Electrokinetic and Electroconvective Effects in Ternary Electrolyte Near Ion-Selective Microsphere
Abstract
:1. Introduction
2. Statement
2.1. Geometric Characteristics
2.2. Dimensional Formulation
2.3. Dimensionless Formulation
2.4. Numerical Method
2.5. Experimental Materials and Methods
3. Results and Discussion
3.1. Steady-State Regimes
3.2. Unsteady Regimes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
the radius of the ion-selective granule, which is taken as a characteristic length; | |
the characteristic time; | |
the characteristic velocity; | |
the liquid viscosity, which is taken as a characteristic dynamic value; | |
the characteristic stress; | |
the thermal potential, which is taken as a characteristic voltage; | |
the concentration of cations in the reservoir on the outside of the inlet; | |
the characteristic electric current. |
References
- Kumar, S.; Maniya, N.; Wang, C.; Senapati, S.; Chang, H.-C. Quantifying PON1 on HDL with Nanoparticle-Gated Electrokinetic Membrane Sensor for Accurate Cardiovascular Risk Assessment. Nat. Commun. 2023, 14, 557. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Ellis, B.W.; Ronan, G.; Blood, S.R.; DeShetler, C.; Senapati, S.; March, K.L.; Handberg, E.; Anderson, D.; Pepine, C.; et al. A Multiplexed Ion-Exchange Membrane-Based MiRNA (MIX·miR) Detection Platform for Rapid Diagnosis of Myocardial Infarction. Lab. Chip. 2021, 21, 3876–3887. [Google Scholar] [CrossRef] [PubMed]
- Ramshani, Z.; Zhang, C.; Richards, K.; Chen, L.; Xu, G.; Stiles, B.L.; Hill, R.; Senapati, S.; Go, D.B.; Chang, H.-C. Extracellular Vesicle MicroRNA Quantification from Plasma Using an Integrated Microfluidic Device. Commun. Biol. 2019, 2, 189. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Liu, X.; Lei, Y.; Zhu, H. An Electrokinetic Preconcentration Trapping Pattern in Electromembrane Microfluidics. Phys. Fluids 2022, 34, 092009. [Google Scholar] [CrossRef]
- Ouyang, W.; Ye, X.; Li, Z.; Han, J. Deciphering Ion Concentration Polarization-Based Electrokinetic Molecular Concentration at the Micro-Nanofluidic Interface: Theoretical Limits and Scaling Laws. Nanoscale 2018, 10, 15187–15194. [Google Scholar] [CrossRef]
- Chang, H.-C.; Yeo, L.Y. Electrokinetically Driven Microfluidics and Nanofluidics; Cambridge University Press: New York, NY, USA, 2010; p. 508. [Google Scholar]
- Chang, H.-C.; Yossifon, G.; Demekhin, E.A. Nanoscale Electrokinetics and Microvortices: How Microhydrodynamics Affects Nanofluidic Ion Flux. Annu. Rev. Fluid Mech. 2012, 44, 401–426. [Google Scholar] [CrossRef]
- Ben, Y.; Demekhin, E.A.; Chang, H.-C. Nonlinear Electrokinetics and “superfast” Electrophoresis. J. Colloid Interface Sci. 2004, 276, 483–497. [Google Scholar] [CrossRef]
- Rubinstein, I.; Zaltzman, B. Electro-Osmotically Induced Convection at a Permselective Membrane. Phys. Rev. E 2000, 62, 2238–2251. [Google Scholar] [CrossRef]
- Pismenskaya, N.D.; Nikonenko, V.V.; Belova, E.I.; Lopatkova, G.Y.; Sistat, P.; Pourcelly, G.; Larshe, K. Coupled Convection of Solution near the Surface of Ion-Exchange Membranes in Intensive Current Regimes. Russ. J. Electrochem. 2007, 43, 307–327. [Google Scholar] [CrossRef]
- Demekhin, E.A.; Shelistov, V.S.; Polyanskikh, S.V. Linear and Nonlinear Evolution and Diffusion Layer Selection in Electrokinetic Instability. Phys. Rev. E 2011, 84, 036318. [Google Scholar] [CrossRef]
- Demekhin, E.A.; Nikitin, N.V.; Shelistov, V.S. Three-Dimensional Coherent Structures of Electrokinetic Instability. Phys. Rev. E 2014, 90, 013031. [Google Scholar] [CrossRef] [PubMed]
