Highly Conductive Fe-Doped (La,Sr)(Ga,Mg)O3−δ Solid-State Membranes for Electrochemical Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation and Characterization
2.2. Electrical and Electrochemical Measurements
3. Results
3.1. Samples Characterization
3.2. Total and Partial Conductivity
3.3. High-Temperature Electrochemical Study
3.4. SOFCs Testing
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Serga, V.; Burve, R.; Krumina, A.; Pankratova, V.; Popov, A.I.; Pankratov, V. Study of phase composition, photocatalytic activity, and photoluminescence of TiO2 with Eu additive produced by the extraction-pyrolytic method. J. Mater. Res. Technol. 2021, 13, 2350–2360. [Google Scholar] [CrossRef]
- Uklein, A.V.; Multian, V.V.; Kuz’micheva, G.M.; Linnik, R.P.; Lisnyak, V.V.; Popov, A.I.; Gayvoronsky, V.Y. Nonlinear optical response of bulk ZnO crystals with different content of intrinsic defects. Optic. Mater. 2018, 84, 738–747. [Google Scholar] [CrossRef]
- Thirunavukkarasu, G.K.; Hanif, M.B.; Liapun, V.; Hensel, K.; Kupčík, J.; Lorincik, J.; Elantyev, I.; Monfort, O.; Motola, M. Decrypting the growth of anodic TiO2 nanotube layers in eco-friendly fluoride-free nitrate-based electrolyte for enhanced photocatalytic degradation of organic pollutants. Mater. Res. Bull. 2023, 165, 112322. [Google Scholar] [CrossRef]
- Hanif, M.B.; Rauf, S.; Motola, M.; Babar, Z.U.D.; Li, C.-J.; Li, C.-X. Recent progress of perovskite-based electrolyte materials for solid oxide fuel cells and performance optimizing strategies for energy storage applications. Mater. Res. Bull. 2022, 146, 111612. [Google Scholar] [CrossRef]
- Pikalova, E.Y.; Kalinina, E.G.; Pikalova, N.S.; Filonova, E.A. High-Entropy Materials in SOFC Technology: Theoretical Foundations for Their Creation, Features of Synthesis, and Recent Achievements. Materials 2022, 15, 8783. [Google Scholar] [CrossRef]
- Iwahara, H.; Esaka, T.; Uchida, H.; Maeda, N. Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production. Solid State Ion. 1981, 3–4, 359–363. [Google Scholar] [CrossRef]
- Yuan, L.; Zeng, S.; Zhang, X.; Ji, X.; Zhang, S. Advances and challenges of electrolyzers for large-scale CO2 electroreduction. Mater. Rep. Energy 2023, 3, 100177. [Google Scholar] [CrossRef]
- Cheng, H.; Wang, X.; Meng, X.; Meng, B.; Sunarso, J.; Tan, X.; Liu, L.; Liu, S. Dual-layer BaCe0.8Y0.2O3−δ-Ce0.8Y0.2O2−δ/BaCe0.8Y0.2O3−δ-Ni hollow fiber membranes for H2 separation. J. Membr. Sci. 2020, 601, 117801. [Google Scholar] [CrossRef]
- Hashim, S.S.; Somalu, M.R.; Loh, K.S.; Liu, S.; Zhou, W.; Sunarso, J. Perovskite-based proton conducting membranes for hydrogen separation: A review. Int. J. Hydrogen Energy 2018, 43, 15281–15305. [Google Scholar] [CrossRef]
- He, J.; Xu, X.; Li, M.; Zhou, S.; Zhou, W. Recent advances in perovskite oxides for non-enzymatic electrochemical sensors: A review. Anal. Chim. Acta 2023, 1251, 341007. [Google Scholar] [CrossRef]
