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Abstract: The nanofiltration performance of three commercial membranes was analyzed by the
Steric Pore Model (SPM) and the extended Nernst–Planck diffusion equation inside membrane
pores. The model was completed with the equation to predict the concentration polarization, and
the mass transfer coefficient was determined by considering the presence of a feed spacer. The
model parameters that characterized the performance of the membrane were the hydrodynamic
coefficient, which accounts for the possible variations in solute size and membrane pore radius,
the effective membrane thickness, and the water permeability coefficient. All experiments were
conducted at fixed feed pH of 6. The rejections of uncharged solutes (glucose for membranes with
a high molecular weight cut-off (MWCO) and glycerol and ethylene glycol for membranes with a
low MWCO) allowed the model parameters to be determined. We found that glycerol and ethylene
glycol overestimate the membrane pore radius due to their ability to interact with the membrane
matrix. Therefore, the rejection of glycine as a small amino acid was explored to characterize the
membranes with low MWCO since these molecules do not interact with the membrane matrix and
have an almost zero charge at pH values between 4.5 and 6.5. Based on the experimental rejections, it
was stated that glucose and glycine could be separated by these membranes operating in continuous
diafiltration mode.

Keywords: nanofiltration membranes; transport model; membrane pore radius; concentration
polarization; amino acid rejection

1. Introduction

Initially, nanofiltration (NF) membranes were intensively used to retain monovalent
and multivalent inorganic salts, being applied in the water softening of wastewater and
even seawater [1]. Since then, their applications have been extended to the rejection of
organic solutes in industrial and municipal waters [2,3]. One promising application of
membranes is in food processing [4], for example, in the sugar industries [5].

NF membranes contain three porous stacked layers of different polymers. The top
layer (also called the active layer) is composed of an imperfect crosslinking polymer
containing ionizable groups, which confer a specific charge to the membrane depending
on the characteristics of the feed solutions [6]. In general, NF membranes are amphoteric,
positively charged, negatively charged, or have zero net charge, depending on the pH of
the feed solution [7,8]. Because of this variation, each membrane exhibits a characteristic
isoelectric point (IEP) [8]. In addition, the effective charge density of the membrane depends
on the composition of the feed solution due to the adsorption of cations and counterions
onto the membrane surface [9,10].

Nanofiltration performance can be described by the Spiegler–Kedem Model, which is
based on irreversible thermodynamics [11] and determines the solvent and solute fluxes
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directly from the difference in the chemical potential between the two sides of the mem-
brane. It does not include, in a direct form, either the interaction between the solvent
and the membrane or the process of diffusion within the membrane. Nanofiltration can
also be described by mechanistic models [12], based on the partitioning equilibrium at the
solution–membrane interface and on the solute transport through the membrane pores,
which is generally described by the extended Nernst–Planck equation [12]. The ion flux
through the membrane depends on the convention flux, ion diffusivity, and the potential
gradient inside the pores [13].

The basic Steric Pore Model (SPM) considered only steric hindrance in the partitioning
at the solution–membrane interface, which is the overall mechanism for the membrane
process where the applied pressure is the driving force [13]. Solutes with a molecular size
larger than the membrane pore radius cannot permeate the membrane. Hence, the steric
exclusion depends on the ratio of the solute to the pore radius, which becomes relevant
as the solute radius approaches the pore radius [14]. The Donnan effect describes the
electrostatic interactions between charged solutes and the superficial membrane, which
generates a membrane potential that can hinder the solutes [15]. This model is called the
Donnan–Steric Pore Model (DSPM). To solve the DSPM, a constant Donnan potential across
the membrane is assumed and the effective membrane charge density can be calculated
by fitting the experimental rejections [12]. Some studies have proposed the estimation of
membrane charge using adsorption isotherms to quantify the adsorption of ions onto a
membrane surface [16]. These approximations can help to understand the mechanism of
membrane charge formation in solutions with varying ion concentrations and pH [17,18].

The DSPM can be improved by considering dielectric exclusion, which can arise from
the difference in the dielectric constant of the bulk solution between the membrane matrix
and/or inside the pores [19]. Thus, two different mechanisms in dielectric exclusion can
be considered: image forces and ion solvation [20], also called the Born equation. In both
cases, the exclusion depends on the square of the ion charge. The image force interaction
is also affected by the Donnan potential. The fixed charges on the membrane surface
induce an interaction between the ions in the solution and the polarized charges (also called
image forces) at the solution–membrane interface [19,21]. Dielectric exclusion based on ion
solvation involves a reorientation of a single layer of water molecules within the pore walls,
which increases the solvation energy of the ions and reduces viscosity and the dielectric
constant inside the pores compared to that of the bulk solution [22,23].

