Cation Exchange Membranes and Process Optimizations in Electrodialysis for Selective Metal Separation: A Review
Abstract
:1. Introduction
2. Theory and Background
2.1. Electrodialysis Process
2.2. Ion Selectivity
2.3. Ion Selectivity Mechanisms
2.4. Factors Affecting Ion Selectivity
2.4.1. Ionic Characteristics
2.4.2. Membrane Structural Properties
2.4.3. Ion Transport through the Boundary Layer
3. CEM Membrane Preparation for Metal Ion Selectivity
3.1. Surface Modification
3.1.1. In Situ Polymerization
3.1.2. Direct Coating of Charged Polymers
3.1.3. Surface Chemical Modification
3.2. Structure and Morphology of the Polymer Matrix
3.2.1. Physical Blend of Polymers
3.2.2. Micro-Phase Separated Structure from Chemically Grafted Polymer
3.3. Inorganic–Organic Hybrid CEMs
4. Impact of Process Parameters on Metal Ion Selectivity
4.1. Boundary Layer Thickness
4.2. Current Density
4.3. Concentration and Composition
4.4. Process Design
4.5. pH and Temperature
4.6. Solvent
5. Conclusions
6. Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Taghvaie Nakhjiri, A.; Sanaeepur, H.; Ebadi Amooghin, A.; Shirazi, M.M.A. Recovery of Precious Metals from Industrial Wastewater towards Resource Recovery and Environmental Sustainability: A Critical Review. Desalination 2022, 527, 115510. [Google Scholar] [CrossRef]
- Kumari, A.; Jha, M.K.; Lee, J.C.; Singh, R.P. Clean Process for Recovery of Metals and Recycling of Acid from the Leach Liquor of PCBs. J. Clean. Prod. 2016, 112, 4826–4834. [Google Scholar] [CrossRef]
- Ying, J.; Lin, Y.; Zhang, Y.; Yu, J. Developmental Progress of Electrodialysis Technologies and Membrane Materials for Extraction of Lithium from Salt Lake Brines. ACS ES T Water 2023. [Google Scholar] [CrossRef]
- Arana Juve, J.M.; Christensen, F.M.S.; Wang, Y.; Wei, Z. Electrodialysis for Metal Removal and Recovery: A Review. Chem. Eng. J. 2022, 435, 134857. [Google Scholar] [CrossRef]
- Zimmermann, P.; Tekinalp, Ö.; Deng, L.; Forsberg, K.; Wilhelmsen, Ø.; Burheim, O.S. Electrodialysis in Hydrometallurgical Processes. In Rare Metal Technology; Springer Internation Publishing: Cham, Switzerland, 2020; pp. 159–167. [Google Scholar]
- Tekinalp, Ö.; Zimmermann, P.; Burheim, O.S.; Deng, L. Designing Monovalent Selective Anion Exchange Membranes for the Simultaneous Separation of Chloride and Fluoride from Sulfate in an Equimolar Ternary Mixture. J. Memb. Sci. 2023, 666, 121148. [Google Scholar] [CrossRef]
- Zimmermann, P.; Tekinalp, Ö.; Solberg, S.B.B.; Wilhelmsen, Ø.; Deng, L.; Burheim, O.S. Limiting Current Density as a Selectivity Factor in Electrodialysis of Multi-Ionic Mixtures. Desalination 2023, 558, 116613. [Google Scholar] [CrossRef]
- Strathmann, H. Electrodialysis, a Mature Technology with a Multitude of New Applications. Desalination 2010, 264, 268–288. [Google Scholar] [CrossRef]
- Sata, T.; Sata, T.; Yang, W. Studies on Cation-Exchange Membranes Having Permselectivity between Cations in Electrodialysis. J. Memb. Sci. 2002, 206, 31–60. [Google Scholar] [CrossRef]
- Ge, L.; Wu, B.; Yu, D.; Mondal, A.N.; Hou, L.; Afsar, N.U.; Li, Q.; Xu, T.; Miao, J.; Xu, T. Monovalent Cation Perm-Selective Membranes (MCPMs): New Developments and Perspectives. Chinese J. Chem. Eng. 2017, 25, 1606–1615. [Google Scholar] [CrossRef]
- Khoiruddin; Ariono, D.; Subagjo; Wenten, I.G. Surface Modification of Ion-sfExchange Membranes: Methods, Characteristics, and Performance. J. Appl. Polym. Sci. 2017, 134, 45540. [Google Scholar] [CrossRef]
- Luo, T.; Abdu, S.; Wessling, M. Selectivity of Ion Exchange Membranes: A Review. J. Memb. Sci. 2018, 555, 429–454. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, W.; Zeng, X.; Deng, T.; Wang, J. Membranes for Separation of Alkali / Alkaline Earth Metal Ions: A Review. Sep. Purif. Technol. 2022, 278, 119640. [Google Scholar] [CrossRef]
- Huang, C.; Xu, T.; Zhang, Y.; Xue, Y.; Chen, G. Application of Electrodialysis to the Production of Organic Acids: State-of-the-Art and Recent Developments. J. Memb. Sci. 2007, 288, 1–12. [Google Scholar] [CrossRef]
- Zhao, Y.; Tang, K.; Liu, Q.; Van Der Bruggen, B.; Díaz, A.S.; Pan, J.; Gao, C.; Shen, J. Recovery of Chemically Degraded Polyethyleneimine by a Re-Modification Method: Prolonging the Lifetime of Cation Exchange Membranes. RSC Adv. 2016, 6, 16548–16554. [Google Scholar] [CrossRef]
- Xu, T.; Liu, Z.; Yang, W. Fundamental Studies of a New Series of Anion Exchange Membranes: Membrane Prepared from Poly(2,6-Dimethyl-1,4-Phenylene Oxide) (PPO) and Triethylamine. J. Memb. Sci. 2005, 249, 183–191. [Google Scholar] [CrossRef]
- Sata, T. Studies on Anion Exchange Membranes Having Permselectivity for Specific Anions in Electrodialysis—Effect of Hydrophilicity of Anion Exchange Membranes on Permselectivity of Anions. J. Memb. Sci. 2000, 167, 1–31. [Google Scholar] [CrossRef]
- Strathmann, H. Ion-Exchange Membrane Separation Processes; Elsevier: Amsterdam, The Netherlands; San Diego, CA, USA; Oxford, UK; London, UK, 2004. [Google Scholar]
- Sata, T. Studies on Ion Exchange Membranes with Permselectivity for Specific Ions in Electrodialysis. J. Memb. Sci. 1994, 93, 117–135. [Google Scholar] [CrossRef]
- Epsztein, R.; DuChanois, R.M.; Ritt, C.L.; Noy, A.; Elimelech, M. Towards Single-Species Selectivity of Membranes with Subnanometre Pores. Nat. Nanotechnol. 2020, 15, 426–436. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.Q.; Wei, K.; Hassanvand, A.; Freeman, B.D.; Kentish, S.E. Single and Binary Ion Sorption Equilibria of Monovalent and Divalent Ions in Commercial Ion Exchange Membranes. Water Res. 2020, 175, 115681. [Google Scholar] [CrossRef]
- Kim, Y.; Walker, W.S.; Lawler, D.F. Competitive Separation of Di- vs. Mono-Valent Cations in Electrodialysis: Effects of the Boundary Layer Properties. Water Res. 2012, 46, 2042–2056. [Google Scholar] [CrossRef] [PubMed]
- Gorobchenko, A.; Mareev, S.; Nikonenko, V. Mathematical Modeling of the Effect of Pulsed Electric Field on the Specific Permselectivity of Ion-Exchange Membranes. Membranes 2021, 11, 115. [Google Scholar] [CrossRef]
- Tansel, B.; Sager, J.; Rector, T.; Garland, J.; Strayer, R.F.; Levine, L.; Roberts, M.; Hummerick, M.; Bauer, J. Significance of Hydrated Radius and Hydration Shells on Ionic Permeability during Nanofiltration in Dead End and Cross Flow Modes. Sep. Purif. Technol. 2006, 51, 40–47. [Google Scholar] [CrossRef]
- Ghiu, S.M.S.; Carnahan, R.P.; Barger, M. Mass Transfer in RO TFC Membranes-Dependence on the Salt Physical and Thermodynamic Parameters. Desalination 2003, 157, 385–393. [Google Scholar] [CrossRef]
- Mukherjee, P.; Sengupta, A.K. Ion Exchange Selectivity as a Surrogate Indicator of Relative Permeability of Ions in Reverse Osmosis Processes. Environ. Sci. Technol. 2003, 37, 1432–1440. [Google Scholar] [CrossRef]
- Rayner-canham, G.; Overton, T. Descriptive Inorganic Chemistry, 5th ed.; W. H. Freeman and Company: New York, NY, USA, 2009. [Google Scholar]
- De Keizer, A.; Van Der Ent, E.M.; Koopal, L.K. Surface and Volume Charge Densities of Monodisperse Porous Silicas. Colloids Surfaces A Physicochem. Eng. Asp. 1998, 142, 303–313. [Google Scholar] [CrossRef]
- Railsback, L.B. Some Fundamentals of Mineralogy and Geochemistry—Variation in Hydrated Radius of Ions. Available online: http://railsback.org/FundamentalsIndex.html (accessed on 15 May 2020).
