Tentative Approaches for Extraction of Lanthanides from Wastewater with Low Metal Concentration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials/Reagents
2.2. Synthesis of Compound F
2.3. Synthesis of Compound G
2.4. Synthesis of Compound H
2.5. Preparation of Membranes of PVDF with Supported Active Compound
2.6. Preparation of Chitosan Membranes
2.7. Instrumentation and Analysis
2.8. Hydration Capacity of Membranes
2.9. Stability of Absorbed Active Compounds Inside PVDF Membranes
2.10. Extraction Experiments
3. Results and Discussion
3.1. Hydration Capacity of Membranes
3.2. Stability of Absorbed Active Compounds in PVDF Membranes
3.3. Extraction Results of the Studied Membranes
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fujita, Y.; McCall, S.K.; Ginosar, D. Recycling rare earths: Perspectives and recent advances. MRS Bull. 2022, 47, 283–288. [Google Scholar] [CrossRef]
- Critical Raw Materials. Available online: https://single-market-economy.ec.europa.eu/sectors/raw-materials/areas-specific-interest/critical-raw-materials_en (accessed on 23 February 2023).
- European Raw Materials Alliance. Available online: https://single-market-economy.ec.europa.eu/industry/strategy/industrial-alliances/european-raw-materials-alliance_en (accessed on 23 February 2023).
- Hemmerle, L.; Ochsner, A.M.; Vonderach, T.; Hattendorf, B.; Vorholt, J.A. Chapter 9—Mass spectrometry-based approaches to study lanthanides and lanthanide-dependent proteins in the phyllosphere. In Rare-Earth Element Biochemistry: Methanol Dehydrogenases and Lanthanide Biology; Cotruvo, J.A., Jr., Ed.; Methods in Enzymology; Academic Press: New York, NY, USA, 2012; Volume 650, pp. 215–236. [Google Scholar]
- Cui, M. Key Concepts and Terminology. In An Introduction to Circular Economy; Liu, L., Ramakrishna, S., Eds.; Springer: New York, NY, USA, 2021; pp. 17–34. [Google Scholar]
- Barakat, M.A. New trends in removing heavy metals from industrial wastewater. Arab. J. Chem. 2011, 4, 361–377. [Google Scholar] [CrossRef]
- Smol, M. Chapter 1—Circular economy approach in the water and wastewater sector. In Circular Economy and Sustainability, Volume 2: Environmental Engineering; Stefanakis, A., Nikolaou, I., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 1–19. [Google Scholar]
- Tesfaye, F.; Peng, H.; Zhang, M. Advances in the Circular Economy of Lanthanides. J. Miner. Met. Mater. Soc. 2021, 73, 16–18. [Google Scholar] [CrossRef]
- Shiflett, M.B. Commercial Applications of Ionic Liquids; Springer Nature: Basel, Switzerland, 2020. [Google Scholar]
- Ghandi, K. A Review of Ionic Liquids, Their Limits and Applications. Green Sustain. Chem. 2014, 4, 44–53. [Google Scholar] [CrossRef]
- Stojanovic, A.; Keppler, B.K. Ionic Liquids as Extracting Agents for Heavy Metals. Sep. Sci. Technol. 2012, 47, 189–203. [Google Scholar] [CrossRef]