The aim of the present study was to evaluate the performance of three commercial
nanofiltration membranes with different uncharged and zero-charged organic solutes using
the Spiegler–Kedem model in combination with film-theory quantifying the concentration
polarization, the SPM as partitioning equilibrium and the extended Nernst–Planck equation.
First, the nanofiltration of uncharged solutes (glucose, glycerol, and ethylene glycol) was
carried out to determine the effective membrane pore radius, which may depend on the
properties of the molecules since glycerol and ethylene glycol are organic solvents that
can modify the membrane matrix and lead to an overestimation of the membrane pore
radius. The estimated value was validated with zero-charged organic molecules, such as
amino acids, since their rejections are not affected by the electrostatic interactions with the
membrane surface at pH 6.

2. Theory

The permeate flux, Jv, is defined as the product of the water permeability coefficient,
Lp, and the driving force, which is calculated by the difference in effective transmembrane
pressure, ∆Pe.

Jv = Lp ∆Pe (1)

The most common expression is derived from the principle of irreversible thermo-
dynamics in reverse osmosis membranes with low solute rejections and, therefore, it is
assumed to be valid for NF membranes [11]. The same expression can be obtained by
alternative models, such as the well-known Hagen–Poiseville equation. In the presence of
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concentration polarization, the concentration on the feed/membrane surface is higher than
the feed bulk solution, and the general equation for the permeate flux for multicomponent
solutions is expressed as:

Jv = Lp·(∆P−∑n
s=1 σv,s ∆πw

s ) (2)

where ∆P is the applied transmembrane pressure, σv,s is the Staverman reflection coeffi-
cient of the solute s, ∆πw

s is the is the transmembrane osmotic pressure difference at the
feed/membrane interface for the solute s, and n is the number of solutes in the solution.
Staverman reflection coefficient can be calculated by considering the osmotic pressure
differences in the feed/membrane and membrane/permeate interfaces as [24]:

σv,s = 1− ∆πm
s

∆πw
s

(3)

where ∆πm
s is the is the transmembrane osmotic pressure difference in the feed/membrane

interface at the membrane side for the solute s, which is calculated by the difference
between the osmotic pressure inside the membrane at the feed face and at the permeate
face. These osmotic pressure differences can be calculated by the solute concentrations at
the feed/membrane interface from the solute concentration in the bulk solution.

According to the film theory model, the relationship between the feed bulk concentra-
tion and the concentration at the feed/membrane interface is given by the mass transfer
coefficient from the concentration polarization layer to the feed solution, ks. The permeate
flux is also calculated as follows:

Jv = ks ln
( cw

1,s − cp,s

c1,s − cp,s

)
(4)

where cw
1,s is the solute concentration at the feed/membrane interface, c1,s is the solute concen-

tration in the bulk solution, and cp,s is the solute concentration at the membrane/permeate
interface, which is considered to be equal to solute permeate concentration.

Mass transfer coefficients may be determined using the Sherwood relationship, which
depends on the Reynold, Re, and Schmidt, Sc, numbers:

Sh =
ks dh
Ds

= a Reb Scc (5)

where dh is the hydraulic diameter of the feed chamber, Ds is the solute diffusion coefficient,
and a, b, and c are empirical coefficients that depend on hydrodynamic conditions and NF
cell geometry. The Reynolds number is calculated as Re = u dh/ν and the Schmidt number
as Sc = υ/Ds, where u is the main crossflow velocity, and ν is the kinematic viscosity.

On the other hand, the solute concentration in the feed/membrane interface at the
membrane side may be estimated by the membrane equilibrium partitioning expression.
Based on the SPM, the general equation of the equilibrium partitioning for uncharged
solutes is defined only by the steric exclusion mechanism as:

γm
1,s cm

1,s

γw
1,s cw

1,s
= ∅s = (1− λs)

2 (6)

where cm
1,s is the solute concentration at the feed/membrane interface on the membrane side,

γw
1,s and γm

1,s are the activity coefficients at the feed/membrane interface on the solution
side and on the membrane side, respectively, ∅s is the steric partitioning coefficient of
the solute s, which may be calculated considering cylindrical pore geometry, and λs is the
hydrodynamic coefficient of the solute s that is defined as the ratio between the solute
radius and mean membrane pore radius (λs = rs/rp). For solutes with similar size of
membrane pore radius, the hydrodynamic coefficient tends to unity, the steric partitioning
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coefficient tends to zero, and the solute concentration on the membrane side tends to zero,
and the solute is totally rejected. A similar partitioning equation can be written for the
membrane/permeate interface to calculate the solute concentration in the permeate stream
from the concentration on the membrane side, cm