- Abraham, J.; Vasu, K.S.; Williams, C.D.; Gopinadhan, K.; Su, Y.; Cherian, C.T.; Dix, J.; Prestat, E.; Haigh, S.J.; Grigorieva, I.V.; et al. Tunable Sieving of Ions Using Graphene Oxide Membranes. Nat. Nanotechnol. 2017, 12, 546–550. [Google Scholar] [CrossRef] [PubMed]
- Richards, L.A.; Schäfer, A.I.; Richards, B.S.; Corry, B. Quantifying Barriers to Monovalent Anion Transport in Narrow Non-Polar Pores. Phys. Chem. Chem. Phys. 2012, 14, 11633–11638. [Google Scholar] [CrossRef]
- Song, C.; Corry, B. Intrinsic Ion Selectivity of Narrow Hydrophobic Pores. J. Phys. Chem. B 2009, 113, 7642–7649. [Google Scholar] [CrossRef]
- Epsztein, R.; Shaulsky, E.; Qin, M.; Elimelech, M. Activation Behavior for Ion Permeation in Ion-Exchange Membranes: Role of Ion Dehydration in Selective Transport. J. Memb. Sci. 2019, 580, 316–326. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, Z.; Epsztein, R.; Zhan, C.; Li, W.; Fortner, J.D.; Pham, T.A.; Kim, J.H.; Elimelech, M. Intrapore Energy Barriers Govern Ion Transport and Selectivity of Desalination Membranes. Sci. Adv. 2020, 6, eabd9045. [Google Scholar] [CrossRef]
- Richards, L.A.; Schäfer, A.I.; Richards, B.S.; Corry, B. The Importance of Dehydration in Determining Ion Transport in Narrow Pores. Small 2012, 8, 1701–1709. [Google Scholar] [CrossRef] [PubMed]
- Nightingale, E.R. Phenomenological Theory of Ion Solvation. Effective Radii of Hydrated Ions. J. Phys. Chem. 1959, 63, 1381–1387. [Google Scholar] [CrossRef]
- Liu, C.; Min, F.; Liu, L.; Chen, J. Hydration Properties of Alkali and Alkaline Earth Metal Ions in Aqueous Solution: A Molecular Dynamics Study. Chem. Phys. Lett. 2019, 727, 31–37. [Google Scholar] [CrossRef]
- Marcus, Y. Thermodynamics of Solvation of Ions. J. Chem. Soc., Faraday Trans. 1993, 89, 713–718. [Google Scholar] [CrossRef]
- Larchet, C.; Nouri, S.; Auclair, B.; Dammak, L.; Nikonenko, V. Application of Chronopotentiometry to Determine the Thickness of Diffusion Layer Adjacent to an Ion-Exchange Membrane under Natural Convection. Adv. Colloid Interface Sci. 2008, 139, 45–61. [Google Scholar] [CrossRef] [PubMed]
- Gierke, T.D.; Munn, G.E.; Wilson, F.C. Morphology in Nafion Perfluorinated Membrane Products, As Determined By Wide- and Small-Angle X-Ray Studies. J. Polym. Sci. Part A-2 Polym. Phys. 1981, 19, 1687–1704. [Google Scholar] [CrossRef]
- Luo, T.; Zhong, Y.; Xu, D.; Wang, X.; Wessling, M. Combining Manning’s Theory and the Ionic Conductivity Experimental Approach to Characterize Selectivity of Cation Exchange Membranes. J. Memb. Sci. 2021, 629, 119263. [Google Scholar] [CrossRef]
- Tugas, I.; Pourcelly, G.; Gavach, C. Electrotransport of Protons and Chloride Ions in Anion Exchange Membranes for the Recovery of Acids. Part I. Equilibrium Properties. J. Memb. Sci. 1993, 85, 183–194. [Google Scholar] [CrossRef]
- Tongwen, X.; Weihua, Y. Sulfuric Acid Recovery from Titanium White (Pigment) Waste Liquor Using Diffusion Dialysis with a New Series of Anion Exchange Membranes—Static Runs. J. Memb. Sci. 2001, 183, 193–200. [Google Scholar] [CrossRef]
- Münchinger, A.; Kreuer, K.D. Selective Ion Transport through Hydrated Cation and Anion Exchange Membranes I. The Effect of Specific Interactions. J. Memb. Sci. 2019, 592, 117372. [Google Scholar] [CrossRef]
- Yu, J.; Yi, B.; Xing, D.; Liu, F.; Shao, Z.; Fu, Y.; Zhang, H. Degradation Mechanism of Polystyrene Sulfonic Acid Membrane and Application of Its Composite Membranes in Fuel Cells. Phys. Chem. Chem. Phys. 2003, 5, 611–615. [Google Scholar] [CrossRef]
- Choi, S.H.; Nho, Y.C. Electrochemical Properties of Polyethylene Membrane Modified with Sulfonic and Phosphonic Acid Groups. Korean J. Chem. Eng. 1999, 16, 725–730. [Google Scholar] [CrossRef]
- Matsui, K.; Tobita, E.; Sugimoto, K.; Kondo, K.; Seita, T.; Akimoto, A. Novel Anion Exchange Membranes Having Fluorocarbon Backbone: Preparation and Stability. J. Appl. Polym. Sci. 1986, 32, 4137–4143. [Google Scholar] [CrossRef]
- Tanaka, Y. Ion Exchange Membranes: Fundamentals and Applications; Elsevier: Amsterdam, The Netherlands, 2015; ISBN 9780444633194. [Google Scholar]
- Pusch, W. Measurement Techniques of Transport through Membranes. Desalination 1986, 59, 105–198. [Google Scholar] [CrossRef]
- Galizia, M.; Benedetti, F.M.; Paul, D.R.; Freeman, B.D. Monovalent and Divalent Ion Sorption in a Cation Exchange Membrane Based on Cross-Linked Poly (p-Styrene Sulfonate-Co-Divinylbenzene). J. Memb. Sci. 2017, 535, 132–142. [Google Scholar] [CrossRef]
- Hong, J.G.; Zhang, B.; Glabman, S.; Uzal, N.; Dou, X.; Zhang, H.; Wei, X.; Chen, Y. Potential Ion Exchange Membranes and System Performance in Reverse Electrodialysis for Power Generation: A Review. J. Memb. Sci. 2015, 486, 71–88. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, J.; Zhang, Y.; Liu, J.; Van Der Bruggen, B. Nanoscale Tailor-Made Membranes for Precise and Rapid Molecular Sieve Separation. Nanoscale 2017, 9, 2942–2957. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Xiao, G.; Yan, D. High Performance Sulfonated Poly(Arylene Ether Phosphine Oxide) Membranes by Self-Protected Cross-Linking for Fuel Cells. J. Mater. Chem. 2012, 22, 13714–13722. [Google Scholar] [CrossRef]
- Li, Y.; Xu, T. Permselectivities of Monovalent Anions through Pyridine-Modified Anion-Exchange Membranes. Sep. Purif. Technol. 2008, 61, 430–435. [Google Scholar] [CrossRef]
- Nagarale, R.K.; Gohil, G.S.; Shahi, V.K. Recent Developments on Ion-Exchange Membranes and Electro-Membrane Processes. Adv. Colloid Interface Sci. 2006, 119, 97–130. [Google Scholar] [CrossRef]
- Ran, J.; Wu, L.; He, Y.; Yang, Z.; Wang, Y.; Jiang, C.; Ge, L.; Bakangura, E.; Xu, T. Ion Exchange Membranes: New Developments and Applications. J. Memb. Sci. 2017, 522, 267–291. [Google Scholar] [CrossRef]
- Subramonian, S.; Clifford, D. Monovalent/Divalent Selectivity and the Charge Separation Concept. React. Polym. Ion Exch. Sorbents 1988, 9, 195–209. [Google Scholar] [CrossRef]
- Calmon, C. Recent Developments in Water Treatment by Ion Exchange. React. Polym. Ion Exch. Sorbents 1986, 4, 131–146. [Google Scholar] [CrossRef]
- Nikonenko, V.V.; Kovalenko, A.V.; Urtenov, M.K.; Pismenskaya, N.D.; Han, J.; Sistat, P.; Pourcelly, G. Desalination at Overlimiting Currents: State-of-the-Art and Perspectives. Desalination 2014, 342, 85–106. [Google Scholar] [CrossRef]
- Campione, A.; Gurreri, L.; Ciofalo, M.; Micale, G.; Tamburini, A.; Cipollina, A. Electrodialysis for Water Desalination: A Critical Assessment of Recent Developments on Process Fundamentals, Models and Applications. Desalination 2018, 434, 121–160. [Google Scholar] [CrossRef]
- Kim, Y.; Walker, W.S.; Lawler, D.F. Electrodialysis with Spacers: Effects of Variation and Correlation of Boundary Layer Thickness. Desalination 2011, 274, 54–63. [Google Scholar] [CrossRef]
- Koros, W.J.; Ma, Y.H.; Shimidzu, T. Terminology for Membranes and Membrane Processes (IUPAC Recommendations 1996). Pure Appl. Chem. 1996, 68, 1479–1489. [Google Scholar] [CrossRef]