- Wang, J.F.; Luo, J.Q.; Feng, S.C.; Li, H.R.; Wan, Y.H.; Zhang, X.P. Recent development of ionic liquid membranes. Green Energy Environ. 2016, 1, 43–61. [Google Scholar] [CrossRef]
- Binnemans, K.; Jones, P.T.; Blanpain, B.; Van Gerven, T.; Yang, Y.X.; Walton, A.; Buchert, M. Recycling of rare earths: A critical review. J. Clean. Prod. 2013, 51, 1–22. [Google Scholar] [CrossRef]
- Jowitt, S.M.; Werner, T.T.; Weng, Z.; Mudd, G.M. Recycling of the rare earth elements. Curr. Opin. Green Sustain. Chem. 2018, 13, 1–7. [Google Scholar] [CrossRef]
- Yang, Y.; Walton, A.; Sheridan, R.; Güth, K.; Gauß, R.; Gutfleisch, O.; Buchert, M.; Steenari, B.-M.; Van Gerven, T.; Jones, P.T. REE Recovery from End-of-Life NdFeB Permanent Magnet Scrap: A Critical Review. J. Sustain. Metall. 2017, 3, 122–149. [Google Scholar] [CrossRef]
- Chen, Z.Y.; Li, Z.; Chen, J.; Kallem, P.; Banat, F.; Qiu, H.D. Recent advances in selective separation technologies of rare earth elements: A review. J. Environ. Chem. Eng. 2022, 10, 107104. [Google Scholar] [CrossRef]
- Baba, Y.; Kubota, F.; Kamiya, N.; Goto, M. Recent Advances in Extraction and Separation of Rare-Earth Metals Using Ionic Liquids. J. Chem. Eng. Jpn. 2011, 44, 679–685. [Google Scholar] [CrossRef]
- Maria, L.; Cruz, A.; Carretas, J.M.; Monteiro, B.; Galinha, C.; Gomes, S.S.; Araújo, M.F.; Paiva, I.; Marçalo, J.; Leal, J.P. Improving the selective extraction of lanthanides by using functionalised ionic liquids. Sep. Purif. Technol. 2020, 237, 116354. [Google Scholar] [CrossRef]
- Wang, Z.; Brown, A.T.; Tan, K.; Chabal, Y.J.; Balkus, K.J. Selective extraction of thorium from rare earth elements using wrinkled mesoporous carbon. J. Am. Chem. Soc. 2018, 140, 14735–14739. [Google Scholar] [CrossRef] [PubMed]
- Trtic-Petrovic, T.M.; Kumric, K.R.; Dordevic, J.S.; Vladisavljevic, G.T. Extraction of lutetium(III) from aqueous solutions by employing a single fibre-supported liquid membrane. J. Sep. Sci. 2010, 33, 2002–2009. [Google Scholar] [CrossRef] [PubMed]
- Martinez, J.; Varela, R.R.; Forsberg, K.; Rasmuson, A. Factors influencing separation selectivity of rare earth elements in flat sheet supported liquid membranes. Chem. Eng. Sci. 2018, 191, 134–155. [Google Scholar] [CrossRef]
- Nee, K.; Nilsson, M. Experimental and theoretical studies of actinide and lanthanide ion transport across supported liquids membranes. Solvent Extr. Ion Exch. 2015, 33, 554–575. [Google Scholar] [CrossRef]
- Asadollahzadeh, M.; Torkaman, R.; Torab-Mostaedi, M.; Ghaemi, A.; Hemmati, A. Green imidazolium ionic liquid selectively facilitates Ce(III) ion transport through supported liquid membrane. Int. J. Environ. Anal. Chem. 2020, 102, 4814–4829. [Google Scholar] [CrossRef]