2,s:

γm
2,s cm

2,s

γp,s cp,s
= ∅s = (1− λs)

2 (7)

The equilibrium partitioning equations allow calculation of the Staverman reflection
coefficient with a very simple equation that depends only on the hydrodynamic coefficient
if the Van’t Hoff equation for the estimation of osmotic pressure is assumed:

σv,s = 1− ∅s ∆πw
s

∆πw
s

= 1−∅s (8)

Membrane effectiveness in the separation of components is usually estimated by the
calculation of the observed and intrinsic solute rejections:

Robs,s = 1−
cp,s

c1,s
(9)

Rint,s = 1−
cp,s

cw
1,s

(10)

The observed rejection is easily calculated from the experimental data, with c1,s being
as the feed solute concentration. Nevertheless, the intrinsic rejection must be calculated
with equations, since cw

1,s cannot be measured experimentally. An expression for intrinsic
rejection may be obtained by combining the solute flux across the membrane, Js, and the
partitioning equilibrium. The solute transport across the NF membranes is described by
the extended Nernst–Planck equation, which considers the solute diffusion, due to the
concentration gradient, and the solute convention inside the membrane pores [25]. This
equation assumes no interaction between solute fluxes and can be written for uncharged
solutes by considering an ideal solution that is independent of the pressure gradient,
as follows:

Js = Cp,s Jv = −Ds,p

( ε

τ

) dCm,s

dx
+ Kc,s Cm,s Jv (11)

where Cm,s is the solute concentration across the membrane pores, ε/τ is the porosity–
tortuosity ratio, Ds,p is the solute diffusion coefficient inside the membrane pores, and
Kc,s is the convective hindrance factor, which represents the effects of the pore walls on
the convection movement. Ds,p is calculated from the solute diffusion coefficient in bulk
solution, Ds, by the diffusive hindrance factor (Ds,p = Kd,s Ds). The two hindrance factors
depend on the hydrodynamic coefficient and can be calculated following the cylindrical
pore geometry [26]:

Kc,s =
1 + 3.867 λs − 1.907 λ2

s − 0.834 λ3
s

1 + 1.867 λs − 0.741 λ2
s

(12)

Kd,s =
1
∅s

(
1 +

9
8

λs ln(λs)− 1.56034 λs + 0.528155 λ2
s + 1.91521 λ3

s − 2.81903 λ4
s + 0.270788 λ5

s + 1.10115 λ6
s − 0.435933 λ7

s

)
(13)

The integration of Equation (11), using the initial condition (Cm,s = ∅s cw
1,s at x = 0)

and the boundary condition (Cm,s = ∅s cp,s at x = δ) and assuming that the activity
coefficients are very close to unity, leads to a simple relationship for the uncharged solute
intrinsic rejection:

Rint,s = 1− Kc,s ∅s

1− (1− Kc,s ∅s) exp
(
−Kc,s δ

Ds,p
Jv

) (14)
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where δ is the effective membrane thickness that takes into account the porosity–tortuosity
ratio; therefore, the solute intrinsic rejection depends on the membrane pore radius, effective
membrane thickness, and volumetric permeate flux. For a given solute and membrane,
the solute intrinsic rejection increases with the permeate flux reaching an asymptotic
value (maximum and constant value) at very high permeate fluxes (Rint,s = 1− Kc,s ∅s at
Jv → ∞ ).

3. Materials and Methods
3.1. Experimental Equipment

The experimental device consisted of a reservoir tank, a pump, a closed-pipe pressure
dampener to prevent pressure oscillations, pressure gauges, a filtration cell, and flow
meters for the retentate and permeate. The three membranes used in this study were
organic thin-film composite membranes: SelRO® MPF-36 (Koch, Wilmington, MA, USA),
SelRO® MPF-34 (Koch, Wilmington, MA, USA), and Desal-5-DK (GEOsmonics, Le Mee
sur Seine, France). According to the manufacturers, the MPF-36 membrane has a nominal
MWCO of 1000 g mol−1, while both the MPF-34 and DK membranes have an MWCO of
approximately 200 g mol−1. The MPF-36 and MPF-34 membranes are proprietary thin-film
composite membranes, with a maximum operating temperature of 70 ◦C and a functional
pH range of 1–13. While the Desal 5DK membrane is a thin-film composite membrane with
a polyamide top layer, and it can operate up to 90 ◦C, but the optimal pH range is 2–11.