- Mareev, S.A.; Nebavskiy, A.V.; Nichka, V.S.; Urtenov, M.K.; Nikonenko, V.V. The Nature of Two Transition Times on Chronopotentiograms of Heterogeneous Ion Exchange Membranes: 2D Modelling. J. Membr. Sci. 2019, 575, 179–190. [Google Scholar] [CrossRef]
- Butylskii, D.Y.; Mareev, S.A.; Pismenskaya, N.D.; Apel, P.Y.; Polezhaeva, O.A.; Nikonenko, V.V. Phenomenon of Two Transition Times in Chronopotentiometry of Electrically Inhomogeneous Ion Exchange Membranes. Electrochim. Acta 2018, 273, 289–299. [Google Scholar] [CrossRef]
- Nikonenko, V.V.; Mareev, S.A.; Pismenskaya, N.D.; Uzdenova, A.M.; Kovalenko, A.V.; Urtenov, M.K.; Pourcelly, G. Effect of Electroconvection and Its Use in Intensifying the Mass Transfer in Electrodialysis (Review). Russ. J. Electrochem. 2017, 53, 1122–1144. [Google Scholar] [CrossRef]
- Liang, Y.Y.; Fimbres Weihs, G.A.; Fletcher, D.F. CFD study of the effect of unsteady slip velocity waveform on shear stress in membrane systems. Chem. Eng. Sci. 2018, 192, 16–24. [Google Scholar] [CrossRef]
- Kim, S.J.; Wang, Y.-C.; Lee, J.H.; Jang, H.; Han, J. Concentration Polarization and Nonlinear Electrokinetic Flow near a Nanofluidic Channel. Phys. Rev. Lett. 2007, 99, 044501. [Google Scholar] [CrossRef]
- de Jong, J.; Lammertink, R.G.H.; Wessling, M. Membranes and microfluidics: A review. Lab. Chip. 2006, 6, 1125–1139. [Google Scholar] [CrossRef]
- Wang, Y.-C.; Stevens, A.L.; Han, J. Million-Fold Preconcentration of Proteins and Peptides by Nanofluidic Filter. Anal. Chem. 2005, 77, 4293–4299. [Google Scholar] [CrossRef]
- Wang, S.-C.; Lai, Y.-W.; Ben, Y.; Chang, H.-C. Microfluidic Mixing by Dc and Ac Nonlinear Electrokinetic Vortex Flows. Ind. Eng. Chem. Res. 2004, 43, 2902–2911. [Google Scholar] [CrossRef]
- Wang, S.-C.; Wei, H.-H.; Chen, H.-P.; Tsai, M.-H.; Yu, C.-C.; Chang, H.-C. Dynamic Superconcentration at Critical-Point Double-Layer Gates of Conducting Nanoporous Granules Due to Asymmetric Tangential Fluxes. Biomicrofluidics 2008, 2, 14102. [Google Scholar] [CrossRef]
- Mishchuk, N.A.; Heldal, T.; Volden, T.; Auerswald, J.; Knapp, H. Microfluidic Pump Based on the Phenomenon of Electroosmosis of the Second Kind. Microfluid. Nanofluid 2011, 11, 675–684. [Google Scholar] [CrossRef]
- Schiffbauer, J.; Ganchenko, G.; Nikitin, N.; Alekseev, M.; Demekhin, E. Novel Electroosmotic Micromixer Configuration Based on Ion-selective Microsphere. Electrophoresis 2021, 43, 2511–2518. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-P.; Tsai, C.-C.; Lee, H.-M.; Wang, S.-C.; Chang, H.-C. Selective dynamic concentration of peptides at poles of cation-selective nanoporous granules. Biomicrofluidics 2013, 7, 044110. [Google Scholar] [CrossRef] [PubMed]
- Polezhaev, P.; Bellon, T.; Vobecka, L.; Slouka, Z. Molecular sieving of alkyl sulfate anions on strong basic gel-type anion-exchange resins. Sep. Purif. Technol. 2021, 276, 119382. [Google Scholar] [CrossRef]
- Mareev, S.; Gorobchenko, A.; Ivanov, D.; Anokhin, D.; Nikonenko, V. Ion and Water Transport in Ion-Exchange Membranes for Power Generation Systems: Guidelines for Modeling. Int. J. Mol. Sci. 2022, 24, 34. [Google Scholar] [CrossRef]
- Schiffbauer, J.; Leibowitz, N.; Yossifon, G. Extended Space Charge near Nonideally Selective Membranes and Nanochannels. Phys. Rev. E 2015, 92, 013002–013008. [Google Scholar] [CrossRef]
- Schiffbauer, J.; Demekhin, E.; Ganchenko, G. Transitions and Instabilities in Imperfect Ion-Selective Membranes. Int. J. Mol. Sci. 2020, 21, 6526. [Google Scholar] [CrossRef]
- Rubinstein, I.; Shtilman, L. Voltage against Current Curves of Cation Exchange Membranes. J. Chem. Soc. Faraday Trans. 2 1979, 75, 231–246. [Google Scholar] [CrossRef]
- Ganchenko, G.S.; Frants, E.A.; Shelistov, V.S.; Nikitin, N.V.; Amiroudine, S.; Demekhin, E.A. Extreme Nonequilibrium Electrophoresis of an Ion-Selective Microgranule. Phys. Rev. Fluids 2019, 4, 043703. [Google Scholar] [CrossRef]
- Ganchenko, G.S.; Frants, E.A.; Amiroudine, S.; Demekhin, E.A. Instabilities, Bifurcations, and Transition to Chaos in Electrophoresis of Charge-Selective Microparticle. Phys. Fluids 2020, 32, 054103. [Google Scholar] [CrossRef]
- Schnitzer, O.; Yariv, E. Dielectric-Solid Polarization at Strong Fields: Breakdown of Smoluchowski’s Electrophoresis Formula. Phys. Fluids 2012, 24, 082005–082013. [Google Scholar] [CrossRef]
- Demekhin, E.A.; Nikitin, N.V.; Shelistov, V.S. Direct Numerical Simulation of Electrokinetic Instability and Transition to Chaotic Motion. Phys. Fluids 2013, 25, 122001. [Google Scholar] [CrossRef]
- Nikitin, N. Third-order-accurate Semi-implicit Runge–Kutta Scheme for Incompressible Navier–Stokes Equations. Int. J. Numer. Meth. Fluids 2006, 51, 221–233. [Google Scholar] [CrossRef]
- Frants, E.A.; Ganchenko, G.S.; Shelistov, V.S.; Amiroudine, S.; Demekhin, E.A. Nonequilibrium Electrophoresis of an Ion-Selective Microgranule for Weak and Moderate External Electric Fields. Phys. Fluids 2018, 30, 022001–022016. [Google Scholar] [CrossRef]
- Schnitzer, O.; Zeyde, R.; Yavneh, I.; Yariv, E. Weakly Nonlinear Electrophoresis of a Highly Charged Colloidal Particle. Phys. Fluids 2013, 25, 052004–052020. [Google Scholar] [CrossRef]
- Dukhin, S.S. Electrokinetic Phenomena of the Second Kind and Their Applications. Adv. Colloid Interface Sci. 1991, 35, 173–196. [Google Scholar] [CrossRef]
- Zaltzman, B.; Rubinstein, I. Electro-Osmotic Slip and Electroconvective Instability. J. Fluid. Mech. 2007, 579, 173–226. [Google Scholar] [CrossRef]
- Schlichting, H.; Gersten, K. Boundary-Layer Theory; Springer: Berlin/Heidelberg, Germany, 2017; p. 805. [Google Scholar]
- Amiroudine, S.; Demekhin, E.A.; Ganchenko, G.S.; Shelistov, V.S.; Frants, E.A. Instability of a Salt Jet Emitted from a Point Source in an External Electric Field. Phys. Fluids 2022, 34, 084103. [Google Scholar] [CrossRef]
- Kovalenko, A.V.; Khromykh, A.A.; Urtenov, M.K. Decomposition of the Two-Dimensional Nernst–Planck–Poisson Equations for a Ternary Electrolyte. Dokl. Math. 2014, 90, 635–636. [Google Scholar] [CrossRef]
- Kovalenko, A.V.; Wessling, M.; Nikonenko, V.V.; Mareev, S.A.; Moroz, I.A.; Evdochenko, E.; Urtenov, M.K. Space-Charge Breakdown Phenomenon and Spatio-Temporal Ion Concentration and Fluid Flow Patterns in Overlimiting Current Electrodialysis. J. Membr. Sci. 2021, 636, 119583. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ganchenko, G.S.; Alekseev, M.S.; Moroz, I.A.; Mareev, S.A.; Shelistov, V.S.; Demekhin, E.A. Electrokinetic and Electroconvective Effects in Ternary Electrolyte Near Ion-Selective Microsphere. Membranes 2023, 13, 503. https://doi.org/10.3390/membranes13050503
Ganchenko GS, Alekseev MS, Moroz IA, Mareev SA, Shelistov VS, Demekhin EA. Electrokinetic and Electroconvective Effects in Ternary Electrolyte Near Ion-Selective Microsphere. Membranes. 2023; 13(5):503. https://doi.org/10.3390/membranes13050503
Chicago/Turabian StyleGanchenko, Georgy S., Maxim S. Alekseev, Ilya A. Moroz, Semyon A. Mareev, Vladimir S. Shelistov, and Evgeny A. Demekhin. 2023. "Electrokinetic and Electroconvective Effects in Ternary Electrolyte Near Ion-Selective Microsphere" Membranes 13, no. 5: 503. https://doi.org/10.3390/membranes13050503
APA StyleGanchenko, G. S., Alekseev, M. S., Moroz, I. A., Mareev, S. A., Shelistov, V. S., & Demekhin, E. A. (2023). Electrokinetic and Electroconvective Effects in Ternary Electrolyte Near Ion-Selective Microsphere. Membranes, 13(5), 503. https://doi.org/10.3390/membranes13050503