- Xu, P.; Capito, M.; Cath, T.Y. Selective Removal of Arsenic and Monovalent Ions from Brackish Water Reverse Osmosis Concentrate. J. Hazard. Mater. 2013, 260, 885–891. [Google Scholar] [CrossRef]
- Martí-Calatayud, M.C.; García-Gabaldón, M.; Pérez-Herranz, V. Mass Transfer Phenomena during Electrodialysis of Multivalent Ions: Chemical Equilibria and Overlimiting Currents. Appl. Sci. 2018, 8, 1566. [Google Scholar] [CrossRef]
- Ayyavoo, J.; Nguyen, T.P.N.; Jun, B.M.; Kim, I.C.; Kwon, Y.N. Protection of Polymeric Membranes with Antifouling Surfacing via Surface Modifications. Colloids Surfaces A Physicochem. Eng. Asp. 2016, 506, 190–201. [Google Scholar] [CrossRef]
- Nady, N.; Franssen, M.C.R.; Zuilhof, H.; Eldin, M.S.M.; Boom, R.; Schroën, K. Modification Methods for Poly(Arylsulfone) Membranes: A Mini-Review Focusing on Surface Modification. Desalination 2011, 275, 1–9. [Google Scholar] [CrossRef]
- Upadhyaya, L.; Qian, X.; Ranil Wickramasinghe, S. Chemical Modification of Membrane Surface—Overview. Curr. Opin. Chem. Eng. 2018, 20, 13–18. [Google Scholar] [CrossRef]
- Kasemset, S.; He, Z.; Miller, D.J.; Freeman, B.D.; Sharma, M.M. Effect of Polydopamine Deposition Conditions on Polysulfone Ultrafiltration Membrane Properties and Threshold Flux during Oil/Water Emulsion Filtration. Polymer 2016, 97, 247–257. [Google Scholar] [CrossRef]
- Vaselbehagh, M.; Karkhanechi, H.; Takagi, R.; Matsuyama, H. Surface Modification of an Anion Exchange Membrane to Improve the Selectivity for Monovalent Anions in Electrodialysis—Experimental Verification of Theoretical Predictions. J. Memb. Sci. 2015, 490, 301–310. [Google Scholar] [CrossRef]
- Sata, T. Composite Membranes Prepared from Cation Exchange Membranes and Polyaniline and Their Transport Properties in Electrodialysis. J. Electrochem. Soc. 1999, 146, 585–591. [Google Scholar] [CrossRef]
- Sata, T.; Yamaguchi, T.; Matsusaki, K. Preparation and Properties of Composite Membranes Composed of Anion-Exchange Membranes and Polypyrrole. J. Phys. Chem. 1996, 100, 16633–16640. [Google Scholar] [CrossRef]
- Lee, H.; Dellatore, S.M.; Miller, W.M.; Messersmith, P.B. Mussel-Inspired Surface Chemistry for Multifunctional Coatings. Science 2007, 318, 426–430. [Google Scholar] [CrossRef]
- Yang, S.; Liu, Y.; Liao, J.; Liu, H.; Jiang, Y.; Van Der Bruggen, B.; Shen, J.; Gao, C. Codeposition Modification of Cation Exchange Membranes with Dopamine and Crown Ether to Achieve High K+ Electrodialysis Selectivity. ACS Appl. Mater. Interfaces 2019, 11, 17730–17741. [Google Scholar] [CrossRef]
- Reig, M.; Farrokhzad, H.; Van der Bruggen, B.; Gibert, O.; Cortina, J.L. Synthesis of a Monovalent Selective Cation Exchange Membrane to Concentrate Reverse Osmosis Brines by Electrodialysis. Desalination 2015, 375, 1–9. [Google Scholar] [CrossRef]
- Li, J.; Zhu, J.; Wang, J.; Yuan, S.; Lin, J.; Shen, J.; Bart, V. Charge-Assisted Ultrafiltration Membranes for Monovalent Ions Separation in Electrodialysis. J. Appl. Polym. Sci. 2018, 135, 45692. [Google Scholar] [CrossRef]
- Gohil, G.S.; Binsu, V.V.; Shahi, V.K. Preparation and Characterization of Mono-Valent Ion Selective Polypyrrole Composite Ion-Exchange Membranes. J. Memb. Sci. 2006, 280, 210–218. [Google Scholar] [CrossRef]
- Vázquez-Rodríguez, G.; Torres-Rodríguez, L.M.; Montes-Rojas, A. Synthesis and Characterization of Commercial Cation Exchange Membranes Modified Electrochemically by Polypyrrole: Effect of Synthesis Conditions on the Transport Properties. Desalination 2017, 416, 94–105. [Google Scholar] [CrossRef]
- Pan, J.; Zhao, L.; Yu, X.; Dong, J.; Liu, L.; Zhao, X.; Liu, L. Optimizing Functional Layer of Cation Exchange Membrane by Three-Dimensional Cross-Linking Quaternization for Enhancing Monovalent Selectivity. Chinese Chem. Lett. 2022, 33, 2757–2762. [Google Scholar] [CrossRef]
- Guesmi, F.; Hannachi, C.; Hamrouni, B. Selectivity of Anion Exchange Membrane Modified with Polyethyleneimine. Ionics 2012, 18, 711–717. [Google Scholar] [CrossRef]
- Cihanoğlu, A.; Alsoy Altinkaya, S. A Facile Approach for Preparation of Positively Charged Nanofiltration Membranes by In-Situ Crosslinking between Polyamide-Imide and Polyethylenimine. Sep. Purif. Technol. 2018, 207, 353–362. [Google Scholar] [CrossRef]
- Greben’, V.P.; Rodzik, I.G.; Kolzunova, L.G. Effect of Modification of a Sulfonic Cation-Exchange Membrane with Cross-Linked Chitosan on the Selectivity of the Transport of Magnesium and Calcium Ions Relative to Sodium Ions. Russ. J. Appl. Chem. 2011, 84, 473–478. [Google Scholar] [CrossRef]
- Jiang, W.; Lin, L.; Xu, X.; Wang, H.; Xu, P. Physicochemical and Electrochemical Characterization of Cation-Exchange Membranes Modified with Polyethyleneimine for Elucidating Enhanced Monovalent Permselectivity of Electrodialysis. J. Memb. Sci. 2019, 572, 545–556. [Google Scholar] [CrossRef]
- Amara, M.; Kerdjoudj, H. Modification of Cation-Exchange Membrane Properties by Electro-Adsorption of Polyethyleneimine. Desalination 2003, 155, 79–87. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, Y.; Li, F.; Chen, Y.; Mojallali Rostami, S.M.; Hosseini, S.S.; Shao, L. Mussel-Inspired Polyphenol/Polyethyleneimine Assembled Membranes with Highly Positive Charged Surface for Unprecedented High Cation Perm-Selectivity. J. Memb. Sci. 2022, 658, 120703. [Google Scholar] [CrossRef]
- Tekinalp, Ö.; Alsoy Altinkaya, S. Development of High Flux Nanofiltration Membranes through Single Bilayer Polyethyleneimine/Alginate Deposition. J. Colloid Interface Sci. 2019, 537, 215–227. [Google Scholar] [CrossRef]
- Bar, C.; Çaǧlar, N.; Uz, M.; Mallapragada, S.K.; Altinkaya, S.A. Development of a High-Flux Thin-Film Composite Nanofiltration Membrane with Sub-Nanometer Selectivity Using a PH and Temperature-Responsive Pentablock Co-Polymer. ACS Appl. Mater. Interfaces 2019, 11, 31367–31377. [Google Scholar] [CrossRef] [PubMed]
- Rijnaarts, T.; Reurink, D.M.; Radmanesh, F.; de Vos, W.M.; Nijmeijer, K. Layer-by-Layer Coatings on Ion Exchange Membranes: Effect of Multilayer Charge and Hydration on Monovalent Ion Selectivities. J. Memb. Sci. 2019, 570–571, 513–521. [Google Scholar] [CrossRef]
- Deng, H.; Wang, Z.; Zhang, W.; Hu, B.; Zhang, S. Preparation and Monovalent Selective Properties of Multilayer Polyelectrolyte Modified Cation-Exchange Membranes. J. Appl. Polym. Sci. 2015, 132, 1–7. [Google Scholar] [CrossRef]
- Abdu, S.; Martí-Calatayud, M.C.; Wong, J.E.; García-Gabaldón, M.; Wessling, M. Layer-by-Layer Modification of Cation Exchange Membranes Controls Ion Selectivity and Water Splitting. ACS Appl. Mater. Interfaces 2014, 6, 1843–1854. [Google Scholar] [CrossRef]
- White, N.; Misovich, M.; Alemayehu, E.; Yaroshchuk, A.; Bruening, M.L. Highly Selective Separations of Multivalent and Monovalent Cations in Electrodialysis through Nafion Membranes Coated with Polyelectrolyte Multilayers. Polymer 2016, 103, 478–485. [Google Scholar] [CrossRef]
- Cheng, C.; White, N.; Shi, H.; Robson, M.; Bruening, M.L. Cation Separations in Electrodialysis through Membranes Coated with Polyelectrolyte Multilayers. Polymer 2014, 55, 1397–1403. [Google Scholar] [CrossRef]
