Self-Healing Hydrogel Membrane Provides a Strategy for the Steady Production of Clean Water from Organic Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Preparation of Silver Oxide/Silver Nanoparticles
2.3. Preparation of Hydrogel
2.4. Preparation of Solar-Driven Catalyst and Water Evaporation Hydrogel Membrane
2.5. Characterization
3. Results and Discussion
3.1. Preparation Strategy of Solar-Driven Catalyst and Water Evaporation Hydrogel Membrane
3.2. Tensile Properties
3.3. Rheological Properties
3.4. Optical and Photothermal Properties
3.5. The Photocatalytic and the Photothermal Water Evaporation Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, C.; Liang, H.; Xu, Z.; Wang, Z. Harnessing solar-driven photothermal effect toward the water–energy nexus. Adv. Sci. 2019, 6, 1900883. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.L.; Chen, H.; Wang, H.L.; Chen, X.; Yang, H.C.; Darling, S.B. Solar-driven evaporators for water treatment: Challenges and opportunities. Environ. Sci. Water Res. 2021, 7, 24–39. [Google Scholar] [CrossRef]
- Cao, S.; Rathi, P.; Wu, X.; Ghim, D.; Jun, Y.S.; Singamaneni, S. Cellulose nanomaterials in interfacial evaporators for desalination: A “Natural” choice. Adv. Mater. 2021, 33, 2000922. [Google Scholar] [CrossRef]
- Liu, Y.; Tian, J.; Xu, L.; Wang, Y.; Fei, X.; Li, Y. Multilayer graphite nano-sheet composite hydrogel for solar desalination systems with floatability and recyclability. New J. Chem. 2020, 44, 20181–20191. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, G.; Ren, L.; Yang, H.; Xiao, X.; Xu, W. Blackbody-inspired array structural polypyrrole-sunflower disc with extremely high light absorption for efficient photothermal evaporation. ACS Appl. Mater. Interfaces 2020, 12, 46653–46660. [Google Scholar] [CrossRef]
- Ren, J.; Yang, S.; Hu, Z.; Wang, H. Self-propelled aerogel solar evaporators for efficient solar seawater purification. Langmuir 2021, 37, 9532–9539. [Google Scholar] [CrossRef]
- Hu, R.; Zhang, J.; Kuang, Y.; Wang, K.; Cai, X.; Fang, Z.; Huang, W.; Chen, G.; Wang, Z. A janus evaporator with low tortuosity for long-term solar desalination. J. Mater. Chem. A 2019, 7, 15333–15340. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Y.; Guan, W.; Wang, P.; Feng, J.; Song, N.; Dong, H.; Yu, L.; Sui, L.; Gan, Z.; et al. A self-floating and integrated bionic mushroom for highly efficient solar steam generation. J. Colloid Interface Sci. 2022, 612, 88–96. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, C.; Zhang, Z.; Zhou, B.; Shen, J.; Du, A. Artificial trees inspired by monstera for highly efficient solar steam generation in both normal and weak light environments. Adv. Funct. Mater. 2020, 30, 2005513. [Google Scholar] [CrossRef]
- Ahmed, E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 2015, 6, 105–121. [Google Scholar] [CrossRef] [Green Version]
- Potkonjak, B.; Jovanović, J.; Stanković, B.; Ostojić, S.; Adnadjević, B. Comparative analyses on isothermal kinetics of water evaporation and hydrogel dehydration by a novel nucleation kinetics model. Chem. Eng. Res. Des. 2015, 100, 323–330. [Google Scholar] [CrossRef]
- Zhou, X.; Zhao, F.; Guo, Y. A hydrogel-based antifouling solar evaporator for highly efficient water desalination. Energy Environ. Sci. 2018, 11, 1985–1992. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, Y.; Yin, Y.; Zou, L.; Chen, Q.; Liu, K.; Lin, P.; Su, H.; Chen, Y. Janus polypyrrole nanobelt@polyvinyl alcohol hydrogel evaporator for robust solar-thermal seawater desalination and sewage purification. ACS Appl. Mater. Interfaces 2021, 13, 46717–46726. [Google Scholar] [CrossRef]
- Yuan, B.; Zhang, C.; Liang, Y.; Yang, L.; Yang, H.; Bai, L.; Wei, D.; Wang, W.; Wang, Q.; Chen, H. Defect-induced self-cleaning solar absorber with full-spectrum light absorption for efficient dye wastewater purification. Sol. RRL 2021, 5, 2100105. [Google Scholar] [CrossRef]
- Zhou, X.; Guo, Y.; Zhao, F.; Yu, G. Hydrogels as an emerging material platform for solar water purification. Acc. Chem. Res. 2019, 52, 3244–3253. [Google Scholar] [CrossRef] [PubMed]
- