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Abstract: Aniline is a highly toxic organic pollutant with “carcinogenic, teratogenic and mutagenesis”
characteristics. In the present paper, a membrane distillation and crystallization (MDCr) process was
proposed to achieve zero liquid discharge (ZLD) of aniline wastewater. Hydrophobic polyvinylidene
fluoride (PVDF) membranes were used in the membrane distillation (MD) process. The effects of
the feed solution temperature and flow rate on the MD performance were investigated. The results
showed that the flux of the MD process was up to 20 L·m−2·h−1 and the salt rejection was above 99%
under the feeding condition of 60 ◦C and 500 mL/min. The effect of Fenton oxidation pretreatment
on the removal rate of aniline in aniline wastewater was also investigated, and the possibility of
realizing the ZLD of aniline wastewater in the MDCr process was verified.

Keywords: membrane distillation; membrane crystallization; Fenton oxidation; aniline wastewater

1. Introduction

Aniline is a kind of highly toxic, refractory organic pollutant with “carcinogenic, terato-
gen and mutagenic” properties, and is among the 129 priority environmental pollutants in
the United States and is included in the pollution blacklist published by the European Com-
munity [1,2]. Furthermore, about 30,000 t aniline is discharged into the environment every
year worldwide [3–6]. As of 2019, the domestic aniline production capacity is more than
3.6 million t/a. Aniline wastewater is characterized by a high content of aniline substances
(mass concentrations can reach thousands of mg/L [5]), a high salt content, obvious changes
in the chemical oxygen demand (COD) content (ranging from 200 mg/L to 2000 mg/L [7]),
etc. Aniline wastewater is mainly derived from the production and use process and widely
exists in the printing and dyeing, pharmaceutical, and papermaking industries [8,9]. The
treatment of aniline wastewater traditionally involves chemical, physical, biological, and
electrochemical methods [10]. Among them, the biological method is the most widely used,
through which aniline can be made completely biodegradable to CO2 and N2/NOx [11].
However, chemical, biological, and electrochemical methods cannot realize the recovery of
aniline and discharge a large number of chemical reagents, which not only increases the
operating cost but also causes secondary pollution. For example, biological methods are
temperature-dependent and are restrained by the toxicity of pollution, especially because
they are very sensitive to the concentration of salt in wastewater. The electrochemical
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method is clean and easy to handle, but it produces more carbon dioxide, which is called
greenhouse gas. Aniline wastewater can also be treated with biological enzymes such as
Laccases [12], but the interaction mechanism of biological enzymes with different types
of wastewater is still unclear and it has relatively high costs. Although aniline can be
recovered by physical methods, they are not suitable for industrial applications because
it is difficult to separate the extractant and aniline [13]. Therefore, an efficient aniline
wastewater treatment process is urgently needed; it is necessary to develop a new process
for the treatment of aniline wastewater.

As a new desalination technology, membrane distillation (MD) is especially suitable
for treating high-salt solutions [14,15]. In the MD process, a hydrophobic porous membrane
acts as the physical barrier between the hot feed and the permeate flow, and the vapor
pressure gradient drives the volatile compounds to be transported from the feed side to
the permeate side [16]. Since the need for transmembrane pressure is eliminated in MD,
this operation is not sensitive to feed concentration [17]. In addition, MD operates at a
low temperature below the boiling point of the feed solution, generating water vapor and
utilizing renewable heat energy [18]. There are four different modes of MD: Direct Contact
Membrane Distillation (DCMD) [19,20]; Air Gap Membrane Distillation (AGMD) [21,22];
Sweeping Gas Membrane Distillation (SGMD) [23,24]; and Vacuum Membrane Distilla-
tion (VMD) [25,26]. Compared with the other MD configurations, VMD permits higher
partial pressure gradients, and, hence, higher permeate flux can be achieved [27,28]. In
addition, it is better than DCMD in terms of energy consumption/permeate flow ratios
and thermal evaporation efficiency [29]. One of the most important benefits provided
by VMD is that of the possibility of harnessing available renewable energy sources such
as solar energy [30,31]. In this study, the VMD configuration was also adopted to carry
out membrane distillation and crystallization (MDCr) experiments [32]. In addition, in
the treatment of specific wastewater, the unique characteristics of MD allow only volatile
components to pass through the pores, resulting in the simultaneous generation of water
and recyclable materials [33]. It is also noteworthy that the process can concentrate brine
into a supersaturated state for further MDCr processes [34]. Before the MDCr process, the
salinity of feed brine can be concentrated to be close to the saturation state by MD. Thus,
MDCr can obtain clean water and salt crystals in one step, and, with some additional and
simple treatments, can even meet drinking water standards. The nucleation and growth
of salt crystals can be controlled by adjusting the feed temperature and flow rate [35]. In
addition, the MDCr process can start with a low-level heat source, such as waste heat and
solar energy from a factory or power plant [36,37]. Therefore, it is feasible to integrate the
MDCr process into the zero liquid discharge (ZLD) system [38]. In sewage treatment, the
concept of ZLD is mentioned more and more frequently; ZLD is a concept where most
industrial raw materials, such as water and salts, are purified, reused, and separated after
multiple stage cycles as much as possible to ensure that no waste liquid is discharged from
a factory [39,40].

In this work, the VMD process was used to investigate the treatment feasibility of ani-
line wastewater. The temperature and flow rate during VMD operation was optimized, and
the contamination conditions under different conditions were investigated. The Fenton oxi-
dation process was used to remove aniline from wastewater, and the optimal concentration
of H2O2 and FeSO4 was determined. The pretreatment technology of aniline wastewater
was also studied for a better treatment effect. Then, a long-time MDCr experiment was
carried out with aniline wastewater, and regular cube salt crystal was obtained, showing
the feasibility of membrane distillation crystallization to treat aniline wastewater.

2. Experiment
2.1. Material

Commercial hydrophobic flat sheet PVDF (GVHP 04700, 0.22 µm, Millipore, Burlington,
MA, USA) membranes were applied in this work. Ferrous sulfate (FeSO4) and hydrogen
peroxide (H2O2) are the materials for the Fenton reaction. Aniline wastewater came from
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the production of anti-aging agents by the Nanjing Research Institute of Chemical Industry.
Both FeSO4 and H2O2 came from the China National Pharmaceutical Group, with analytical
purity and an H2O2 concentration of 30%. Ionized water was produced by a self-made
reverse osmosis system. All chemicals were used without further purification.

2.2. Characterization

Inorganic anions and cations were analyzed using an ion chromatograph spectrometer
(Thermo ICS 2000, USA) and an inductively coupled plasma spectrometer (ICP, Perkin
Elmer Optima 7000DV, USA), respectively. Before each ICP and ICS test, a microwave
digestion device (Analytik TOP wave, Germany) was employed to digest the organic
components that could cause possible interference. For organic components, COD values
of the feed and permeate solution were measured using a spectrophotometer (Hach DR
3900, USA). The values of conductivity and total dissolved solids were both measured by a
conductivity meter (Mettler Toledo FE 38, China). Specific organic components (including
esters, alcohols, benzenes, and others) were tested by a triple-quadrupole mass analyzer
(Bruker Scion-MS-4306GC, Germany). An atomic force microscope (AFM) (Bruke Icon,
Germany) operated in tapping mode was used to evaluate the surface topography of the
membranes in a scan size of 10 × 10 µm.

Since the original aniline wastewater had undergone many complex treatment proce-
dures in the industry, it was important to determine its composition and properties. The
basic information on the aniline wastewater is shown in Table 1. The untreated aniline
wastewater was alkaline, the cations were mainly sodium ions, with a content of about
52.86 g·L−1, the anions were mainly chloride ions, with a content of about 66.30 g·L−1,
and trace nitrate ions were also present in the aniline wastewater. In addition, the con-
ductivity value was about 162.75 ms·cm−1, and the COD and TOC (total dissolved solids)
values were about 1400 mg·L−1 and 4728 mg·L−1, respectively. Based on this information,
it was speculated that the aniline wastewater mainly contained NaCl. In addition, the
specific organic components are listed in Table S1 and Figures S1 and S2. Seven kinds
of main organics were detected in the aniline wastewater, among which aniline was the
main pollutant.

Table 1. Basic information on aniline wastewater.

Number Project Units Numerical Value

1 pH - 12.85–12.96
2 Conductivity ms·cm−1 162.75
3 Na+ g·L−1 52.86
4 Cl- g·L−1 66.30
5 NO3- g·L−1 0.88
6 Turbidity NTU 2.98
7 TDS mg·L−1 ≈125
8 TOC mg·L−1 4728
9 COD mg·L−1 5600

In order to evaluate the effects of aniline wastewater on the membranes before and
after MD operation, the membrane morphology and surface element distribution were mea-
sured using a field emission scanning electron microscope–energy dispersive spectrometer
(FESEM-EDS, Hitachi S4800, Japan). The average pore size and pore size distribution of
the membranes were measured by a membrane pore size distribution apparatus (PSDA-20,
Gaoqian function Co., Nanjing, China) based on the gas–liquid exclusion method.

The porosity of the PVDF membranes (ε) was measured by the gravimetric method
and calculated by Equation (1):

ε(%) =

Ww−Wd
ρi

Ww−Wd
ρi

+ Wd
ρM

× 100% (1)
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where Ww is the weight of the wet membrane, Wd is the weight of the dry membrane, ρi is
the density of IPA, and ρM is the density of PVDF. Mechanical strength tests were performed
with a tensile strength testing instrument (Model SH-20, Wenzhou Shandu Instrument Co.,
China). Then, tensile strength (σ) and elongation at break (δ) were calculated by Equations
(2) and (3), respectively:

σ =
F
A
× 100% (2)

δ =
L− L0

L0
× 100% (3)

where A is the cross-sectional area of the membrane sample, L and F are the final length and
tensile stress when the sample was broken, and L0 is the initial length of the tested sample.
Hydrophobicity is one of the most significant parameters of the membranes used in MD
and is usually evaluated by contact angle (CA) measurements. In the present work, CA
was measured by a commercial contact angle instrument (Dataphysics OCA 25, Germany).