- White, N.; Misovich, M.; Yaroshchuk, A.; Bruening, M.L. Coating of Nafion Membranes with Polyelectrolyte Multilayers to Achieve High Monovalent/Divalent Cation Electrodialysis Selectivities. ACS Appl. Mater. Interfaces 2015, 7, 6620–6628. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Ahmad, M.; Yang, L.; Misovich, M.; Yaroshchuk, A.; Bruening, M.L. Adsorption of Polyelectrolyte Multilayers Imparts High Monovalent/Divalent Cation Selectivity to Aliphatic Polyamide Cation-Exchange Membranes. J. Memb. Sci. 2017, 537, 177–185. [Google Scholar] [CrossRef]
- Ahmad, M.; Yaroshchuk, A.; Bruening, M.L. Moderate PH Changes Alter the Fluxes, Selectivities and Limiting Currents in Ion Transport through Polyelectrolyte Multilayers Deposited on Membranes. J. Memb. Sci. 2020, 616, 118570. [Google Scholar] [CrossRef]
- Ding, D.; Yaroshchuk, A.; Bruening, M.L. Electrodialysis through Nafion Membranes Coated with Polyelectrolyte Multilayers Yields >99% Pure Monovalent Ions at High Recoveries. J. Memb. Sci. 2022, 647, 120294. [Google Scholar] [CrossRef]
- Yang, L.; Tang, C.; Ahmad, M.; Yaroshchuk, A.; Bruening, M.L. High Selectivities among Monovalent Cations in Dialysis through Cation-Exchange Membranes Coated with Polyelectrolyte Multilayers. ACS Appl. Mater. Interfaces 2018, 10, 44134–44143. [Google Scholar] [CrossRef] [PubMed]
- Afsar, N.U.; Shehzad, M.A.; Irfan, M.; Emmanuel, K.; Sheng, F.; Xu, T.; Ren, X.; Ge, L.; Xu, T. Cation Exchange Membrane Integrated with Cationic and Anionic Layers for Selective Ion Separation via Electrodialysis. Desalination 2019, 458, 25–33. [Google Scholar] [CrossRef]
- Khan, M.I.; Mondal, A.N.; Tong, B.; Jiang, C.; Emmanuel, K.; Yang, Z.; Wu, L.; Xu, T. Development of BPPO-Based Anion Exchange Membranes for Electrodialysis Desalination Applications. Desalination 2016, 391, 61–68. [Google Scholar] [CrossRef]
- Xu, T.; Wu, D.; Wu, L. Poly(2,6-Dimethyl-1,4-Phenylene Oxide) (PPO)-A Versatile Starting Polymer for Proton Conductive Membranes (PCMs). Prog. Polym. Sci. 2008, 33, 894–915. [Google Scholar] [CrossRef]
- Zhou, J.; Zuo, P.; Liu, Y.; Yang, Z.; Xu, T. Ion Exchange Membranes from Poly(2,6-Dimethyl-1,4-Phenylene Oxide) and Related Applications. Sci. China Chem. 2018, 61, 1062–1087. [Google Scholar] [CrossRef]
- Afsar, N.U.; Ji, W.; Wu, B.; Shehzad, M.A.; Ge, L.; Xu, T. SPPO-Based Cation Exchange Membranes with a Positively Charged Layer for Cation Fractionation. Desalination 2019, 472, 114145. [Google Scholar] [CrossRef]
- Greben, V.P.; Rodzik, I.G. Difference in Transfer of Magnesium and Sodium Ions through Electrodialytic Membranes Modified with Chitosan. Russ. J. Appl. Chem. 2008, 81, 412–414. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, M.; Wang, D.; Gao, X.; Gao, C. Feasibility Study on Surface Modification of Cation Exchange Membranes by Quaternized Chitosan for Improving Its Selectivity. J. Memb. Sci. 2008, 319, 5–9. [Google Scholar] [CrossRef]
- Li, J.; Xu, Y.; Hu, M.; Shen, J.; Gao, C.; Van Der Bruggen, B. Enhanced Conductivity of Monovalent Cation Exchange Membranes with Chitosan/PANI Composite Modification. RSC Adv. 2015, 5, 90969–90975. [Google Scholar] [CrossRef]
- Lambert, J.; Avila-Rodriguez, M.; Durand, G.; Rakib, M. Separation of Sodium Ions from Trivalent Chromium by Electrodialysis Using Monovalent Cation Selective Membranes. J. Memb. Sci. 2006, 280, 219–225. [Google Scholar] [CrossRef]
- Luo, K.; Jia, Y.X.; Liu, X.X.; Wang, M. On-Line Construction of Electrodialyzer with Mono-Cation Permselectivity and Its Application in Reclamation of High Salinity Wastewater. Desalination 2019, 454, 38–47. [Google Scholar] [CrossRef]
- Ying, J.; Lin, Y.; Zhang, Y.; Jin, Y.; Matsuyama, H.; Yu, J. Layer-by-Layer Assembly of Cation Exchange Membrane for Highly Efficient Monovalent Ion Selectivity. Chem. Eng. J. 2022, 446, 137076. [Google Scholar] [CrossRef]
- Huang, X.H.; Zhang, M.M.; Dou, X.W.; Lu, X.; Qin, Y.J.; Zhang, P.; Shi, J.H.; Guo, Z.X. Strengthened Graphene Oxide/Diazoresin Multilayer Composites from Layer-by-Layer Assembly and Cross-Linking. Chinese Chem. Lett. 2015, 26, 1155–1157. [Google Scholar] [CrossRef]
- Pan, J.; Ding, J.; Tan, R.; Chen, G.; Zhao, Y.; Gao, C.; Van der Bruggen, B.; Shen, J. Preparation of a Monovalent Selective Anion Exchange Membrane through Constructing a Covalently Crosslinked Interface by Electro-Deposition of Polyethyleneimine. J. Memb. Sci. 2017, 539, 263–272. [Google Scholar] [CrossRef]
- Shi, J.; Qin, Y.; Luo, H.; Guo, Z.X.; Woo, H.S.; Park, D.K. Covalently Attached Multilayer Self-Assemblies of Single-Walled Carbon Nanotubols and Diazoresins. Nanotechnology 2007, 18, 16–21. [Google Scholar] [CrossRef]
- Sun, J.; Wu, T.; Sun, Y.; Wang, Z.; Zhang, X.; Shen, J.; Cao, W. Fabrication of a Covalently Attached Multilayer via Photolysis of Layer-by-Layer Self-Assembled Films Containing Diazo-Resins. Chem. Commun. 1998, 17, 1853–1854. [Google Scholar] [CrossRef]
- Wang, M.; Jia, Y.X.; Yao, T.T.; Wang, K.K. The Endowment of Monovalent Selectivity to Cation Exchange Membrane by Photo-Induced Covalent Immobilization and Self-Crosslinking of Chitosan. J. Memb. Sci. 2013, 442, 39–47. [Google Scholar] [CrossRef]
- Liu, H.; Ruan, H.; Zhao, Y.; Pan, J.; Sotto, A.; Gao, C.; van der Bruggen, B.; Shen, J. A Facile Avenue to Modify Polyelectrolyte Multilayers on Anion Exchange Membranes to Enhance Monovalent Selectivity and Durability Simultaneously. J. Memb. Sci. 2017, 543, 310–318. [Google Scholar] [CrossRef]
- Liu, H.; Jiang, Y.; Ding, J.; Shi, W.; Pan, J.; Gao, C.; Shen, J.; van der Bruggen, B. Surface Layer Modification of AEMs by Infiltration and Photo-Cross-Linking to Induce Monovalent Selectivity. AIChE J. 2018, 64, 993–1000. [Google Scholar] [CrossRef]
- Le, X.T.; Viel, P.; Jégou, P.; Garcia, A.; Berthelot, T.; Bui, T.H.; Palacin, S. Diazonium-Induced Anchoring Process: An Application to Improve the Monovalent Selectivity of Cation Exchange Membranes. J. Mater. Chem. 2010, 20, 3750–3757. [Google Scholar] [CrossRef]
- Wang, M.; Liu, X.; Jia, Y.X.; Wang, X.L. The Improvement of Comprehensive Transport Properties to Heterogeneous Cation Exchange Membrane by the Covalent Immobilization of Polyethyleneimine. Sep. Purif. Technol. 2015, 140, 69–76. [Google Scholar] [CrossRef]
- Liu, X.; Wang, M.; Jia, Y. xiang Surface-Functionalized Cation Exchange Membrane by Covalent Immobilization of Polyelectrolyte Multilayer for Effective Separation of Mono- and Multivalent Cations. Sep. Sci. Technol. 2016, 51, 2823–2832. [Google Scholar] [CrossRef]
- Wang, X.L.; Wang, M.; Jia, Y.X.; Wang, B.B. Surface Modification of Anion Exchange Membrane by Covalent Grafting for Imparting Permselectivity between Specific Anions. Electrochim. Acta 2015, 174, 1113–1121. [Google Scholar] [CrossRef]
- Sata, T.A.; Izuo, R. Modification of Transport Properties of IonExchange Membrane. XI. Electrodialytic Properties of Cation Exchange Membranes Having Polyethyleneimine Layer Fixed by Acid-Amide Bonding. J. Appl. Polym. Sci. 1990, 41, 2349–2362. [Google Scholar] [CrossRef]
- Swaminathan, P.; Disley, P.F.; Assender, H.E. Surface Modification of Ion Exchange Membrane Using Amines. J. Memb. Sci. 2004, 234, 131–137. [Google Scholar] [CrossRef]
- Chamoulaud, G.; Bélanger, D. Chemical Modification of the Surface of a Sulfonated Membrane by Formation of a Sulfonamide Bond. Langmuir 2004, 20, 4989–4995. [Google Scholar] [CrossRef]
- Takata, K.; Yamamoto, Y.; Sata, T. Modification of Transport Properties of Ion Exchange Membranes XIV. Effect of Molecular Weight of Polyethyleneimine Bonded to the Surface of Cation Exchange Membranes by Acid-Amide Bonding on Electrochemical Properties of the Membranes. J. Memb. Sci. 2000, 179, 101–107. [Google Scholar] [CrossRef]
- Sata, T.; Izuo, R. Modification of the Transport Properties of Ion Exchange Membranes. XII. Ionic Composition in Cation Exchange Membranes with and without a Cationic Polyelectrolyte Layer at Equilibrium and during Electrodialysis. J. Memb. Sci. 1989, 45, 209–224. [Google Scholar] [CrossRef]
- Li, J.; Zhou, M.L.; Lin, J.Y.; Ye, W.Y.; Xu, Y.Q.; Shen, J.N.; Gao, C.J.; Van der Bruggen, B. Mono-Valent Cation Selective Membranes for Electrodialysis by Introducing Polyquaternium-7 in a Commercial Cation Exchange Membrane. J. Memb. Sci. 2015, 486, 89–96. [Google Scholar] [CrossRef]
- Hou, L.; Wu, B.; Yu, D.; Wang, S.; Shehzad, M.A.; Fu, R.; Liu, Z.; Li, Q.; He, Y.; Afsar, N.U.; et al. Asymmetric Porous Monovalent Cation Perm-Selective Membranes with an Ultrathin Polyamide Selective Layer for Cations Separation. J. Memb. Sci. 2018, 557, 49–57. [Google Scholar] [CrossRef]
- Li, M.; Li, W.; Zhang, X.; Wu, C.; Han, X.; Chen, Y. Polyvinyl Alcohol-Based Monovalent Anion Selective Membranes with Excellent Permselectivity in Selectrodialysis. J. Memb. Sci. 2021, 620, 118889. [Google Scholar] [CrossRef]
- Yao, T.T.; Wang, M.; Jia, Y.X.; Zhou, P.F. A Modified Coating Method for Preparing a Mono-Valent Perm-Selective Cation Exchange Membrane: I. The Evolution of Membrane Property Corresponding to Different Preparing Stages. Desalin. Water Treat. 2013, 51, 2740–2748. [Google Scholar] [CrossRef]
- Hou, L.; Pan, J.; Yu, D.; Wu, B.; Mondal, A.N.; Li, Q.; Ge, L. Nanofibrous Composite Membranes (NFCMs) for Mono/Divalent Cations Separation. J. Memb. Sci. 2017, 528, 243–250. [Google Scholar] [CrossRef]
- Pang, X.; Tao, Y.; Xu, Y.; Pan, J.; Shen, J.; Gao, C. Enhanced Monovalent Selectivity of Cation Exchange Membranes via Adjustable Charge Density on Functional Layers. J. Memb. Sci. 2020, 595, 117544. [Google Scholar] [CrossRef]
- Tongwen, X.; Weihua, Y.; Binglin, H. Ionic Conductivity Threshold in Sulfonated Poly (Phenylene Oxide) Matrices: A Combination of Three-Phase Model and Percolation Theory. Chem. Eng. Sci. 2001, 56, 5343–5350. [Google Scholar] [CrossRef]
- Tas, S.; Zoetebier, B.; Hempenius, M.A.; Vancso, G.J.; Nijmeijer, K. Monovalent Cation Selective Crown Ether Containing Poly(Arylene Ether Ketone)/SPEEK Blend Membranes. RSC Adv. 2016, 6, 55635–55642. [Google Scholar] [CrossRef]
- Mabrouk, W.; Ogier, L.; Vidal, S.; Sollogoub, C.; Matoussi, F.; Fauvarque, J.F. Ion Exchange Membranes Based upon Crosslinked Sulfonated Polyethersulfone for Electrochemical Applications. J. Memb. Sci. 2014, 452, 263–270. [Google Scholar] [CrossRef]
- Klaysom, C.; Moon, S.H.; Ladewig, B.P.; Lu, G.Q.M.; Wang, L. Preparation of Porous Ion-Exchange Membranes (IEMs) and Their Characterizations. J. Memb. Sci. 2011, 371, 37–44. [Google Scholar] [CrossRef]
- Klaysom, C.; Ladewig, B.P.; Lu, G.Q.M.; Wang, L. Preparation and Characterization of Sulfonated Polyethersulfone for Cation-Exchange Membranes. J. Memb. Sci. 2011, 368, 48–53. [Google Scholar] [CrossRef]
- Gohil, G.S.; Nagarale, R.K.; Binsu, V.V.; Shahi, V.K. Preparation and Characterization of Monovalent Cation Selective Sulfonated Poly(Ether Ether Ketone) and Poly(Ether Sulfone) Composite Membranes. J. Colloid Interface Sci. 2006, 298, 845–853. [Google Scholar] [CrossRef]
- Farrokhzad, H.; Kikhavani, T.; Monnaie, F.; Ashrafizadeh, S.N.; Koeckelberghs, G.; Van Gerven, T.; Van der Bruggen, B. Novel Composite Cation Exchange Films Based on Sulfonated PVDF for Electromembrane Separations. J. Memb. Sci. 2015, 474, 167–174. [Google Scholar] [CrossRef]
- Farrokhzad, H.; Darvishmanesh, S.; Genduso, G.; Van Gerven, T.; Van Der Bruggen, B. Development of Bivalent Cation Selective Ion Exchange Membranes by Varying Molecular Weight of Polyaniline. Electrochim. Acta 2015, 158, 64–72. [Google Scholar] [CrossRef]
- Tansel, B. Significance of Thermodynamic and Physical Characteristics on Permeation of Ions during Membrane Separation: Hydrated Radius, Hydration Free Energy and Viscous Effects. Sep. Purif. Technol. 2012, 86, 119–126. [Google Scholar] [CrossRef]
- Lin, C.X.; Huang, X.L.; Guo, D.; Zhang, Q.G.; Zhu, A.M.; Ye, M.L.; Liu, Q.L. Side-Chain-Type Anion Exchange Membranes Bearing Pendant Quaternary Ammonium Groups: Via Flexible Spacers for Fuel Cells. J. Mater. Chem. A 2016, 4, 13938–13948. [Google Scholar] [CrossRef]
- Ji, W.; Wu, B.; Zhu, Y.; Irfan, M.; Ul Afsar, N.; Ge, L.; Xu, T. Self-Organized Nanostructured Anion Exchange Membranes for Acid Recovery. Chem. Eng. J. 2020, 382, 122838. [Google Scholar] [CrossRef]
- He, Y.; Ge, L.; Ge, Z.J.; Zhao, Z.; Sheng, F.; Liu, X.; Ge, X.; Yang, Z.; Fu, R.; Liu, Z.; et al. Monovalent Cations Permselective Membranes with Zwitterionic Side Chains. J. Memb. Sci. 2018, 563, 320–325. [Google Scholar] [CrossRef]
- Irfan, M.; Xu, T.; Ge, L.; Wang, Y.; Xu, T. Zwitterion Structure Membrane Provides High Monovalent/Divalent Cation Electrodialysis Selectivity: Investigating the Effect of Functional Groups and Operating Parameters. J. Memb. Sci. 2019, 588, 117211. [Google Scholar] [CrossRef]
- Irfan, M.; Wang, Y.; Xu, T. Novel Electrodialysis Membranes with Hydrophobic Alkyl Spacers and Zwitterion Structure Enable High Monovalent/Divalent Cation Selectivity. Chem. Eng. J. 2020, 383, 123171. [Google Scholar] [CrossRef]
- Wang, L.; Liu, M.; Zhao, J.; Lei, Y.; Li, N. Comb-Shaped Sulfonated Poly(Ether Ether Ketone) as a Cation Exchange Membrane for Electrodialysis in Acid Recovery. J. Mater. Chem. A 2018, 6, 22940–22950. [Google Scholar] [CrossRef]
- Bakangura, E.; Wu, L.; Ge, L.; Yang, Z.; Xu, T. Mixed Matrix Proton Exchange Membranes for Fuel Cells: State of the Art and Perspectives. Prog. Polym. Sci. 2016, 57, 103–152. [Google Scholar] [CrossRef]
- Miao, J.; Yao, L.; Yang, Z.; Pan, J.; Qian, J.; Xu, T. Sulfonated Poly(2,6-Dimethyl-1,4-Phenyleneoxide)/Nano Silica Hybrid Membranes for Alkali Recovery via Diffusion Dialysis. Sep. Purif. Technol. 2015, 141, 307–313. [Google Scholar] [CrossRef]
- Khodabakhshi, A.R.; Madaeni, S.S.; Hosseini, S.M. Preparation and Characterization of Monovalent Ion-Selective Poly(Vinyl Chloride)-Blend-Poly(Styrene-Co-Butadiene) Heterogeneous Anion-Exchange Membranes. Polym. Int. 2011, 60, 466–474. [Google Scholar] [CrossRef]