- Dolezal, J.; Moreno, C.; Hrdlicka, A.; Valiente, M. Selective transport of lanthanides through supported liquid membranes containing non-selective extractant, di-(2-ethylhexyl)phosphoric acid, as a carrier. J. Membr. Sci. 2000, 168, 175–181. [Google Scholar] [CrossRef]
- Rout, A.; Venkatesan, K.A.; Srinivasan, T.G.; Rao, P.R.V. Ionic liquid extractants in molecular diluents: Extraction behavior of europium (III) in quarternary ammonium-based ionic liquids. Sep. Purif. Technol. 2012, 95, 26–31. [Google Scholar] [CrossRef]
- Casimiro, M.H.; Pereira, A.; Leal, J.P.; Rodrigues, G.; Ferreira, L.M. Chitosan/PVA Based Membranes Processed by Gamma Radiation as Scaffolding Materials for Skin Regeneration. Membranes 2021, 11, 561. [Google Scholar] [CrossRef]
- Casimiro, M.H.; Gil, M.H.; Leal, J.P. Drug release assays from new chitosan/pHEMA membranes obtained by gamma irradiation. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2007, 265, 406–409. [Google Scholar] [CrossRef]
- Zante, G.; Boltoeva, M.; Masmoudi, A.; Barillon, R.; Trebouet, D. Lithium extraction from complex aqueous solutions using supported ionic liquid membranes. J. Membr. Sci. 2019, 580, 62–76. [Google Scholar] [CrossRef]
- Wehbi, M.; Mehdi, A.; Negrell, C.; David, G.; Alaaeddine, A.; Améduri, B. Phosphorus-Containing Fluoropolymers: State of the Art and Applications. ACS Appl. Mater. Interfaces 2020, 12, 38–59. [Google Scholar] [CrossRef] [PubMed]
Membrane | Average Mass Increment after 24 h in Water (%) 1 |
---|---|
Chitosan not irradiated | 6127 |
Chit(D)-5 kGy | 88 |
Chit(F)-5 kGy | 1966 |
Chit(G)-5 kGy | 17 |
Chit(H)-5 kGy | 130 |
Chit(D)-10 kGy | 123 |
Chit(F)-10 kGy | 1701 |
Chit(G)-10 kGy | 81 |
Chit(H)-10 kGy | 134 |
Membrane | Ce | Nd | Sm | Gd | Dy | Er | Yb |
---|---|---|---|---|---|---|---|
PVDF(A) | 0.0056 ± 0.0004 | 0.0067 ± 0.0007 | 0.0071 ± 0.0008 | 0.0074 ± 0.0008 | 0.0083 ± 0.0009 | 0.0079 ± 0.0008 | 0.0063 ± 0.0007 |
PVDF(B) | 0.0004 ± 0.0001 | 0.0006 ± 0.0001 | 0.0012 ± 0.0002 | 0.0009 ± 0.0001 | 0.0023 0.0003 | 0.0053 ± 0.0005 | 0.0210 ± 0.0019 |
PVDF(C) | 0.0080 ± 0.0001 | 0.0091 ± 0.0001 | 0.0096 ± 0.0001 | 0.0101 ± 0.0001 | 0.0113 ± 0.0001 | 0.0107 ± 0.0001 | 0.0095 ± 0.0002 |
PVDF(D) | 0.1608 ± 0.0115 | 0.2960 ± 0.0213 | 0.4308 ± 0.0292 | 0.3852 ± 0.0269 | 0.4374 ± 0.0286 | 0.5394 ± 0.0333 | 0.7541 ± 0.449 |
PVDF(E) | 0.0212 ± 0.0005 | 0.0235 ± 0.0003 | 0.0319 ± 0.0002 | 0.0317 ± 0.0003 | 0.0295 ± 0.0006 | 0.0293 ± 0.0007 | 0.0364 ± 0.0015 |
PVDF(A + E) | 0.0254 ± 0.00001 | 0.0271 ± 0.0006 | 0.0346 ± 0.0013 | 0.0377 ± 0.0011 | 0.0316 ± 0.0013 | 0.0291 ± 0.0016 | 0.0251 ± 0.0027 |
PVDF(B + E) | 0.0162 ± 0.0041 | 0.0169 ± 0.0043 | 0.0177 ± 0.0046 | 0.0192 ± 0.0049 | 0.0182 ± 0.0047 | 0.0196 ± 0.0051 | 0.0201 ± 0.0052 |
PVDF(C + E) | 0.0375 ± 0.0011 | 0.0382 ± 0.0008 | 0.0485 ± 0.0005 | 0.0532 ± 0.0007 | 0.0421 ± 0.0004 | 0.0376 ± 0.0003 | 0.0352 ± 0.0001 |