The membranes were placed in a laboratory-scale SEPA CF II membrane element
cell (Osmonics, Minnetonka, MN, USA). The feed chamber contained a feed spacer and
stainless-steel shims that allowed the reduction of the depth of the chamber—increasing
the crossflow velocity. The spacer consists of woven cylindrical filaments in a diamond
configuration with an angle between the crossing filaments of 90◦. Thus, the feed channel
has a hydraulic diameter of 0.50 mm and a porosity of 0.92 [27]. The effective membrane
filtration area was 140 cm2. The feed flow was introduced into the membrane cell by
means of a positive displacement pump equipped with a closed-pipe pressure dampener
to prevent pressure oscillations, supplied by CAT-PUMPS (Kontich, Belgium), and the flow
circulated tangentially to the membrane and guaranteed a crossflow velocity of 1.5 m s−1.

First, the membranes were conditioned with demineralized water at room temperature
for 24 h. Then, they were placed in the cell and pressurized with pure water at a constant
temperature for 2 h. All experiments were conducted in the steady-state mode, in which
both the concentrate and permeate streams were recycled to the feed vessel at a fixed
temperature of 20 ± 0.5 ◦C, with the feed tank immersed in a thermostatic bath. It was
previously confirmed that the steady state is reached after 1 h of nanofiltration at a constant
pressure. At this point, the permeate flow was measured, and samples of the concentrate
and permeate streams were taken to determine the solute concentrations and calculate
the observed rejection. Several pieces of the three membranes were used to conduct the
experiments, and the observed rejections are the mean value of at least three measurements.
The results proved to be highly reproducible, with the standard deviations being lower
than 10% of the average rejections.

3.2. Feed Solutions and Analytical Techniques

All the chemicals used (glucose, glycerol, ethylene glycol, triglycine, glycine, and
sodium chloride) were supplied by Sigma-Aldrich (Madrid, Spain) and were obtained
in a pure grade. The properties are shown in Table 1. The pure water used in this study
was prepared using a Milli-Q water purification system and filtered through a membrane
with a pore diameter of 45 µm. Solute concentrations of alcohol-based molecules were 3.5
and 5 g L−1 and amino acid solutions were 1.5 g L−1. All solutions were prepared and
analyzed at a constant pH of 6, which was adjusted by adding small amounts of HCl or
NaOH as needed.
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Table 1. Physical properties of the solutes used in this study.

Species MW
(g mol−1) pka1 pka2

rs
b

(nm)
Ds
(109 m2 s−1)

Glucose 180.2 - - 0.365 0.586
Glycerol 92.1 - - 0.260 0.950
Ethylene glycol 62.07 - - 0.211 1.014
Triglycine 189.2 3.23 8.09 0.375 a 0.571
Glycine 75.0 2.37 9.60 0.245 0.873

a rs calculated using the chemistry software ChemSketch, Version 11 (ACD/Labs, Inc., Toronto, ON, Canada) by
means of atomic additive increments. b rs corresponding to the Stoke’s radius.

The nanofiltration performance was determined by measuring the solute concen-
tration, conductivity, and pH of the concentrate and permeate streams, as well as the
transmembrane pressure and the permeate flow rate. The organic solute concentration was
determined as the total organic carbon (TOC) amount using a Shimadzu ASI-V analyzer,
while the NaCl concentration and the pH of the solutions were determined from conductiv-
ity measurements using the IntelliCAL™ CDC and PHC probes connected to an HQ40d
multimeter (Hach, Loveland, CO, USA), respectively.

3.3. Modeling Procedure

Membrane performance for the solutions was evaluated by determining the exper-
imental permeate flux, Jexp

v , as the ratio of volumetric permeate flow to membrane area,
and the experimental observed solute rejection, Rexp

obs,s, based on the solute concentration
measurements in the feed and permeate streams. Nevertheless, the first step to fit the
experimental data was to estimate the pure water permeability coefficient, Lpw, by the
measured pure water flux at different transmembrane pressures.

The modeling procedure is based on fitting the experimental data, consisting of the
observed rejections as a function of the permeate flux and the permeate flux as a function
of transmembrane pressure, in order to obtain the model parameters: hydrodynamic
coefficient and the effective membrane thickness. The mass transfer coefficient, which
quantifies the concentration polarization, can be calculated from the Sherwood relationship.
For a rectangular feed chamber with a commercially available spacer, the mass transfer
coefficient can be calculated according to Equation (5) as [28]:

ks = 0.2 Re0.57 Sc0.40 Ds

dh
(15)

The calculated mass transfer coefficients for the solutes showed relatively high values,
ranging from 2.15 × 10−4 to 3.05 × 10−4 m/s, evidencing a small concentration polariza-
tion phenomenon. When the permeate flux is very high (>10 µm·s−1), the mass transfer
coefficient is corrected with the following correlation [29]:

ks,hp =

[
F +

(
1 + 0.26 F1.4

)−1.7
]

ks (16)

where ks,hp is the mass transfer coefficient at high permeate flux and F is defined as
F = Jv/ks.

The detailed modeling procedure involves the following steps:

1. Guess the initial values of λs and δ, and calculate the hindrance coefficients according
to Equations (12) and (13).

2. Calculate the solute intrinsic rejection as a function of experimental permeate flux
with Equation (14) and the observed rejection with the experimental permeate flux
and the mass transfer coefficient with the following expression:
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Robs,s =
Rint,s

Rint,s + (1− Rint,s) exp
(

Jv
ks,hp

) (17)

3. Determine the values of ls and d that provided the optimal fit for the experimental
solute rejections by minimizing the least-squares objective function, LSR,s:

LSR,s =
1√

m− 1

√
∑m

k=1

(
Rcalc

obs,s,k − Rexp
obs,s,k

)2
(18)

where m is the number of transmembrane pressures tested for any of the feed solutions.
4. Guess the solution permeability coefficient value Lp to calculate the permeate flux.

By combining Equations (2) and (4), the permeate flux can be estimated from the
calculated observed solute rejection and applied transmembrane pressure with the
following expressions:

Zv exp(Zv) =
∑n

s=1 σv,s ∆πs exp
(

Lp ∆P
ks,hp

)
kshp

(19)

Jcalc
v = Lp ∆P− kshp Zv (20)

Equation (19) is a Lambert function and can be solved iteratively to find Zv.

5. Determine the value of Lp that provided the optimal fit for the experimental permeate
flux by minimizing the least-squares objective function LSJv,s, between experimental
and calculated permeate fluxes at each transmembrane pressure:

LSJv,s =
1√

m− 1

√
∑m

k=1

(
Jcalc
v,k − Jexp

v,k

)2
(21)

4. Results and Discussion
4.1. Pure Water Permeate Flux

First, the pure water permeability coefficient of the three membranes was determined
from the slope of the linear relationship between the measured water flux and the transmem-
brane pressure (Figure 1). A strong linear correlation was observed for the three membranes,
with a correlation coefficient (R2) greater than 0.995. The MPF-36 membrane showed the high-
est permeability coefficient (9.94 L m−2 hr−1 bar−1), corresponding to the membrane with the
highest MWCO. The other two membranes showed a similar pure water permeability coeffi-
cient, which was 4.53 L m−2 hr−1 bar−1 for the MPF-34 membrane and 5.58 L m−2 hr−1 bar−1

for the DK membrane. This suggests that the MPF-34 membrane exhibited the greatest
resistance to water permeation, possibly due to the smaller pore radius.
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4.2. Nanofiltration of Alcohol-Based Molecules

The NF membrane performance was characterized by the rejection of alcohol-based
molecules and the water permeability coefficient. Figure 2 shows the observed rejections
of glucose, glycerol, and ethylene glycol as a function of permeate flux for the three NF
membranes at two feed solute concentrations. The membrane with the highest MWCO
showed the lowest rejection values for the three solutes. The glucose molecule, which
had the highest Stokes radius among the three solutes, showed the highest rejection for
the three membranes, especially the MPF-34 and DK membranes, where the rejection
was close to unity. Moreover, the MPF-34 membrane showed the highest rejection val-
ues, as expected from the water permeability coefficients. The lowest rejections values
corresponded to ethylene glycol, which has the lowest molecular weight. Regarding the
feed solute concentration effect, the observed glucose and glycerol rejections are almost
independent of the solute concentration, and conversely, the observed ethylene glycol
rejection decreases slightly with the solute concentration, especially for the MPF-34 and
Desal 5DK membranes.
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represent the feed concentration of 3.5 g L−1 and triangles 5 g L−1.

The experimentally observed rejections were fitted following the modeling procedure
described in the Modeling subsection. Then, the hydrodynamic coefficient and the effective
membrane thickness were estimated to match the experimental and calculated observed
rejection with Equation (17) and using the corresponding mass transfer coefficient with
the permeation correlation. Figure 2 also shows the theoretical curves that best fit the
experimental data with the lower least-squares objective function LSR,s. In general, there is
a good agreement between the calculated and experimental rejections.