- Zhai, H.; Wu, Z.; Fang, Z. Recent progress of Ga2O3-based gas sensors. Ceram. Int. 2022, 48, 24213–24233. [Google Scholar] [CrossRef]
- Filonova, E.; Medvedev, D. Recent Progress in the Design, Characterisation and Application of LaAlO3—and LaGaO3—Based Solid Oxide Fuel Cell Electrolytes. Nanomaterials 2022, 12, 1991. [Google Scholar] [CrossRef]
- Morales, M.; Roa, J.J.; Tartaj, J.; Segarra, M. A review of doped lanthanum gallates as electrolytes for intermediate temperature solid oxides fuel cells: From materials processing to electrical and thermo-mechanical properties. J. Europ. Ceram. Soc. 2016, 36, 1–16. [Google Scholar] [CrossRef]
- Huang, K.; Tichy, R.S.; Goodenough, J.B. Superior Perovskite Oxide-Ion Conductor; Strontium- and Magnesium-Doped LaGaO3: I, Phase Relationships and Electrical Properties. J. Am. Ceram. Soc. 1998, 81, 2565–2575. [Google Scholar] [CrossRef]
- Ishihara, T.; Matsuda, H.; Takita, Y. Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor. J. Am. Chem. Soc. 1994, 116, 3801–3803. [Google Scholar] [CrossRef]
- Zamudio-García, J.; Caizan-Juanarena, L.; Porras-Vazquez, J.M.; Losilla, E.R.; Marrero-Lopez, D. A review on recent advances and trends in symmetrical electrodes for solid oxide cells. J. Power Sources 2022, 520, 230852. [Google Scholar] [CrossRef]
- Zhu, K.; Luo, B.; Liu, Z.; Wen, X. Recent advances and prospects of symmetrical solid oxide fuel cells. Ceram. Int. 2022, 48, 8972–8986. [Google Scholar] [CrossRef]
- Zhang, J.; Ricote, S.; Hendriksen, P.V.; Chen, Y. Advanced Materials for Thin-Film Solid Oxide Fuel Cells: Recent Progress and Challenges in Boosting the Device Performance at Low Temperatures. Adv. Funct. Mater. 2022, 32, 2111205. [Google Scholar] [CrossRef]
- Shi, H.; Su, C.; Ran, R.; Cao, J.; Shao, Z. Electrolyte materials for intermediate-temperature solid oxide fuel cells. Prog. Nat. Sci Mater. Int. 2020, 30, 764–774. [Google Scholar] [CrossRef]
- Lybye, D.; Poulsen, F.W.; Mogensen, M. Conductivity of A- and B-site doped LaAlO3, LaGaO3, LaScO3 and LaInO3 perovskites. Solid State Ion. 2000, 128, 91–103. [Google Scholar] [CrossRef]
- Huang, P.; Petric, A. Superior Oxygen Ion Conductivity of Lanthanum Gallate Doped with Strontium and Magnesium. J. Electrochem. Soc. 1996, 143, 1644–1648. [Google Scholar] [CrossRef]
- Khorkounov, B.A.; Nafe, H.; Aldinger, F. Relationship between the ionic and electronic partial conductivities of co-doped LSGM ceramics from oxygen partial pressure dependence of the total conductivity. J. Solid State Electrochem. 2006, 10, 479–487. [Google Scholar] [CrossRef]
- Trofimenko, N.; Ullmann, H. Transition metal doped lanthanum gallates. Solid State Ion. 1999, 118, 215–227. [Google Scholar] [CrossRef]
- Istomin, S.Y.; Lyskov, N.V.; Mazo, G.N.; Antipov, E.V. Electrode materials based on complex d-metal oxides for symmetrical solid oxide fuel cells. Russ. Chem. Rev. 2021, 90, 644–676. [Google Scholar] [CrossRef]