2.3. Fenton Oxidation Pretreatment Process

The Fenton oxidation process is one of the processes of the catalytic oxidation of
organic substances in wastewater by hydroxyl radicals generated by the reaction of ferrous
ions (Fe2+) and H2O2. Compared with other methods, the Fenton oxidation process has the
advantages of economy, convenient use, non-toxic by-product production, and no need for
any complex or expensive instruments [41,42]. Ferrous ions catalyze hydrogen peroxide to
produce hydroxyl radicals as follows:

Fe2+ + H2O2 → Fe3+ +·OH + OH−

During the Fenton reaction, iron ions and hydroxyl ions are also formed due to the
reaction of oxygen free radicals and ferrous ions.

Fe3+ + H2O2 → Fe2+ + H+ +HO2
OH + Fe2+ → OH− + Fe3+

OH + H2O2 → H2O + HO2
OH +·OH→ H2O2
The removal rate of aniline wastewater can be calculated by Equation (4) as follows:

Aniline removal rate =
C0 − L0

C0
× 100% (4)

where C1 and C0 are the concentration detected by an ultraviolet spectrophotometer
(Perkin Elmer Lambda 950, USA) of original aniline wastewater and aniline wastewater
after pretreatment [43,44].

2.4. Vacuum Membrane Distillation and Crystallization

The membrane used in this experiment was a Millipore GVHP 0.22 µm hydrophobic
membrane, and its specific parameters are shown in Table 2.

Table 2. Basic parameters of the PVDF membrane.

PVDF Characteristics Value
Contact angle (◦) 128

Porosity (%) 65.12
Tensile ratio (%) 69.05

Tensile strength (MPa) 4.52
Pore size (nm) 334

Thickness (mm) 0.122

The performance of aniline wastewater treatment was tested by using the experimental
MDCr setup, as shown in Figure 1. The effective membrane area was 11.34 cm2, and the
permeate vacuum degree of permeate side was kept around 95 kPa. In addition, in order
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to promote crystallization, stirring was performed in the crystallizer. A total volume of
1 L aniline wastewater was circulated by a peristaltic pump. On the permeate side, the
cooling bath temperature was kept at 5 ◦C. For each test, the permeate and conductivity
were recorded. The permeate flux (J) and concentration factor of the feed solution were
calculated by Equations (5) and (6) [45].

J =
m

A×t
(5)

Concentration factor =
Q0

Q0 −Qp
(6)

where m is the mass of the permeable liquid (kg), A is the effective area of the flat membrane
(m2), t is the time interval (h) of operation, and Q0 and Qp are the initial quantity of the
feed and the cumulative quantity of permeated water, respectively.
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A conductivity meter was used to measure the conductivity of the product water, and
the salt rejection can be calculated by Equation (7) as follows:

Salt rejection =
Cf −Cp

Cf
× 100% (7)

where Cf and Cp are the conductivity of the feed solution and the permeate solution,
respectively.

3. Results and Discussion
3.1. Optimization of Operating Parameters for VMD Treatment of Aniline Wastewater

Under the conditions of different feed temperatures of 50 ◦C, 60 ◦C, and 70 ◦C, feed
flow of 500 mL/L, and absolute pressure of 5 kPa at the permeate side, the experiment of
treating aniline wastewater with VMD for 15 h was carried out. Figure 2a shows the MD
flux variation with different feed temperatures. Among them, when the temperature was
50 ◦C, 60 ◦C, or 70 ◦C, the permeation flux of membrane distillation was 16.7, 21.8, and
36.9 kg·m−2·h−1, respectively. With the gradual increase in feed temperature, the saturated
vapor pressure of the volatile components gradually increased at the corresponding temper-
ature, which increased the mass transfer impetus and permeation flux of the process [46,47].
At 50 ◦C and 60 ◦C, the permeation flux of VMD decreases slightly but is relatively stable
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within 15 h, however, when the feed temperature was 70 ◦C, the initial flux was relatively
higher. After 8 h of operation, the flux began to decay, and after 14 h of operation, the
flux dropped from 36.9 kg·m−2·h−1 at the beginning to about 14.5, a 50% drop in flux.
This probably occurred because the more volatile substances clogged the pores along with
the water steam when going through the membrane pore channel at higher temperatures;
pollutant deposition also occurred on the membrane surface and so the pollution layer was
thickened [48,49].
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An experiment was carried out to evaluate the influence of different feed flow rates
of 400, 500, and 600 mL/min under the conditions of a feed temperature of 60 ◦C and
absolute pressure of 5 kPa at the permeate side. The results are shown in Figure 2b. The
initial permeation flux was 18.8, 21.3, and 22.3 kg·m−2·h−1, corresponding to different flow
rates of 400, 500, and 600 mL/min, respectively. With the increase in the feed flow rate,
the permeation flux of MD gradually increased. The high flow rate is conducive to the
turbulent state, which enables better mixing of the feed solution and decreases the thermal
boundary layer and temperature polarization [50,51]. However, the increasing trend is not
obvious relative to different temperatures because the temperature is the main influence
factor of membrane distillation flux [52,53].

In addition to studying the flux changes under different MD operating conditions,
we also investigated the fouling of the membrane surface after the vacuum membrane
distillation treatment of aniline wastewater, as shown in Figure 3. As seen in the SEM
images, with the increase in feed temperature, the fouling phenomenon on the membrane
surface became more serious; the color changes can be seen in the pictures in the upper left
corners of the SEM images. Correspondingly, it can be observed from SEM that more and
more pollutants accumulated on the membrane surface, resulting in fewer and fewer visible
pores. This was attributed to the complex organic composition of aniline wastewater. More
and more foulants accumulated on the membrane’s surface or volatilized into the pores,
which led to a rapid decay of membrane distillation flux after a few hours at 70 ◦C [54].
However, the influence of the flow rate on membrane surface fouling presented a completely



Membranes 2023, 13, 561 7 of 17

opposite trend. It can be seen from the SEM images and photos of the membrane surface
that the membrane surface fouling was more serious when the flow rate was 400 mL/min,
while the fouling was not serious when the flow rate was 600 mL/min. This is because
an increase in the flow rate will increase the Reynolds number, and a high flow rate is
conducive to obtaining a turbulent flow state. A turbulent state can better relieve the
deposition of fouling on the membrane surface [55,56].
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As is shown in Table 3, when the temperature was 60 ◦C and the flow rate was 400,
500, and 600 mL/min, the average surface roughness of the membrane decreased by 50.7%,
17.9%, and 15.9%, respectively. This is because when the flow velocity increases, the
concentration of pollutants in the feed liquid accumulates on the surface of the membrane
during a long membrane distillation; the deposition of organic matter also resulted in a
decrease in surface hydrophobicity [57], which also explains the lower average surface
roughness at the flow rate of 400 mL/min. This result is consistent with the SEM results.
Under the flow rate condition of 500 mL/min and temperatures of 50, 60, and 70 ◦C,
the average surface roughness of the membrane decreased by 56.1%, 20.7%, and 86.5%,
respectively. This is because when the temperature is low, the diffusion coefficient of the
organic matter in the wastewater is low, and the membrane surface pollution deposition
is fast, so the average surface roughness is low. When the temperature was too high, the
aniline wastewater was concentrated quickly, the pollutant concentration in the wastewater
increased, and a large number of pollutants were deposited on the membrane surface,
which made the membrane surface smooth, decreased the hydrophobicity, and finally,
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wetted the membrane [58,59]. Therefore, using an appropriate temperature was very
important for the MD process.

Table 3. AFM images of the original PVDF membrane and the PVDF membrane after operation in
different conditions.

Operating Condition Mean Roughness (Ra), nm AFM Images

Original Membrane 207

Membranes 2023, 13, x FOR PEER REVIEW 8 of 18 
 

 

As is shown in Table 3, when the temperature was 60 °C and the flow rate was 400, 
500, and 600 mL/min, the average surface roughness of the membrane decreased by 50.7%, 
17.9%, and 15.9%, respectively. This is because when the flow velocity increases, the con-
centration of pollutants in the feed liquid accumulates on the surface of the membrane 
during a long membrane distillation; the deposition of organic matter also resulted in a 
decrease in surface hydrophobicity [57], which also explains the lower average surface 
roughness at the flow rate of 400 mL/min. This result is consistent with the SEM results. 
Under the flow rate condition of 500 mL/min and temperatures of 50, 60, and 70 °C, the 
average surface roughness of the membrane decreased by 56.1%, 20.7%, and 86.5%, re-
spectively. This is because when the temperature is low, the diffusion coefficient of the 
organic matter in the wastewater is low, and the membrane surface pollution deposition 
is fast, so the average surface roughness is low. When the temperature was too high, the 
aniline wastewater was concentrated quickly, the pollutant concentration in the 
wastewater increased, and a large number of pollutants were deposited on the membrane 
surface, which made the membrane surface smooth, decreased the hydrophobicity, and 
finally, wetted the membrane [58,59]. Therefore, using an appropriate temperature was 
very important for the MD process. 

Table 3. AFM images of the original PVDF membrane and the PVDF membrane after operation in 
different conditions. 

Operating Condition Mean Roughness (Ra), nm AFM Images 

Original Membrane 207 

 

60 °C/400 mL/min 102 

 

60 °C/500 mL/min 170 

 

60 °C/600 mL/min 174 

 

500 mL/min/50 °C 90.8 

 

60 ◦C/400 mL/min 102

Membranes 2023, 13, x FOR PEER REVIEW 8 of 18 
 

 

As is shown in Table 3, when the temperature was 60 °C and the flow rate was 400, 
500, and 600 mL/min, the average surface roughness of the membrane decreased by 50.7%, 
17.9%, and 15.9%, respectively. This is because when the flow velocity increases, the con-
centration of pollutants in the feed liquid accumulates on the surface of the membrane 
during a long membrane distillation; the deposition of organic matter also resulted in a 
decrease in surface hydrophobicity [57], which also explains the lower average surface 
roughness at the flow rate of 400 mL/min. This result is consistent with the SEM results. 
Under the flow rate condition of 500 mL/min and temperatures of 50, 60, and 70 °C, the 
average surface roughness of the membrane decreased by 56.1%, 20.7%, and 86.5%, re-
spectively. This is because when the temperature is low, the diffusion coefficient of the 
organic matter in the wastewater is low, and the membrane surface pollution deposition 
is fast, so the average surface roughness is low. When the temperature was too high, the 
aniline wastewater was concentrated quickly, the pollutant concentration in the 
wastewater increased, and a large number of pollutants were deposited on the membrane 
surface, which made the membrane surface smooth, decreased the hydrophobicity, and 
finally, wetted the membrane [58,59]. Therefore, using an appropriate temperature was 
very important for the MD process. 

Table 3. AFM images of the original PVDF membrane and the PVDF membrane after operation in 
different conditions. 

Operating Condition Mean Roughness (Ra), nm AFM Images 

Original Membrane 207 

 

60 °C/400 mL/min 102 

 

60 °C/500 mL/min 170 

 

60 °C/600 mL/min 174 

 

500 mL/min/50 °C 90.8 

 

60 ◦C/500 mL/min 170

Membranes 2023, 13, x FOR PEER REVIEW 8 of 18 
 

 

As is shown in Table 3, when the temperature was 60 °C and the flow rate was 400, 
500, and 600 mL/min, the average surface roughness of the membrane decreased by 50.7%, 
17.9%, and 15.9%, respectively. This is because when the flow velocity increases, the con-
centration of pollutants in the feed liquid accumulates on the surface of the membrane 
during a long membrane distillation; the deposition of organic matter also resulted in a 
decrease in surface hydrophobicity [57], which also explains the lower average surface 
roughness at the flow rate of 400 mL/min. This result is consistent with the SEM results. 
Under the flow rate condition of 500 mL/min and temperatures of 50, 60, and 70 °C, the 
average surface roughness of the membrane decreased by 56.1%, 20.7%, and 86.5%, re-
spectively. This is because when the temperature is low, the diffusion coefficient of the 
organic matter in the wastewater is low, and the membrane surface pollution deposition 
is fast, so the average surface roughness is low. When the temperature was too high, the 
aniline wastewater was concentrated quickly, the pollutant concentration in the 
wastewater increased, and a large number of pollutants were deposited on the membrane 
surface, which made the membrane surface smooth, decreased the hydrophobicity, and 
finally, wetted the membrane [58,59]. Therefore, using an appropriate temperature was 
very important for the MD process. 

Table 3. AFM images of the original PVDF membrane and the PVDF membrane after operation in 
different conditions. 

Operating Condition Mean Roughness (Ra), nm AFM Images 

Original Membrane 207 

 

60 °C/400 mL/min 102 

 

60 °C/500 mL/min 170 

 

60 °C/600 mL/min 174 

 

500 mL/min/50 °C 90.8 

 

60 ◦C/600 mL/min 174

Membranes 2023, 13, x FOR PEER REVIEW 8 of 18 
 

 

As is shown in Table 3, when the temperature was 60 °C and the flow rate was 400, 
500, and 600 mL/min, the average surface roughness of the membrane decreased by 50.7%, 
17.9%, and 15.9%, respectively. This is because when the flow velocity increases, the con-
centration of pollutants in the feed liquid accumulates on the surface of the membrane 
during a long membrane distillation; the deposition of organic matter also resulted in a 
decrease in surface hydrophobicity [57], which also explains the lower average surface 
roughness at the flow rate of 400 mL/min. This result is consistent with the SEM results. 
Under the flow rate condition of 500 mL/min and temperatures of 50, 60, and 70 °C, the 
average surface roughness of the membrane decreased by 56.1%, 20.7%, and 86.5%, re-
spectively. This is because when the temperature is low, the diffusion coefficient of the 
organic matter in the wastewater is low, and the membrane surface pollution deposition 
is fast, so the average surface roughness is low. When the temperature was too high, the 
aniline wastewater was concentrated quickly, the pollutant concentration in the 
wastewater increased, and a large number of pollutants were deposited on the membrane 
surface, which made the membrane surface smooth, decreased the hydrophobicity, and 
finally, wetted the membrane [58,59]. Therefore, using an appropriate temperature was 
very important for the MD process. 

Table 3. AFM images of the original PVDF membrane and the PVDF membrane after operation in 
different conditions. 

Operating Condition Mean Roughness (Ra), nm AFM Images 

Original Membrane 207 

 

60 °C/400 mL/min 102 

 

60 °C/500 mL/min 170 

 

60 °C/600 mL/min 174 

 

500 mL/min/50 °C 90.8 

 

500 mL/min/50 ◦C 90.8

Membranes 2023, 13, x FOR PEER REVIEW 8 of 18 
 

 

As is shown in Table 3, when the temperature was 60 °C and the flow rate was 400, 
500, and 600 mL/min, the average surface roughness of the membrane decreased by 50.7%, 
17.9%, and 15.9%, respectively. This is because when the flow velocity increases, the con-
centration of pollutants in the feed liquid accumulates on the surface of the membrane 
during a long membrane distillation; the deposition of organic matter also resulted in a 
decrease in surface hydrophobicity [57], which also explains the lower average surface 
roughness at the flow rate of 400 mL/min. This result is consistent with the SEM results. 
Under the flow rate condition of 500 mL/min and temperatures of 50, 60, and 70 °C, the 
average surface roughness of the membrane decreased by 56.1%, 20.7%, and 86.5%, re-
spectively. This is because when the temperature is low, the diffusion coefficient of the 
organic matter in the wastewater is low, and the membrane surface pollution deposition 
is fast, so the average surface roughness is low. When the temperature was too high, the 
aniline wastewater was concentrated quickly, the pollutant concentration in the 
wastewater increased, and a large number of pollutants were deposited on the membrane 
surface, which made the membrane surface smooth, decreased the hydrophobicity, and 
finally, wetted the membrane [58,59]. Therefore, using an appropriate temperature was 
very important for the MD process. 

Table 3. AFM images of the original PVDF membrane and the PVDF membrane after operation in 
different conditions. 

Operating Condition Mean Roughness (Ra), nm AFM Images 

Original Membrane 207 

 

60 °C/400 mL/min 102 

 

60 °C/500 mL/min 170 

 

60 °C/600 mL/min 174 

 

500 mL/min/50 °C 90.8 

 
500 mL/min/60 ◦C 164

Membranes 2023, 13, x FOR PEER REVIEW 9 of 18 
 

 

500 mL/min/60 °C 164 

 

500 mL/min/70 °C 28 

 

3.2. Pretreatment of Aniline Wastewater by Fenton Reaction 
Since the organic foulants on the membrane surface cannot be effectively treated dur-

ing the membrane cleaning process, it was planned to use the Fenton oxidation method 
to pretreat the aniline wastewater to remove the aniline content in the aniline wastewater. 
Figures 4–7 show the change of COD, aniline removal rate, and liquid surface tension 
under different H2O2 and FeSO4 concentrations, respectively. 

 
Figure 4. The effect of the concentration of (a) H2O2 and (b) FeSO4 in Fenton oxidation on the COD 
of aniline wastewater. 

500 mL/min/70 ◦C 28

Membranes 2023, 13, x FOR PEER REVIEW 9 of 18 
 

 

500 mL/min/60 °C 164 

 

500 mL/min/70 °C 28 

 

3.2. Pretreatment of Aniline Wastewater by Fenton Reaction 
Since the organic foulants on the membrane surface cannot be effectively treated dur-

ing the membrane cleaning process, it was planned to use the Fenton oxidation method 
to pretreat the aniline wastewater to remove the aniline content in the aniline wastewater. 
Figures 4–7 show the change of COD, aniline removal rate, and liquid surface tension 
under different H2O2 and FeSO4 concentrations, respectively. 

 
Figure 4. The effect of the concentration of (a) H2O2 and (b) FeSO4 in Fenton oxidation on the COD 
of aniline wastewater. 

3.2. Pretreatment of Aniline Wastewater by Fenton Reaction

Since the organic foulants on the membrane surface cannot be effectively treated
during the membrane cleaning process, it was planned to use the Fenton oxidation method
to pretreat the aniline wastewater to remove the aniline content in the aniline wastewater.
Figures 4–7 show the change of COD, aniline removal rate, and liquid surface tension under
different H2O2 and FeSO4 concentrations, respectively.

Firstly, when the concentration of H2O2 was 0.1, 0.3, 0.5, 1, 2, 3, 4, 5, 6, and 7 mL/L
(FeSO4 was 1000 mg/L), the COD, aniline removal rate, and liquid surface tension in the
wastewater were measured; the results are shown in Figures 4a–6a. The COD value shows
a trend of first decreasing and then increasing with the increase in H2O2 concentration.
When the H2O2 concentration was 3 mL/L, the COD reached its lowest value. Due to the
increase in the amount of H2O2 added to the Fenton reaction, the output of ·OH increased,
and the removal rate of the organic foulants also increased. However, when excessive H2O2
was added, it inhibited the generation of ·OH, and H2O2 itself constantly decomposed into
oxygen and water, oxidizing Fe2+ into Fe3+ with low catalytic ability, increasing the amount
of hydrogen peroxide, and reducing the production efficiency of the ·OH radical [60–64].
The change of COD also partly explains why the removal rate of aniline increases first and
then decreases.
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Especially, at the concentration of 3 mL/L H2O2 and 1000 mg/mL FeSO4, the liquid
surface tension of the aniline wastewater increased, and the liquid surface tension increased,
albeit by a small amount. This is a good performance for MD. Because ·OH has strong
oxidation, it will oxidize and decompose aniline, thus increasing the liquid surface tension
of wastewater. According to Laplace’s equation, an increase in liquid surface tension will
reduce the occurrence of membrane wetting during membrane distillation.

When wetting, the liquid enters the membrane hole, as seen in the Laplace Equation (8):

∆P =
2γ1cos θ

r
(8)

where ∆P is the pressure difference on the membrane surface, γ1 is the liquid surface
tension, r is the pore size of the membrane, and θ is the contact angle of the membrane
surface. When θ > 90◦, cos θ < 0, ∆P > 0, and only when a certain pressure is applied,
will the liquid penetrate into the membrane pores. From the equation, it can be seen that
wettability depends on three factors: membrane pore size, liquid surface tension, and
membrane material surface energy. The smaller the liquid surface tension, the easier it is to
cause membrane wetting.
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Secondly, the results from a FeSO4 concentration of 100, 200, 300, 400, 500, 600, 700,
800, 900, 1000, 1100, and 1200 mg/L and an H2O2 concentration of 3 mL/L were also
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measured and are shown in Figure 4b, Figure 5b, Figure 6b. From Figure 4b, it can be
seen that the COD removal rate increases with the increase in FeSO4 concentration. When
the concentration is 1000 mg/L, the COD removal effect is the best. Afterward, the COD
removal rate decreases with an increase in FeSO4 concentration. That is because when the
mass concentration of Fe2+ is low, the amount of Fe2+ added increases, the catalytic effect
is enhanced, the amount of ·OH free radicals generated increases, and the COD removal
rate increases. When the mass concentration of Fe2+ is too high, it will reduce a portion of
H2O2, causing the decomposition rate of H2O2 to be too fast and producing a large amount
of ·OH in a short period of time. Thus, some ·OH cannot react with the organic pollutants
in time, and free radicals will have already formed mutual reactions and been consumed,
resulting in a decrease in the utilization rate of ·OH [65,66].
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Figure 7 shows that the initial permeation flux of treating original aniline wastew-
ater is about 18 kg·m−2·h−1 and the initial permeation flux after pretreatment is about
22 kg·m−2·h−1; the wastewater after pretreatment shows a more stable and lasting perme-
ation flux in long-term operation.
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3.3. Membrane Distillation and Crystallization Process

The performance of the hydrophobic MDCr process on Fenton oxidation-pretreated
aniline wastewater will be discussed in the following section. The hydrophobic PVDF
membrane was adopted during the process, and the experimental operation parameters of
the MDCr process are shown in Table 4.

Table 4. The operation parameters of membrane distillation and crystallization.

Processing
Capacity/L

Feed Flow Rate
/mL·min−1

Feed Temperature
/◦C

Vacuum Pressure
/MPa

2 500 60 0.0095

It can be seen from Figure 8a that during the 30 h operation process, the overall flux
remains stable and the salt retention rate of the membrane remains relatively stable; both
are above 99.99%. In addition, after 30 h, the concentration factor reached 1.5, which
means that during this process, the original aniline wastewater had been concentrated to
1.5 times the original concentration. It can be seen from the SEM images (Figure 8b,c) of
the membrane after the experiment that there was no obvious membrane pore blockage
or large-scale pollutant deposition on the membrane surface, and that it still maintained a
porous state.

The organic components in the original solution, concentrated crystallization mother
solution, and crystallization salt were characterized, as shown in Table 5. It can be seen
that the TOC value of the concentrated crystallization mother solution decreased compared
to the original solution, and it has not been ruled out that the organic substances with
lower boiling points can be removed due to their permeation through the membrane in a
vacuum environment.
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Table 5. Analysis of the organic composition of wastewater and crystal salt.

TOC (mg/L)

Original Solution Crystalline Mother Solution Crystalline Salt (10 ppm)

4728 2471.1 2.99

Crystalline salt precipitated during the membrane distillation crystallization process
and was obtained through filtration and drying. In order to understand the residual organic
compounds on the surface of the crystal salt, the crystal salt was reintegrated into deionized
water (with a concentration of 10 ppm), and the TOC value of the crystal salt was measured
to be 2.99 mg/L.

An EDX analysis was then performed on the crystalline salt, as shown in Figure 8b
and Table 6. Figure 8b shows the surface morphology of the crystalline salt, a cubic shape
with clear edges and a complete structure [32]. The salt surface analysis by EDX is shown
in Table 5. The main elements are Na and Cl, and their atomic ratios are close to 1:1, which
means the membrane distillation and crystallization process can be used to achieve ZLD
of the aniline wastewater in this case. In order to further confirm this conclusion, we also
conducted XRD characterization, as shown in Figure 9. The XRD spectrum of the PVDF
membrane after the MDCr process showed obvious characteristic peaks of NaCl with
peaks of 2θ = 27.36◦, 31.73◦, 45.44◦, and 56.47◦. This further confirmed that the crystals we
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obtained were NaCl. However, due to the complex composition of the wastewater, there
were still some peaks of unknown organic and inorganic substances.

Table 6. Surface element analysis of the crystal salt.

Element Mass Ratio % Atomic Ratio %

O 4.54 7.95
Na 38.66 47.14
Cl 56.80 44.91

Membranes 2023, 13, x FOR PEER REVIEW 15 of 18 
 

 

peaks of 2θ = 27.36°, 31.73°, 45.44°, and 56.47°. This further confirmed that the crystals we 
obtained were NaCl. However, due to the complex composition of the wastewater, there 
were still some peaks of unknown organic and inorganic substances. 

Table 6. Surface element analysis of the crystal salt. 

Element Mass Ratio % Atomic Ratio % 
O 4.54 7.95 

Na 38.66 47.14 
Cl 56.80 44.91 

 
Figure 9. The XRD spectrum of the original PVDF membrane and the PVDF membrane after the 
MDCr process. 

Nevertheless, when membrane distillation was used to treat aniline wastewater, alt-
hough the Fenton oxidation process was used to pretreat the wastewater, the final mem-
brane surface fouling was still very serious, and further modification of the membrane 
surface is needed to improve the antifouling performance. Moreover, the aniline 
wastewater obtained from the actual factory has complex components, so better pretreat-
ment methods should be tried to further improve the long-term stability of membrane 
distillation. 

4. Conclusions 
In this paper, MDCr was applied to the treatment of aniline wastewater, providing a 

feasible solution for the realization of ZLD. When the feed temperature is 60 °C and the 
feed flow rate is 500 mL/min, the flux of the MD process is 21.3 kg‧m−2‧h−1; under this con-
dition, the effect of MD is the best and the influence of foulants on the performance of MD 
can be avoided to the greatest extent. After that, the concentration of H2O2 and FeSO4 in 
Fenton oxidation was optimized, and when the optimal concentration of H2O2, 3 mL/L, 
and FeSO4, 1000 mg/L, was discovered, the aniline removal rate was found to reach 91%. 
Finally, the salt was extracted and analyzed. The purity of the NaCl was up to 94 wt.%. 
Overall, in this case, the MDCr process can be used to achieve ZLD of the aniline 
wastewater, showing the possibility and great potential of the large-scale treatment of ani-
line wastewater. 

Supplementary Materials: The following supporting information can be downloaded at: 
www.mdpi.com/xxx/s1, Table S1: Organic content in aniline wastewater; Figure S1: GC-MS 

Figure 9. The XRD spectrum of the original PVDF membrane and the PVDF membrane after the
MDCr process.

Nevertheless, when membrane distillation was used to treat aniline wastewater, al-
though the Fenton oxidation process was used to pretreat the wastewater, the final mem-
brane surface fouling was still very serious, and further modification of the membrane
surface is needed to improve the antifouling performance. Moreover, the aniline wastewater
obtained from the actual factory has complex components, so better pretreatment methods
should be tried to further improve the long-term stability of membrane distillation.

4. Conclusions

In this paper, MDCr was applied to the treatment of aniline wastewater, providing a
feasible solution for the realization of ZLD. When the feed temperature is 60 ◦C and the
feed flow rate is 500 mL/min, the flux of the MD process is 21.3 kg·m−2·h−1; under this
condition, the effect of MD is the best and the influence of foulants on the performance
of MD can be avoided to the greatest extent. After that, the concentration of H2O2 and
FeSO4 in Fenton oxidation was optimized, and when the optimal concentration of H2O2,
3 mL/L, and FeSO4, 1000 mg/L, was discovered, the aniline removal rate was found to
reach 91%. Finally, the salt was extracted and analyzed. The purity of the NaCl was up
to 94 wt.%. Overall, in this case, the MDCr process can be used to achieve ZLD of the
aniline wastewater, showing the possibility and great potential of the large-scale treatment
of aniline wastewater.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/membranes13060561/s1, Table S1: Organic content in aniline
wastewater; Figure S1: GC-MS spectrum of aniline wastewater; Figure S2: The pore size distribution
of the original membrane and the fouled membrane.

https://www.mdpi.com/article/10.3390/membranes13060561/s1
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