For the MPF-36 membrane, the experimentally observed rejections of the three solutes
were fitted by one hydrodynamic coefficient for the two solute concentrations. Nevertheless,
it is important to note that the glycerol and ethylene glycol rejections, which are below 20%,
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could be represented by different hydrodynamic coefficients with good correlation. This
fact means that very low rejections lead to inconsistent model parameters, and it is desirable
to use solutes with high maximum observed rejection, for example, between 50% and 90%,
as shown in Figure 2. The estimated values found in the predictions are shown in Table 2.
The hydrodynamic coefficient decreased with the solute molecular weight, and the effective
membrane thickness has almost the same value for glucose and glycerol, and it increased
slightly for ethylene glycol. By considering the solute Stokes radii, the mean membrane
pore radius may be calculated from the hydrodynamic coefficient (rp = rs/λs) and its value
is different for the three solutes. This discrepancy could be due to the lower precision in
the fitting procedure for low rejection values. Therefore, the mean membrane pore radius
and effective membrane thickness for the MPF-36 membrane are 0.855 nm and 3.92 µm,
respectively, with regard to glucose and glycerol rejections. These characteristic parameters
have not been widely documented. Sabaté et al. [30] found a membrane pore radius of
0.86 nm and an effective membrane thickness of 6.51 µm. Such a high value may result from
using another equation (Hagen–Poiseuille equation) to evaluate the effective membrane
thickness, which was calculated directly from the pure water permeability coefficient,
and the concentration polarization phenomenon was not considered. Furthermore, the
experimental work was performed at a temperature of 25 ◦C, which is higher than the
temperature used in our work.

Table 2. Model parameters obtained by fitting the experimental data.

MPF-36 Membrane

Solute λ (-) δ (µm) rp b (nm) LSR,s Lp (L m−2 hr−1 bar−1) LSJv,s

Glucose 0.430 3.96 0.848 0.696 9.97 0.162
Glycerol 0.302 3.88 0.961 0.256 10.1 0.233
Ethylene glycol 0.237 4.68 0.890 0.520 10.4 0.364
Glycine 0.285 3.86 0.859 0.932 10.1 0.321
Triglycine 0.451 4.12 0.832 0.311 10.0 0.248

MPF-34 membrane

λ (-) δ (µm) rp b (nm) LSR,s Lp (L m−2 hr−1 bar−1) LSJv,s

Glucose 0.892 2.01 0.409 0.135 4.57 0.138
Glycerol 0.636 1.88 0.409 0.206 4.61 0.214
Ethylene glycol a 0.512–0.501 1.49–1.48 0.412–0.421 0.366–0.308 4.43–4.25 0.219–0.283
Glycine 0.634 2.09 0.386 0.211 4.61 0.206
Triglycine 0.938 1.92 0.399 0.0891 4.58 0.200

Desal 5DK membrane

λ (-) δ (µm) rp b (nm) LSR,s Lp (L m−2 hr−1 bar−1) LSJv,s

Glucose 0.807 2.14 0.452 0.250 5.69 0.215
Glycerol 0.573 2.43 0.453 0.570 5.47 0.261
Ethylene glycol a 0.455–0.449 1.97–1.91 0.463–0.470 0.393–0.489 5.22–5.08 0.108–0.153
Glycine 0.580 2.20 0.422 0.705 5.62 0.120
Triglycine 0.904 2.12 0.415 0.0435 5.47 0.128

a The first value corresponds to 3.5 g/L and the second to 5 g/L ethylene glycol solutions. b The membrane pore
radius (rp) was calculated from the solute Stoke radius.

The rejection tendency shown for the MPF-34 and Desal 5DK membranes is very
similar, and slightly higher rejection values are observed for the MPF-34 membrane, which
is also mentioned in the literature [31]. Very high experimental values of glucose rejection
led to inconsistent simulations, and different values of model parameters can simulate
experimental data with good agreement. For instance, glucose rejection can be fitted with a
hydrodynamic coefficient between 0.875 and 0.915 for the MPF-34 membrane and between
0.795 and 0.825 for the Desal 5DK membrane. Therefore, for a more accurate determination
of the model parameters, the hydrodynamic coefficient and effective membrane thickness
are usually calculated as the average of the estimated values from the experimental rejec-
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tions of various uncharged solutes, such as glycerol, ethylene glycol, or ethanol [32,33]. In
this context, glycerol rejection was almost independent of the feed concentration, and was
60 and 70% at 144 L m−2 hr−1 for MPF-34 and Desal 5DK membranes. Glycerol rejection
was fitted using the same values of model parameters for the two feed concentrations
and the least-squares objective function was lower than 0.6. To validate the fitted model
parameters, a slight change was made in the hydrodynamic coefficient and the least-squares
objective function increased to values above 10%, thus obtaining a worse correlation be-
tween the calculated and experimental rejection. By considering the solute Stokes radius
for glucose and glycerol molecules, the mean membrane pore radius is 0.408 and 0.453 nm,
and the mean effective membrane thickness is 1.95 and 2.28 µm for the MPF-34 and Desal
5DK membranes, respectively. These calculated values are consistent with values reported
in the literature, although most of these were tested at 25 ◦C [30,32,34].