PVDF(D + E) | 0.0615 ± 0.0014 | 0.1025 ± 0.0042 | 0.1887 ± 0.0073 | 0.1851 ± 0.0039 | 0.2494 ± 0.0001 | 0.3268 ± 0.0004 | 0.6291 ± 0.0004 |
PVDF(F) | 0.0037 ± 0.0013 | 0.0046 ± 0.0015 | 0.0062 ± 0.0020 | 0.0049 ± 0.0016 | 0.0051 ± 0.0017 | 0.0032 ± 0.0010 | 0.0048 ± 0.0015 |
PVDF(G) | 0.0911 ± 0.0302 | 0.1232 ± 0.0388 | 0.1594 ± 0.0484 | 0.0983 ± 0.0341 | 0.0795 ± 0.0294 | 0.0429 ± 0.0170 | 0.0587 ± 0.0238 |
PVDF(H) | 0.0004 ± 0.0001 | 0.0005 ± 0.0001 | 0.0007 ± 0.0001 | 0.0006 ± 0.0001 | 0.0008 ± 0.0001 | 0.0007 ± 0.0002 | 0.0014 ± 0.0003 |
Membrane | Ce | Nd | Sm | Gd | Dy | Er | Yb |
---|---|---|---|---|---|---|---|
PVDF(A) | 0.025 ± 0.002 | 0.029 ± 0.001 | 0.029 ± 0.001 | 0.029 ± 0.001 | 0.032 ± 0.001 | 0.029 ± 0.001 | 0.023 ± 0.001 |
PVDF(B) | 0.002 ± 0.001 | 0.002 ± 0.001 | 0.005 ± 0.001 | 0.003 ± 0.001 | 0.008 0.002 | 0.019 ± 0.004 | 0.073 ± 0.013 |
PVDF(C) | 0.037 ± 0.007 | 0.041 ± 0.008 | 0.042 ± 0.009 | 0.042 ± 0.009 | 0.046 ± 0.010 | 0.042 ± 0.009 | 0.036 ± 0.009 |
PVDF(D) | 0.702 ± 0.111 | 1.256 ± 0.199 | 1.754 ± 0.264 | 1.500 ± 0.232 | 1.647 ± 0.240 | 1.974 ± 0.273 | 2.667 ± 0.357 |
PVDF(E) | 0.097 ± 0.006 | 0.104 ± 0.005 | 0.136 ± 0.001 | 0.129 ± 0.001 | 0.116 ± 0.002 | 0.112 ± 0.003 | 0.134 ± 0.008 |
PVDF(A + E) | 0.104 ± 0.007 | 0.108 ± 0.002 | 0.132 ± 0.001 | 0.138 ± 0.002 | 0.111 ± 0.002 | 0.100 ± 0.004 | 0.083 ± 0.012 |
PVDF(B + E) | 0.073 ± 0.039 | 0.074 ± 0.039 | 0.074 ± 0.040 | 0.077 ± 0.041 | 0.071 ± 0.038 | 0.074 ± 0.040 | 0.073 ± 0.040 |
PVDF(C + E) | 0.160 ± 0.004 | 0.158 ± 0.002 | 0.192 ± 0.002 | 0.202 ± 0.001 | 0.155 ± 0.002 | 0.134 ± 0.002 | 0.122 ± 0.004 |
PVDF(D + E) | 0.271 ± 0.022 | 0.439 ± 0.051 | 0.775 ± 0.088 | 0.726 ± 0.056 | 0.946 ± 0.034 | 1.204 ± 0.040 | 2.241 ± 0.082 |
PVDF(F) | 0.006 ± 0.003 | 0.007 ± 0.004 | 0.009 ± 0.005 | 0.007 ± 0.004 | 0.007 ± 0.004 | 0.004 ± 0.002 | 0.006 ± 0.003 |
PVDF(G) | 0.188 ± 0.132 | 0.247 ± 0.166 | 0.306 ± 0.199 | 0.181 ± 0.133 | 0.142 ± 0.110 | 0.075 ± 0.062 | 0.099 ± 0.083 |
PVDF(H) | 0.001 ± 0.000 | 0.001 ± 0.001 | 0.002 ± 0.000 | 0.001 ± 0.000 | 0.002 ± 0.001 | 0.001 ± 0.000 | 0.003 ± 0.001 |
Membrane | Ce | Nd | Sm | Gd | Dy | Er | Yb |
---|---|---|---|---|---|---|---|
Chit(F)-5 kGy | 0.79 ± 0.04 | 1.68 ± 0.15 | 3.10 ± 0.28 | 3.05 ± 0.29 | 2.90 ± 0.26 | 2.46 ± 0.48 | 4.07 ± 0.37 |
Chit(G)-5 kGy | 0.30 ± 0.01 | 0.36 ± 0.01 | 0.45 ± 0.01 | 0.35 ± 0.01 | 0.33 ± 0.01 | 0.26 ± 0.03 | 0.36 ± 0.01 |
Chit(H)-5 kGy | 0.01 ± 0.01 | 0.01 ± 0.01 | 0.02 ± 0.01 | 0.01 ± 0.01 | 0.01 ± 0.01 | 0.01 ± 0.01 | 0.01 ± 0.01 |
Chit(D)-5 kGy | 0.47 ± 0.16 | 0.82 ± 0.26 | 1.35 ± 0.39 | 1.07 ± 0.33 | 1.25 ± 0.35 | 11.38 ± 0.35 | 2.41 ± 0.54 |
Chitosan-5 kGy | 0.10 ± 0.01 | 0.11 ± 0.01 | 0.15 ± 0.01 | 0.12 ± 0.01 | 0.14 ± 0.01 | 0.13 ± 0.01 | 0.16 ± 0.01 |