- Kumar, M.; Khan, M.A.; AlOthman, Z.A.; Siddiqui, M.R. Polyaniline Modified Organic-Inorganic Hybrid Cation-Exchange Membranes for the Separation of Monovalent and Multivalent Ions. Desalination 2013, 325, 95–103. [Google Scholar] [CrossRef]
- Kumar, M.; Tripathi, B.P.; Shahi, V.K. Ionic Transport Phenomenon across Sol-Gel Derived Organic-Inorganic Composite Mono-Valent Cation Selective Membranes. J. Memb. Sci. 2009, 340, 52–61. [Google Scholar] [CrossRef]
- Srivastava, N.; Joshi, K.V.; Thakur, A.K.; Menon, S.K.; Shahi, V.K. BaCO3 Nanoparticles Embedded Retentive and Cation Selective Membrane for Separation/Recovery of Mg2+ from Natural Water Sources. Desalination 2014, 352, 142–149. [Google Scholar] [CrossRef]
- Golubenko, D.V.; Karavanova, Y.A.; Melnikov, S.S.; Achoh, A.R.; Pourcelly, G.; Yaroslavtsev, A.B. An Approach to Increase the Permselectivity and Mono-Valent Ion Selectivity of Cation-Exchange Membranes by Introduction of Amorphous Zirconium Phosphate Nanoparticles. J. Memb. Sci. 2018, 563, 777–784. [Google Scholar] [CrossRef]
- An, S.; Liu, J.; Wang, J.; Zhu, H.; Ji, Z.; Zhang, T.; Zhao, Y.; Yuan, J. Synthesis and Characterization of Organic-Inorganic Cross-Linked Membrane for the Separation of Mono-Charged and Double Charged Ions Using UV Irradiation. Desalination 2019, 464, 8–17. [Google Scholar] [CrossRef]
- Thakur, A.K.; Manohar, M.; Shahi, V.K. Controlled Metal Loading on Poly(2-Acrylamido-2-Methyl-Propane-Sulfonic Acid) Membranes by an Ion-Exchange Process to Improve Electrodialytic Separation Performance for Mono-/Bi-Valent Ions. J. Mater. Chem. A 2015, 3, 18279–18288. [Google Scholar] [CrossRef]
- Zhang, J.; Cui, X.; Yang, F.; Qu, L.; Du, F.; Zhang, H.; Wang, J. Hybrid Cation Exchange Membranes with Lithium Ion-Sieves for Highly Enhanced Li+ Permeation and Permselectivity. Macromol. Mater. Eng. 2019, 304, 1–11. [Google Scholar] [CrossRef]
- Zhang, C.; Mu, Y.; Zhang, W.; Zhao, S.; Wang, Y. PVC-Based Hybrid Membranes Containing Metal-Organic Frameworks for Li+/Mg2+ Separation. J. Memb. Sci. 2020, 596, 117724. [Google Scholar] [CrossRef]
- Abdollahzadeh, M.; Chai, M.; Hosseini, E.; Zakertabrizi, M.; Mohammad, M.; Ahmadi, H.; Hou, J.; Lim, S.; Habibnejad Korayem, A.; Chen, V.; et al. Designing Angstrom-Scale Asymmetric MOF-on-MOF Cavities for High Monovalent Ion Selectivity. Adv. Mater. 2022, 34, 1–10. [Google Scholar] [CrossRef]
- Jahan, M.; Bao, Q.; Yang, J.; Loh, K.P. Structure-Directing Role of Graphene in the Synthesis of Metal—Organic Framework Nanowire. J. Am. Chem. Soc. 2010, 132, 14487–14495. [Google Scholar] [CrossRef] [PubMed]
- Barry, E.; Mcbride, S.P.; Jaeger, H.M.; Lin, X. Ion Transport Controlled by Nanoparticle-Functionalized Membranes. Nat. Commun. 2014, 5, 5847. [Google Scholar] [CrossRef]
- Perreault, F.; Fonseca De Faria, A.; Elimelech, M. Environmental Applications of Graphene-Based Nanomaterials. Chem. Soc. Rev. 2015, 44, 5861–5896. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, P.; Li, P.; Ji, Y.; Liu, G.; Jin, W. Designing Biomimic Two-Dimensional Ionic Transport Channels for Efficient Ion Sieving. ACS Nano 2021, 15, 5209–5220. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Liu, S.; Guo, Y.; Liu, G.; Jin, W. Separation of Mono-/Di-Valent Ions via Charged Interlayer Channels of Graphene Oxide Membranes. J. Memb. Sci. 2022, 645, 120212. [Google Scholar] [CrossRef]
- Kingsbury, R.S.; Coronell, O. Modeling and Validation of Concentration Dependence of Ion Exchange Membrane Permselectivity: Significance of Convection and Manning’s Counter-Ion Condensation Theory. J. Memb. Sci. 2021, 620, 118411. [Google Scholar] [CrossRef]
- Logette, S.; Eysseric, C.; Pourcelly, G.; Lindheimer, A.; Gavach, C. Selective Permeability of a Perfluorosulphonic Membrane to Different Valency Cations. Ion-Exchange Isotherms and Kinetic Aspects. J. Memb. Sci. 1998, 144, 259–274. [Google Scholar] [CrossRef]
- Pourcelly, G.; Sistat, P.; Chapotot, A.; Gavach, C.; Nikonenko, V. Self Diffusion and Conductivity in NafionR Membranes in Contact with NaCl+CaCl2 Solutions. J. Memb. Sci. 1996, 110, 69–78. [Google Scholar] [CrossRef]
- Siali, M.; Gavach, C. Transport Competition between Proton and Cupric Ion through a Cation-Exchange Membrane. I. Equilibrium Properties of the System: Membrane-CuSO4+H2SO4 Solution. J. Memb. Sci. 1992, 71, 181–188. [Google Scholar] [CrossRef]
- Vyas, P.V.; Ray, P.; Trivedi, G.S.; Adhikary, S.K.; Rangarajan, R. Studies on Exchange Equilibria of Cations between Cation-Exchange Membranes and Electrolytic Solutions. J. Colloid Interface Sci. 2002, 246, 366–371. [Google Scholar] [CrossRef] [PubMed]
- Chapotot, A.; Lopez, V.; Lindheimer, A.; Aouad, N.; Gavach, C. Electrodialysis of Acid Solutions with Metallic Divalent Salts: Cation-Exchange Membranes with Improved Permeability to Protons. Desalination 1995, 101, 141–153. [Google Scholar] [CrossRef]
- Chapotot, A.; Pourcelly, G.; Gavach, C. Transport Competition between Monovalent and Divalent Cations through Cation-Exchange Membranes. Exchange Isotherms and Kinetic Concepts. J. Memb. Sci. 1994, 96, 167–181. [Google Scholar] [CrossRef]
- Chapotot, A.; Pourcelly, G.; Gavach, C.; Lebon, F. Electrotransport of Proton and Divalent Cations through Modified Cation-Exchange Membranes. J. Electroanal. Chem. 1995, 386, 25–37. [Google Scholar] [CrossRef]
- Taky, M.; Pourcelly, G.; Elmidaoui, A. Transport Properties of a Commercial Cation-Exchange Membrane in Contact with Divalent Cations or Proton—Divalent Cation Solutions during Electrodialysis. Hydrometallurgy 1996, 43, 63–78. [Google Scholar] [CrossRef]
- Ahdab, Y.D.; Rehman, D.; Lienhard, J.H. Brackish Water Desalination for Greenhouses: Improving Groundwater Quality for Irrigation Using Monovalent Selective Electrodialysis Reversal. J. Memb. Sci. 2020, 610, 118072. [Google Scholar] [CrossRef]
- Zhang, W.; Miao, M.; Pan, J.; Sotto, A.; Shen, J.; Gao, C.; der Bruggen, B. Van Separation of Divalent Ions from Seawater Concentrate to Enhance the Purity of Coarse Salt by Electrodialysis with Monovalent-Selective Membranes. Desalination 2017, 411, 28–37. [Google Scholar] [CrossRef]
- Rottiers, T.; De Staelen, J.; Van Der Bruggen, B.; Pinoy, L. Permselectivity of Cation-Exchange Membranes between Different Cations in Aqueous Alcohol Mixtures. Electrochim. Acta 2016, 192, 489–496. [Google Scholar] [CrossRef]
- Nie, X.Y.; Sun, S.Y.; Sun, Z.; Song, X.; Yu, J.G. Ion-Fractionation of Lithium Ions from Magnesium Ions by Electrodialysis Using Monovalent Selective Ion-Exchange Membranes. Desalination 2017, 403, 128–135. [Google Scholar] [CrossRef]
- Firdaous, L.; Malériat, J.P.; Schlumpf, J.P.; Quéméneur, F. Transfer of Monovalent and Divalent Cations in Salt Solutions by Electrodialysis. Sep. Sci. Technol. 2007, 42, 931–948. [Google Scholar] [CrossRef]
- Galama, A.H.; Daubaras, G.; Burheim, O.S.; Rijnaarts, H.H.M.; Post, J.W. Fractioning Electrodialysis: A Current Induced Ion Exchange Process. Electrochim. Acta 2014, 136, 257–265. [Google Scholar] [CrossRef]
- Zhang, Y.; Van der Bruggen, B.; Pinoy, L.; Meesschaert, B. Separation of Nutrient Ions and Organic Compounds from Salts in RO Concentrates by Standard and Monovalent Selective Ion-Exchange Membranes Used in Electrodialysis. J. Memb. Sci. 2009, 332, 104–112. [Google Scholar] [CrossRef]
- Wang, W.; Liu, R.; Tan, M.; Sun, H.; Niu, Q.J.; Xu, T.; Nikonenko, V.; Zhang, Y. Evaluation of the Ideal Selectivity and the Performance of Selectrodialysis by Using TFC Ion Exchange Membranes. J. Memb. Sci. 2019, 582, 236–245. [Google Scholar] [CrossRef]
- Galama, A.H.; Daubaras, G.; Burheim, O.S.; Rijnaarts, H.H.M.; Post, J.W. Seawater Electrodialysis with Preferential Removal of Divalent Ions. J. Memb. Sci. 2014, 452, 219–228. [Google Scholar] [CrossRef]
- Arar, O.; Yavuz, E.; Yuksel, U.; Kabay, N. Separation of Low Concentration of Fluoride from Water by Electrodialysis (ED) in the Presence of Chloride and Sulfate Ions. Sep. Sci. Technol. 2009, 44, 1562–1573. [Google Scholar] [CrossRef]
- Dong, T.; Yao, J.; Wang, Y.; Luo, T.; Han, L. On the Permselectivity of Di- and Mono-Valent Cations: Influence of Applied Current Density and Ionic Species Concentration. Desalination 2020, 488, 114521. [Google Scholar] [CrossRef]
- Kabay, N.; Kahveci, H.; Ipek, Ö.; Yüksel, M. Separation of Monovalent and Divalent Ions from Ternary Mixtures by Electrodialysis. Desalination 2006, 198, 74–83. [Google Scholar] [CrossRef]
- Roghmans, F.; Evdochenko, E.; Martí-Calatayud, M.C.; Garthe, M.; Tiwari, R.; Walther, A.; Wessling, M. On the Permselectivity of Cation-Exchange Membranes Bearing an Ion Selective Coating. J. Memb. Sci. 2020, 600, 117854. [Google Scholar] [CrossRef]
- Ozkul, S.; van Daal, J.J.; Kuipers, N.J.M.; Bisselink, R.J.M.; Bruning, H.; Dykstra, J.E.; Rijnaarts, H.H.M. Transport Mechanisms in Electrodialysis: The Effect on Selective Ion Transport in Multi-Ionic Solutions. J. Memb. Sci. 2023, 665, 121114. [Google Scholar] [CrossRef]
- Li, F.; Meindersma, W.; De Haan, A.B.; Reith, T. Optimization of Commercial Net Spacers in Spiral Wound Membrane Modules. J. Memb. Sci. 2002, 208, 289–302. [Google Scholar] [CrossRef]
- Sano, Y.; Bai, X.; Amagai, S.; Nakayama, A. Effect of a Porous Spacer on the Limiting Current Density in an Electro-Dialysis Desalination. Desalination 2018, 444, 151–161. [Google Scholar] [CrossRef]
- Abu-Rjal, R.; Chinaryan, V.; Bazant, M.Z.; Rubinstein, I.; Zaltzman, B. Effect of Concentration Polarization on Permselectivity. Phys. Rev. E—Stat. Nonlinear Soft Matter Phys. 2014, 89, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Zabolotsky, V.I.; Manzanares, J.A.; Nikonenko, V.V.; Lebedev, K.A.; Lovtsov, E.G. Space Charge Effect on Competitive Ion Transport through Ion-Exchange Membranes. Desalination 2002, 147, 387–392. [Google Scholar] [CrossRef]
- Oren, Y.; Litan, A. The State of the Solution-Membrane Interface during Ion Transport Across an Ion-Exchange Membrane. J. Phys. Chem. 1974, 78, 1805–1811. [Google Scholar] [CrossRef]
- Rubinstein, B.Y.I. Effect of Concentration Polarization upon the Valency-Induced Counterion Selectivity of Ion-Exchange Membranes. J. Chem. Soc. Faraday Trans. 2 1984, 80, 335–344. [Google Scholar] [CrossRef]
- Gorobchenko, A.; Mareev, S.; Nikonenko, V. Mathematical Modeling of Monovalent Permselectivity of a Bilayer Ion-Exchange Membrane as a Function of Current Density. Int. J. Mol. Sci. 2022, 23, 4711. [Google Scholar] [CrossRef]
- Golubenko, D.V.; Yaroslavtsev, A.B. Effect of Current Density, Concentration of Ternary Electrolyte and Type of Cations on the Monovalent Ion Selectivity of Surface-Sulfonated Graft Anion-Exchange Membranes: Modelling and Experiment. J. Memb. Sci. 2021, 635, 119466. [Google Scholar] [CrossRef]
- Noemie, L.; Mikhaylin, S.; Mareev, S.; Pismenskaya, N.; Nikonenko, V.; Bazinet, L. How Demineralization Duration by Electrodialysis under High Frequency Pulsed Electric Field Can Be the Same as in Continuous Current Condition and That for Better Performances ? J. Memb. Sci. 2020, 603, 7–9. [Google Scholar] [CrossRef]
- Fan, H.; Yip, N.Y. Elucidating Conductivity-Permselectivity Tradeoffs in Electrodialysis and Reverse Electrodialysis by Structure-Property Analysis of Ion-Exchange Membranes. J. Memb. Sci. 2019, 573, 668–681. [Google Scholar] [CrossRef]
- Tedesco, M.; Cipollina, A.; Tamburini, A.; Bogle, I.D.L.; Micale, G. A Simulation Tool for Analysis and Design of Reverse Electrodialysis Using Concentrated Brines. Chem. Eng. Res. Des. 2015, 93, 441–456. [Google Scholar] [CrossRef]
- Yip, N.Y.; Vermaas, D.A.; Nijmeijer, K.; Elimelech, M. Thermodynamic, Energy Efficiency, and Power Density Analysis of Reverse Electrodialysis Power Generation with Natural Salinity Gradients. Environ. Sci. Technol. 2014, 48, 4925–4936. [Google Scholar] [CrossRef] [PubMed]
- Daniilidis, A.; Vermaas, D.A.; Herber, R.; Nijmeijer, K. Experimentally Obtainable Energy from Mixing River Water, Seawater or Brines with Reverse Electrodialysis. Renew. Energy 2014, 64, 123–131. [Google Scholar] [CrossRef]
- Tedesco, M.; Brauns, E.; Cipollina, A.; Micale, G.; Modica, P.; Russo, G.; Helsen, J. Reverse Electrodialysis with Saline Waters and Concentrated Brines: A Laboratory Investigation towards Technology Scale-Up. J. Memb. Sci. 2015, 492, 9–20. [Google Scholar] [CrossRef]
- Tedesco, M.; Cipollina, A.; Tamburini, A.; Micale, G.; Helsen, J.; Papapetrou, M. REAPower: Use of Desalination Brine for Power Production through Reverse Electrodialysis. Desalin. Water Treat. 2015, 53, 3161–3169. [Google Scholar] [CrossRef]
- Zlotorowicz, A.; Strand, R.V.; Burheim, O.S.; Wilhelmsen; Kjelstrup, S. The Permselectivity and Water Transference Number of Ion Exchange Membranes in Reverse Electrodialysis. J. Memb. Sci. 2017, 523, 402–408. [Google Scholar] [CrossRef]
- Geise, G.M.; Paul, D.R.; Freeman, B.D. Progress in Polymer Science Fundamental Water and Salt Transport Properties of Polymeric Materials. Prog. Polym. Sci. 2014, 39, 1–42. [Google Scholar] [CrossRef]
- Cohen, B.; Lazarovitch, N.; Gilron, J. Upgrading Groundwater for Irrigation Using Monovalent Selective Electrodialysis. Desalination 2018, 431, 126–139. [Google Scholar] [CrossRef]
- Yan, H.; Wang, Y.; Wu, L.; Shehzad, M.A.; Jiang, C.; Fu, R.; Liu, Z.; Xu, T. Multistage-Batch Electrodialysis to Concentrate High-Salinity Solutions: Process Optimisation, Water Transport, and Energy Consumption. J. Memb. Sci. 2019, 570–571, 245–257. [Google Scholar] [CrossRef]
- Chehayeb, K.M.; Nayar, K.G.; Lienhard, J.H. On the Merits of Using Multi-Stage and Counterflow Electrodialysis for Reduced Energy Consumption. Desalination 2018, 439, 1–16. [Google Scholar] [CrossRef]
- Shah, S.R.; Walter, S.L.; Winter, A.G. Using Feed-Forward Voltage-Control to Increase the Ion Removal Rate during Batch Electrodialysis Desalination of Brackish Water. Desalination 2019, 457, 62–74. [Google Scholar] [CrossRef]
- van Linden, N.; Spanjers, H.; van Lier, J.B. Application of Dynamic Current Density for Increased Concentration Factors and Reduced Energy Consumption for Concentrating Ammonium by Electrodialysis. Water Res. 2019, 163, 114856. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Paepen, S.; Pinoy, L.; Meesschaert, B.; Van Der Bruggen, B. Selectrodialysis: Fractionation of Divalent Ions from Monovalent Ions in a Novel Electrodialysis Stack. Sep. Purif. Technol. 2012, 88, 191–201. [Google Scholar] [CrossRef]