- Pelosato, R.; Cordaro, G.; Stucchi, D.; Cristiani, C.; Dotelli, G. Cobalt based layered perovskites as cathode material for intermediate temperature Solid Oxide Fuel Cells: A brief review. J. Power Sources 2015, 298, 46–67. [Google Scholar] [CrossRef]
- Gao, Z.; Mogni, L.V.; Miller, E.C.; Railsback, J.G.; Barnett, S.A. A perspective on low-temperature solid oxide fuel cells. Energy Env. Sci. 2016, 9, 1602–1644. [Google Scholar] [CrossRef]
- Osinkin, D.A.; Khodimchuk, A.V.; Antonova, E.P.; Bogdanovich, N.M. Understanding the oxygen reduction kinetics on Sr2-xFe1.5Mo0.5O6−δ: Influence of strontium defciency and correlation with the oxygen isotopic exchange data. Solid State Ion. 2022, 374, 115818. [Google Scholar] [CrossRef]
- Osinkin, D.A. The parallel pathways of hydrogen oxidation reaction on high active decorated Ni–YSZ electrode in electrochemical cell with GDC protective layer. J. Electroanal. Chem. 2022, 927, 116999. [Google Scholar] [CrossRef]
- Gavrilyuk, A.L.; Osinkin, D.A.; Bronin, D.I. On a variation of the Tikhonov regularization method for calculating the distribution function of relaxation times in impedance spectroscopy. Electrochim. Acta 2020, 354, 136683. [Google Scholar] [CrossRef]
- Sepúlveda, E.; Mangalaraja, R.V.; Troncoso, L.; Jiménez, J.; Salvo, C.; Sanhueza, F. Effect of barium on LSGM electrolyte prepared by fast combustion method for solid oxide fuel cells (SOFC). MRS Advances 2022, 7, 1167–1174. [Google Scholar] [CrossRef]
- Garcia-Garcia, F.J.; Tang, Y.; Gotor, Y.T.; Sayagués, M.J. Development by Mechanochemistry of La0.8Sr0.2Ga0.8Mg0.2O2.8 Electrolyte for SOFCs. Materials 2020, 13, 1366. [Google Scholar] [CrossRef]
- Yoo, J.S.; Lee, S.; Yu, J.H.; Woo, S.K.; Park, H.; Kim, H.G. Fe doping effects on phase stability and conductivity of La0.75Sr0.25Ga0.8Mg0.2O3−δ. J. Power Sources 2009, 193, 593–597. [Google Scholar] [CrossRef]
- Jacob, K.T.; Jain, S.; Saji, V.S.; Srikanth, P.V.K. Thermal expansion of doped lanthanum gallates. Bull. Mater. Sci. 2010, 33, 407–411. [Google Scholar] [CrossRef]
- Inaba, H.; Hayashi, H.; Suzuki, M. Structural phase transition of perovskite oxides LaMO3 and La0.9Sr0.1MO3 with different size of B-site ions. Solid State Ion. 2001, 144, 99–108. [Google Scholar] [CrossRef]
- Slater, P.R.; Irvine, J.T.S.; Ishihara, T.; Takita, Y. High-Temperature Powder Neutron Diffraction Study of the Oxide Ion Conductor La0.9Sr0.1Ga0.8Mg0.2O2. J. Solid State Chem. 1998, 139, 135–143. [Google Scholar] [CrossRef]
- Shkerin, S.N.; Bronin, D.I.; Kovyazina, S.A.; Gorelov, V.P.; Kuzmin, A.V.; Martemyanova, Z.S.; Beresnev, S.M. Structure and phase transitions of (La,Sr)(Ga,Mg)O3-a solid electrolyte. Solid State Ion. 2001, 171, 129–134. [Google Scholar] [CrossRef]
- Osinkin, D.A.; Khodimchuk, A.V.; Porotnikova, N.M.; Bogdanovich, N.M.; Fetisov, A.V.; Ananyev, M.V. Rate-Determining Steps of Oxygen Surface Exchange Kinetics on Sr2Fe1.5Mo0.5O6−δ. Energies 2020, 13, 250. [Google Scholar] [CrossRef]