Chit(F)-10 kGy | 0.17 ± 0.01 | 0.23 ± 0.01 | 0.33 ± 0.01 | 0.32 ± 0.01 | 0.33 ± 0.01 | 0.33 ± 0.02 | 0.47 ± 0.02 |
Chit(G)-10 kGy | 0.15 ± 0.01 | 0.19 ± 0.01 | 0.26 ± 0.01 | 0.21 ± 0.01 | 0.24 ± 0.01 | 0.26 ± 0.02 | 0.40 ± 0.02 |
Chit(H)-10 kGy | 0.01 ± 0.01 | 0.01 ± 0.01 | 0.01 ± 0.01 | 0.01 ± 0.01 | 0.01 ± 0.01 | 0.01 ± 0.01 | 0.01 ± 0.01 |
Chit(D)-10 kGy | 0.53 ± 0.03 | 0.91 ± 0.02 | 1.47 ± 0.04 | 1.15 ± 0.03 | 1.35 ± 0.05 | 1.41 ± 0.10 | 2.40 ± 0.11 |
Membrane | Ce | Nd | Sm | Gd | Dy | Er | Yb |
---|---|---|---|---|---|---|---|
Chit(F)-5 kGy | 3.22 ± 0.32 | 6.62 ± 0.18 | 11.71 ± 0.25 | 11.02 ± 0.08 | 10.15 ± 0.19 | 8.16 ± 1.63 | 13.37 ± 0.24 |
Chit(G)-5 kGy | 3.09 ± 0.49 | 3.65 ± 0.28 | 4.34 ± 0.34 | 3.25 ± 0.30 | 2.98 ± 0.35 | 2.22 ± 0.20 | 3.06 ± 0.49 |
Chit(H)-5 kGy | 0.098 ± 0.022 | 0.116 ± 0.004 | 0.148 ± 0.008 | 0.107 ± 0.020 | 0.097 ± 0.029 | 0.075 ± 0.047 | 0.090 ± 0.036 |
Chit(D)-5 kGy | 1.58 ± 1.26 | 2.65 ± 1.99 | 4.16 ± 2.95 | 3.17 ± 2.31 | 3.56 ± 2.44 | 3.80 ± 2.44 | 6.37 ± 3.72 |
Chitosan-5 kGy | 0.279 ± 0.036 | 0.317 ± 0.016 | 0.417 ± 0.021 | 0.324 ± 0.016 | 0.355 ± 0.024 | 0.322 ± 0.047 | 0.381 ± 0.034 |
Chit(F)-10 kGy | 1.472 ± 0.189 | 1.961 ± 0.100 | 2.652 ± 0.134 | 2.481 ± 0.121 | 2.462 ± 0.169 | 2.404 ± 0.348 | 3.292 ± 0.294 |
Chit(G)-10 kGy | 1.942 ± 0.250 | 2.425 ± 0.124 | 3.114 ± 0.158 | 2.445 ± 0.120 | 2.677 ± 0.183 | 2.740 ± 0.396 | 4.195 ± 0.375 |
Chit(H)-10 kGy | 0.098 ± 0.013 | 0.112 ± 0.006 | 0.141 ± 0.007 | 0.105 ± 0.005 | 0.097 ± 0.007 | 0.083 ± 0.012 | 0.097 ± 0.009 |
Chit(D)-10 kGy | 2.037 ± 0.262 | 3.351 ± 0.172 | 5.216 ± 0.264 | 3.918 ± 0.192 | 4.424 ± 0.303 | 4.504 ± 0.651 | 7.398 ± 0.662 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carretas, J.M.; Ferreira, L.M.; Santos, P.M.P.; Gomes, S.S.; Araújo, M.F.; Maria, L.; Leal, J.P. Tentative Approaches for Extraction of Lanthanides from Wastewater with Low Metal Concentration. Membranes 2023, 13, 467. https://doi.org/10.3390/membranes13050467
Carretas JM, Ferreira LM, Santos PMP, Gomes SS, Araújo MF, Maria L, Leal JP. Tentative Approaches for Extraction of Lanthanides from Wastewater with Low Metal Concentration. Membranes. 2023; 13(5):467. https://doi.org/10.3390/membranes13050467
Chicago/Turabian StyleCarretas, José M., Luís M. Ferreira, Pedro M. P. Santos, Susana S. Gomes, Maria Fátima Araújo, Leonor Maria, and João Paulo Leal. 2023. "Tentative Approaches for Extraction of Lanthanides from Wastewater with Low Metal Concentration" Membranes 13, no. 5: 467. https://doi.org/10.3390/membranes13050467
APA StyleCarretas, J. M., Ferreira, L. M., Santos, P. M. P., Gomes, S. S., Araújo, M. F., Maria, L., & Leal, J. P. (2023). Tentative Approaches for Extraction of Lanthanides from Wastewater with Low Metal Concentration. Membranes, 13(5), 467. https://doi.org/10.3390/membranes13050467