- Ghyselbrecht, K.; Sansen, B.; Monballiu, A.; Ye, Z.; Pinoy, L.; Meesschaert, B. Cationic Selectrodialysis for Magnesium Recovery from Seawater on Lab and Pilot Scale. Sep. Purif. Technol. 2019, 221, 12–22. [Google Scholar] [CrossRef]
- Reig, M.; Vecino, X.; Valderrama, C.; Gibert, O.; Cortina, J.L. Application of Selectrodialysis for the Removal of As from Metallurgical Process Waters: Recovery of Cu and Zn. Sep. Purif. Technol. 2018, 195, 404–412. [Google Scholar] [CrossRef]
- Cifuentes, L.; García, I.; Arriagada, P.; Casas, J.M. The Use of Electrodialysis for Metal Separation and Water Recovery from CuSO4-H2SO4-Fe Solutions. Sep. Purif. Technol. 2009, 68, 105–108. [Google Scholar] [CrossRef]
- Lopez, M.; Kipling, B.; Yeager, H.L. Ionic Diffusion and Selectivity of a Cation Exchange Membrane in Nonaqueous Solvents. Anal. Chem. 1977, 49, 629–632. [Google Scholar] [CrossRef]
- Sata, T.; Mine, K.; Matsusaki, K. Change in Transport Properties of Anion-Exchange Membranes in the Presence of Ethylene Glycols in Electrodialysis. J. Colloid Interface Sci. 1998, 358, 348–358. [Google Scholar] [CrossRef]
- Kameche, M.; Innocent, C.; Xu, F.; Pourcelly, G.; Derriche, Z. Electro-Transport of Protons, Alkali Metal Cations and Solvent Molecules through a Commercial Cation-Exchange Membrane Conditioned with Aqueous and Organic Solutions. Desalination 2004, 168, 319–327. [Google Scholar] [CrossRef]
Cation | Ionic Radius (pm) [36] | Hydrated Radius (pm) [36] | Hydration Free Energy (kJ⋅mol−1) [38] | Charge Density (C⋅mm−3) [27] |
---|---|---|---|---|
60 | 382 | −475 | 98 | |
95 | 358 | −365 | 24 | |
133 | 331 | −295 | 11 | |
181 | 329 | −250 | 6 | |
65 | 428 | −1830 | 120 | |
99 | 412 | −1505 | 52 | |
72 | 419 | −2010 | 116 | |
70 | 404 | −1980 | 134 | |
72 | 423 | −1915 | 108 | |
92 | 428 | −1840 | 98 | |
60 | 457 | −4265 | 232 | |
64 | 461 | −4010 | 261 | |
74 | 430 | −1955 | 112 | |
50 | 475 | −4525 | 364 |
Commercial Membrane | (Polyelectrolyte Pair)n | Feeding Solution (Diluted Cell) | Current Density (mA⋅cm−2) | Ion Selectivity | Ref. | ||
---|---|---|---|---|---|---|---|
Ion Pair | Value | Time | |||||
Fujifilm CEM | (PAH/PSS)6PAH | 0.025 M NaCl 0.01 M MgCl2 | - | 7.8 | - | [87] | |
CMX CEM | (PEI/PSS)5PEI | 0.05 M NaCl 0.05 M CaCl2 | 15 | 1.35 | 6 h | [89] | |
Nafion 115 CEM | (PAH/PSS)5PAH | 0.01 M LiNO3 | 0.63 | >1000 | 90 min | [90] | |
0.01 M Co(NO3)2 | |||||||
0.01 M K(OAc) | >93 | ||||||
0.01 M La(OAc)3 | |||||||
Whatman Alumina membrane | (PSS/PAH)5 | 0.01 M KCl | 7.7 | >390 | 20 min | [91] | |
0.01 M MgCl2 | 4.3 | 1.5 h | |||||
0.01 M KNO3 | |||||||
0.01 M Mg(NO3)2 | >340 | - | |||||
Nafion 115 CEM | (PAH/PSS)5PAH | 0.01 M KNO3 0.01 M Mg(NO3)2 | 1.27 | >1000 | 30 min | [92] | |
Fujifilm CEM | (PDADMAC/PSS)5 PDADMAC | 0.01 M KNO3 | 6.3 | >1000 | 2 h | [93] | |
0.01 M Mg(NO3)2 | |||||||
0.01 M LiNO3 | >1000 | ||||||
0.01 M Co(NO3)2 | |||||||
Nafion 115 | (PAH/PSS)5PAH | 0.01 M KCl 0.01 M MgCl2 | 3.42 | 32 | 2 h | [94] | |
Nafion 115 CEM | (PAH/PSS)5PAH | 0.01 M KNO3 0.01 M Mg(NO3)2 0.01 M LiNO3 | 0.8 | >100 | 6 h | [95] | |
Nafion 115 | (PAH/PSS)5PAH | 0.01 M KNO3 0.01 M LiNO3 | 0.64 | 7 | - | [96] |
Commercial Membrane | U (V) | Current Density (A⋅m−2) | Stack Size | A (m2) | vc | vd | vr | ds | Rinse Solution | S (t) (%) | Ion Selectivity | Ref | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(L⋅m−1) | (L⋅m−1) | (L⋅m−1) | (mm) | Ion Pair | Value | ||||||||
Neosepta | - | div. | 10 | 0.43 | 95 | 95 | 95 | 0.5 | 0.2 M Na2SO4 | - | 3.6–4.6 5.7–8.7 | [171] | |
Selemion CSO/ASV | - | 40 and 100 | 5 | 0.0945 | 40 | 40 | 40 | - | Na2SO4 | 27 and 25 56 and 54 | - | [172] | |
Neosepta CIMS/ACS | - | 40 and 100 | 5 | 0.0945 | 40 | 40 | 40 | - | Na2SO4 | 40 and 35 66 and 63 | - | [172] | |
Neosepta CMS | - | 150–500 | 2 | - | - | - | - | - | 0.5 M H2KNO3S | - | 1–8 | [173] | |
Selemion CSO/ASA | - | 5.9–13.8 | 20 | 0.0507 | - | 6000–12,000 | - | 0.75 | NaCl (cat.) Na2SO4 (an.) | 20.2–0.33 | - | [174] | |
Neosepta ACS/CMX-S | - | 55–323 | 16 | 0.01 | 57.6 | 57.6 | 120 | - | 0.1 M Na2SO4 | - | various | - | [63] |
Neosepta ACS/CMX-S | 30 | - | 20 | 0.138 | 200 | 200 | 200 | - | 0.17 M NaCl | - | - | [175] | |
Modified Nafion 324 | - | 150 | 10 | 0.02 | 20 | 20 | 20 | - | 0.25 M Na2SO4 | 0.02–0.84 0.33–0.89 | - | [105] | |
Neosepta CMX/AMX CMS/ACS | - | 20–200 | 14 | 0.1456 | 0.9 | 0.9 | 7.2 | - | 0.5 M NaCl | 0.21–0.75 | - | [176] | |
PC-SA/SK PC-MVA/SK | - | 3.125–15.625 | 5 | 0.032 | 30 | 30 | 150 | 0.5 | 0.1 M H2SO4 | −0.04–0.20 0.01–0.07 | - | [177] | |
PC-SA/SK PC-MVA/SK | - | 3.125–15.625 | 5 | 0.032 | 30 | 30 | 150 | 0.5 | 0.1 M H2SO4 | −0.23–0.28 −0.04–0.08 | - | [177] | |
PC-SA/SK PC-MVA/SK | - | 3.125–15.625 | 5 | 0.032 | 30 | 30 | 150 | 0.5 | 0.1 M H2SO4 | - | - | [177] | |
PC-SA/SK PC-MVA/SK | - | 3.125–15.625 | 5 | 0.032 | 30 | 30 | 150 | 0.5 | 0.1 M H2SO4 | - | - | ||
CIMS TWDDC1 TFC-CIMS | - | 50–500 | 1 | 0.002 | 20 | 40 | 10 | 20 | 0.255 M Na2SO4 | - | 50–100 | [178] | |
Selemion CMV/AMV | - | - | 10 | 0.0563 | 12, 24, 26, 48 | 12, 24, 26, 48 | 78 | 0.408 | each 10 mM KNO3 and Ca(CH3COO)2 | - | - | [22] | |
Neosepta CMX/AMX | - | 10–300 | 9 | 0.1872 | 0.9 | 0.9 | 6 | 0.5 | 0.5 M NaCl | - | 10–300 | [179] | |
Neosepta CMX/AMX | 7.26 | - | 10 | 0.1 | 96 | 96 | - | - | - | - | - | [180] | |
Neosepta CMX/AMX | - | 37.5–275 | 10 | 0.08 | 80 | 80 | 180 | - | 0.3 M Na2SO4 | - | 37.5–275 | [181] | |
Neosepta CMX/AMX | 5, 10 | - | 10 | 0.1 | 30, 96 | 30, 96 | 30, 96 | - | - | - | - | [182] | |
Neosepta CMX/CMS/AMX | - | 62–143 | 1 | 0.0011 | 60 | 60 | 60 | - | 0.5 M Na2SO4 | - | 0.46–2.68 | [183] | |
Neosepta CMX-fg/AMX-fg | 10, 15 | - | 10 | 0.0064 | 0.5 | 0.5 | - | - | - | - | - | [184] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tekinalp, Ö.; Zimmermann, P.; Holdcroft, S.; Burheim, O.S.; Deng, L. Cation Exchange Membranes and Process Optimizations in Electrodialysis for Selective Metal Separation: A Review. Membranes 2023, 13, 566. https://doi.org/10.3390/membranes13060566
Tekinalp Ö, Zimmermann P, Holdcroft S, Burheim OS, Deng L. Cation Exchange Membranes and Process Optimizations in Electrodialysis for Selective Metal Separation: A Review. Membranes. 2023; 13(6):566. https://doi.org/10.3390/membranes13060566
Chicago/Turabian StyleTekinalp, Önder, Pauline Zimmermann, Steven Holdcroft, Odne Stokke Burheim, and Liyuan Deng. 2023. "Cation Exchange Membranes and Process Optimizations in Electrodialysis for Selective Metal Separation: A Review" Membranes 13, no. 6: 566. https://doi.org/10.3390/membranes13060566
APA StyleTekinalp, Ö., Zimmermann, P., Holdcroft, S., Burheim, O. S., & Deng, L. (2023). Cation Exchange Membranes and Process Optimizations in Electrodialysis for Selective Metal Separation: A Review. Membranes, 13(6), 566. https://doi.org/10.3390/membranes13060566