- Osinkin, D.A. Hydrogen oxidation kinetics on a redox stable electrode for reversible solid-state electrochemical devices: The critical influence of hydrogen dissociation on the electrode surface. Electrochim. Acta 2021, 389, 138792. [Google Scholar] [CrossRef]
- Kurumchin, E.K.; Ananev, M.V.; Bronin, D.I.; Vdovin, G.K.; Osinkin, D.A. Conductivity, oxygen interfacial exchange and diffusion in oxides based on lanthanum gallate. Rus. J. Electrochem. 2010, 46, 774–779. [Google Scholar] [CrossRef]
- Osinkin, D.A. Precursor of Pr2NiO4−δ as a highly effective catalyst for the simultaneous promotion of oxygen reduction and hydrogen oxidation reactions in solid oxide electrochemical devices. Int. J. Hydrogen Energy 2021, 46, 24546–24554. [Google Scholar] [CrossRef]
Given Composition | Concentration of the Cations in the Analyzed Sample/wt.% | Composition Calculated Based on the AES Analysis | ||||
---|---|---|---|---|---|---|
La | Sr | Ga | Mg | Fe | ||
La0.8Sr0.2Ga0.8Mg0.2O3−δ | 46.96 | 8.14 | 23.66 | 1.82 | 0.01 | La0.78Sr0.22Ga0.82Mg0.18O3−δ |
La0.8Sr0.2Ga0.75Fe0.05Mg0.2O3−δ | 46.88 | 8.13 | 22.60 | 2.00 | 1.20 | La0.78Sr0.22Ga0.76Fe0.05Mg0.19O3−δ |
La0.8Sr0.2Ga0.7Fe0.1Mg0.2O3−δ | 48.41 | 7.74 | 20.37 | 1.92 | 2.41 | La0.8Sr0.2Ga0.71Fe0.1Mg0.19O3−δ |
La0.8Sr0.2Ga0.65Fe0.15Mg0.2O3−δ | 47.38 | 8.02 | 19.77 | 1.96 | 3.56 | La0.79Sr0.21Ga0.66Fe0.15Mg0.19O3−δ |
La0.8Sr0.2Ga0.6Fe0.2Mg0.2O3−δ | 48.42 | 7.98 | 17.75 | 1.94 | 4.66 | La0.79Sr0.21Ga0.61Fe0.2Mg0.19O3−δ |
Sample | 100–600 °C | 650–900 °C |
---|---|---|
LSGM | 9.75(3) | 12.99(6) |
LSGF0.05M | 9.79(3) | 13.71(9) |
LSGF0.1M | 10.09(3) | 13.90(12) |
LSGF0.15M | 10.63(4) | 16.44(8) |
LSGF0.2M | 10.76(4) | 17.52(8) |
Sample | Rbulk, Ω cm | Rgb, Ω cm | Cgb, F/cm | fmax, Hz |
---|---|---|---|---|
LSGM | 2340 | 340 | 2.6 × 10−9 | 1.1 × 105 |
LSGF0.05M | 1469 | 166 | 4 × 10−9 | 2.3 × 105 |
LSGF0.1M | 206 | 32.6 | 1 × 10−8 | 5 × 105 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gordeev, E.; Belyakov, S.; Antonova, E.; Osinkin, D. Highly Conductive Fe-Doped (La,Sr)(Ga,Mg)O3−δ Solid-State Membranes for Electrochemical Application. Membranes 2023, 13, 502. https://doi.org/10.3390/membranes13050502
Gordeev E, Belyakov S, Antonova E, Osinkin D. Highly Conductive Fe-Doped (La,Sr)(Ga,Mg)O3−δ Solid-State Membranes for Electrochemical Application. Membranes. 2023; 13(5):502. https://doi.org/10.3390/membranes13050502
Chicago/Turabian StyleGordeev, Egor, Semyon Belyakov, Ekaterina Antonova, and Denis Osinkin. 2023. "Highly Conductive Fe-Doped (La,Sr)(Ga,Mg)O3−δ Solid-State Membranes for Electrochemical Application" Membranes 13, no. 5: 502. https://doi.org/10.3390/membranes13050502
APA StyleGordeev, E., Belyakov, S., Antonova, E., & Osinkin, D. (2023). Highly Conductive Fe-Doped (La,Sr)(Ga,Mg)O3−δ Solid-State Membranes for Electrochemical Application. Membranes, 13(5), 502. https://doi.org/10.3390/membranes13050502