In contrast, the ethylene glycol rejections for the two low MWCO membranes showed
a weak dependence on the solute concentration, resulting in different values for the model
parameters. Subsequently, the solute rejection decreased as the solute concentration in-
creased, and the hydrodynamic coefficient also fell. The membrane pore radius calculated
with the Stokes radius changed from the values calculated with glucose and glycerol rejec-
tion and was 0.416 and 0.464 nm, respectively, for 3.5 g/L and for MPF-34 and Desal 5DK
membranes. In addition, an increase in the effective membrane thickness was observed.
These changes in the characteristic parameters of the model indicate a different membrane
performance with the ethylene glycol molecule. It is known that organic solvents, such as
low-molecular-weight alcohols, modify the permeation performance of NF membranes
via the differences between their physical characteristics and those of water [35]. The
presence of relatively low concentrations of alcohol molecules alters solution viscosity,
solvation of organic molecules, and swelling of the pore walls, affecting the pore radius
of the membrane [36]. Thus, the limiting rejection of alcohol molecules depends on their
concentration in the solution, with the estimated pore radius varying significantly due to
changes in the solvent–membrane interactions [37].

To assess membrane behavior in the presence of organic alcohol solutes, NaCl rejection
was measured at different concentrations of glucose and ethylene glycol in water solutions,
with a fixed NaCl feed concentration of 0.5 g L−1. Figure 3 shows the experimental data
measured at a constant permeate flux of 144 L m−2 hr−1 for the Desal 5DK membrane. It
should be noted that NaCl rejection was independent of the feed glucose concentration but
decreased with increasing in the feed concentration of ethylene glycol. Therefore, these
results showed that the alcohol-based molecules could alter the permeation process and
the nanofiltration performance, with the estimation of the pore radius depending on the
type and concentration of the alcohol solute.
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The change in membrane performance in the presence of ethylene glycol molecules
was also observed in the permeability coefficient. Figure 4 shows the permeate flux
measured as a function of the effective transmembrane pressure, which was calculated
considering the ideal solution using the Van’t Hoff equation and the corresponding solute
mass transfer coefficients for the three membranes. As observed by other researchers [37,38],
the permeability coefficient in the presence of alcohol-based molecules is lower than that
obtained with pure water. For instance, the water permeability coefficient was reduced by
10% for a 5 g/L solution of ethylene glycol for the Desal 5DK membrane. This reduction in
the permeability may be due to the different affinity between water and ethylene glycol
molecules for hydrophilic membranes, which may increase the resistance to the solvent
flux at the solution–membrane interface [37]. Nevertheless, changes in permeation features
were not observed with the MPF-36 membrane (Figure 4), which could be due to low
ethylene glycol rejection values.
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pure water flux and dashed lines correspond to the fitted data for ethylene glycol solutions. Circles
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4.3. Nanofiltration of Amino Acids

The rejections of triglycine, which is a small peptide composed of three glycine
molecules, and glycine, which is a relatively small amino acid, were analyzed at pH 6.
Based on the pKa values of the two molecules, the net charge of triglycine and glycine
is lower than 0.3% [39]. In the theoretical simulations, electrostatic charge effects, such
as the screening of the Donnan effect and dielectric exclusion, can be avoided, and the
main exclusion mechanism is the steric effect alone. In previous simulations, the calculated
triglycine and glycine rejections showed no significant differences with changes in the
effective membrane charge density and pore dielectric constant. The differences were
found to be less than 2%, supporting the hypothesis that triglycine and glycine behave as
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zero-charged molecules at the pH tested. Therefore, the experimental rejections were fitted
with the SPM described in the Theory section.

