossRef] [PubMed]
- Dickhout, J.M.; Virga, E.; Lammertink, R.G.H.; de Vos, W.M. Surfactant Specific Ionic Strength Effects on Membrane Fouling during Produced Water Treatment. J. Colloid Interface Sci. 2019, 556, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Jährig, J.; Vredenbregt, L.; Wicke, D.; Miehe, U.; Sperlich, A. Capillary Nanofiltration under Anoxic Conditions as Post-Treatment after Bank Filtration. Water 2018, 10, 1599. [Google Scholar] [CrossRef] [Green Version]
- Keucken, A.; Wang, Y.; Tng, K.H.; Leslie, G.; Spanjer, T.; Köhler, S.J. Optimizing Hollow Fibre Nanofiltration for Organic Matter Rich Lake Water. Water 2016, 8, 430. [Google Scholar] [CrossRef]
- Bóna, Á.; Varga, Á.; Galambos, I.; Nemestóthy, N. Dealcoholization of Unfiltered and Filtered Lager Beer by Hollow Fiber Polyelectrolyte Multilayer Nanofiltration Membranes—The Effect of Ion Rejection. Membranes 2023, 13, 283. [Google Scholar] [CrossRef]
- Sanyal, O.; Liu, Z.; Meharg, B.M.; Liao, W.; Lee, I. Development of Polyelectrolyte Multilayer Membranes to Reduce the COD Level of Electrocoagulation Treated High-Strength Wastewater. J. Membr. Sci. 2015, 496, 259–266. [Google Scholar] [CrossRef]
- Sanyal, O.; Liu, Z.; Yu, J.; Meharg, B.M.; Hong, J.S.; Liao, W.; Lee, I. Designing Fouling-Resistant Clay-Embedded Polyelectrolyte Multilayer Membranes for Wastewater Effluent Treatment. J. Membr. Sci. 2016, 512, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Pre-Treatment for RO Process at an Aerospace Multinational in Hungary. Available online: https://nxfiltration.com/solutions/pre-treatment-for-ro-process-at-an-aerospace-multinational-in-hungary/ (accessed on 7 February 2023).
- Removal of Micropollutants from Municipal Wastewater after Biological Treatment. Available online: https://nxfiltration.com/solutions/removal-of-micropollutants-from-municipal-wastewater-after-biological-treatment/ (accessed on 7 February 2023).
- NX Filtration Delivers Its Nanofiltration Technology to SAPAL in Mexico. Available online: https://nxfiltration.com/knowledge-base/publications/nx-filtration-delivers-its-nanofiltration-technology-to-sapal-in-mexico/ (accessed on 8 February 2023).
- Filtration and Separation—Tests Demonstrate NX Filtration Membranes’ Retention of PFAS. Available online: https://www.filtsep.com/content/news/tests-demonstrate-nx-filtration-membranes-retention-of-pfas/ (accessed on 6 February 2023).
- Wagner, T.; Saha, P.; Bruning, H.; Rijnaarts, H. Lowering the Fresh Water Footprint of Cooling Towers: A Treatment-Train for the Reuse of Discharged Water Consisting of Constructed Wetlands, Nanofiltration, Electrochemical Oxidation and Reverse Osmosis. J. Clean. Prod. 2022, 364, 132667–132679. [Google Scholar] [CrossRef]
- Flemming, H.-C. Biofouling and Me: My Stockholm Syndrome with Biofilms. Water Res. 2020, 173, 115576–115591. [Google Scholar] [CrossRef]
- Lidén, A.; Persson, K.M. Comparison between Ultrafiltration and Nanofiltration Hollow-Fiber Membranes for Removal of Natural Organic Matter: A Pilot Study. J. Water Supply Res. Technol.-Aqua 2016, 65, 43–53. Available online: https://iwaponline.com/aqua/article-abstract/65/1/43/29324/Comparison-between-ultrafiltration-and (accessed on 10 February 2023). [CrossRef]
- Keucken, A.; Heinicke, G.; Persson, K.M.; Köhler, S.J. Combined Coagulation and Ultrafiltration Process to Counteract Increasing NOM in Brown Surface Water. Water 2017, 9, 697–726. [Google Scholar] [CrossRef] [Green Version]
Rejection Attribute | Polyamide TFC | PEM |
---|---|---|
monovalent salt passage | medium | high |
divalent salt passage (same charge as the membrane surface) | low | low/very low |
divalent salt passage (opposite charge as the membrane surface) | low | very high |
rejection of hydrophobic organics | low–medium | medium–high |
organic/salt selectivity | low | high |
Fouling Type | Polyamide TFC | PEM |
---|---|---|
scaling | medium–high | low |
organic fouling | medium | medium (but low tolerance to ionic surfactants) |
biological fouling | high | low |
colloidal fouling | high | very low |
Chemical Stressor | Polyamide TFC | PEM |
---|---|---|
pH | medium | medium for weak PE-s, high for strong PE-s |
oxidants (peroxide, chlorine) | very low | high for certain PE-s |
organic solvents | low | high |
ionic surfactants | high | low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bóna, Á.; Galambos, I.; Nemestóthy, N. Progress towards Stable and High-Performance Polyelectrolyte Multilayer Nanofiltration Membranes for Future Wastewater Treatment Applications. Membranes 2023, 13, 368. https://doi.org/10.3390/membranes13040368
Bóna Á, Galambos I, Nemestóthy N. Progress towards Stable and High-Performance Polyelectrolyte Multilayer Nanofiltration Membranes for Future Wastewater Treatment Applications. Membranes. 2023; 13(4):368. https://doi.org/10.3390/membranes13040368
Chicago/Turabian StyleBóna, Áron, Ildikó Galambos, and Nándor Nemestóthy. 2023. "Progress towards Stable and High-Performance Polyelectrolyte Multilayer Nanofiltration Membranes for Future Wastewater Treatment Applications" Membranes 13, no. 4: 368. https://doi.org/10.3390/membranes13040368
APA StyleBóna, Á., Galambos, I., & Nemestóthy, N. (2023). Progress towards Stable and High-Performance Polyelectrolyte Multilayer Nanofiltration Membranes for Future Wastewater Treatment Applications. Membranes, 13(4), 368. https://doi.org/10.3390/membranes13040368