Figure 5 shows the experimental and calculated rejection values of triglycine and
glycine for the three membranes. The values of the model parameters are shown in Table 2.
The triglycine rejection in Figure 5 showed remarkably high values for the MPF-34 and
Desal 5DK membranes, invalidating the determination of the two model parameters. Thus,
the observed rejection value was greater than 99%, which means that the mean pore size
of both membranes is close to the triglycine radius. A similar effect has been observed for
the glucose molecule and other larger molecules [40]. However, the limiting rejection of
triglycine in the MPF-36 membrane was about 50%, and the best agreement between the
model data and the experimental data was obtained with a hydrodynamic coefficient of
0.451 and an effective membrane pore thickness of 4.12 µm. Based on the solute Stokes
radius, the estimated membrane pore radius for the MPF-36 membrane is 0.399 nm, which
is similar to the estimated radius for glucose and glycerol molecules. This similar behavior
of these three molecules is also observed in the solvent permeate flux versus effective
transmembrane pressure (Figure 4).
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The rejection of glycine is also shown in Figure 5. Its rejection values in the MPF-36
membrane were so low that the values of the model parameters could not be discriminated.
MPF-34 and Desal 5DK membranes showed limiting glycine rejection of 80% and 70%,
respectively, and the model parameters could be estimated accordingly [41]. First, the
curves were calculated using the mean hydrodynamic coefficient and the mean effective
membrane thickness, which were estimated from the uncharged solute rejections, but they
did not fit well with the experimental data and underestimated the rejection values, as
shown in Figure 5. Therefore, the best agreement between the calculated curves and the
experimental data, which was found by minimizing the least-squares function between



Membranes 2023, 13, 631 13 of 16

them, was achieved with the hydrodynamic coefficient of 0.634 and the effective membrane
thickness of 2.09 µm for the MPF-34 membrane and 0.580 and 2.20 µm for the Desal 5DK
membranes. These effective membrane thickness results are consistent with those of other
authors when the concentration polarization was included in the model [42–44]. The
membrane pore radius was estimated from the solute Stokes radius and was 0.386 nm
and 0.422 nm for MPF-34 and Desal 5DK membranes, respectively, values slightly lower
than those calculated with alcohol-based rejections. In the literature, there are different
values for the membrane pore radius for the Desal 5DK membrane, ranging between 0.433
and 0.45 nm [32,34,42,43]. The model that did not considers the concentration polarization
phenomenon estimated the membrane pore radius to be around 0.45 nm, while the models
with concentration polarization showed lower values, similar to our study. In this regard,
Bargeman et al. [43] determined the membrane pore radius and the effective membrane
thickness of 0.42 nm and 2.59 µm, considering the concentration polarization and the
Maxwell–Stefan equation for the solute transport inside the membrane. Consequently, it can
be concluded that the rejection of small amino acid molecules can predict the performance
of NF membranes with low MWCO at pH between 5 and 6, when a zero-charged molecule
can be considered.

Regarding the permeate flux (Figure 4), the solvent permeability coefficient calculated
for the triglycine and glycine solutions was very similar to the coefficients calculated for
the glucose solutions for the three membranes, meaning that amino acids and glucose
do not affect the membrane material and that the solvent permeation is similar to that of
pure water. This argument is strengthened by the evolution of NaCl rejection as a function
of glycine concentration (Figure 6), which remains nearly constant for both membranes.
Hence, the performance of the NF membranes of low MWCO can be assessed better by
nanofiltration of amino acid solutions than by a solution of alcohol-based molecules.
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Based on the results of the experiments presented in this work, it appears that the
Desal 5DK membrane may be able to partially separate glucose or triglycine and glycine
in binary solutions. Monosaccharides and tripeptides show rejection values close to unity,
and the amino acid rejection was less than 65% at permeate fluxes up to 144 L m−2 hr−1.
The separation process can be carried out in continuous diafiltration mode, which consists
of continuously adding water to maintain the feed volume constant [45]; this keeps the
concentration of the large solute constant in the feed tank and prevents fouling of the
membrane [46,47]. Therefore, future work will be based on experimental studies on the
separation of monosaccharides and amino acids in continuous diafiltration mode using
nanofiltration membranes.
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5. Conclusions

The rejection of organic solutes and salt solutions in three different nanofiltration
membranes was assessed with the SPM model at pH 6. A high level of concordance
between the calculations and the experimental data. The use of uncharged organic solutes
or zero net charge molecules, such as amino acids and small peptides, has been confirmed
to be a good strategy for determining the mean membrane pore radius, especially for NF
membranes with a low molecular weight cut-off, at pH values between 4.5 to 6.5. The
membrane pore radius of these membranes is usually estimated from the rejection values of
organic solutions, which are alcohol-based molecules. The performance of the membrane
was found to be different in the presence of relatively low concentrations of ethylene glycol.
Therefore, these low molecular weight alcohol molecules can interact with the membrane
matrix and change its physical properties, leading to an overestimation of the membrane
pore radius.
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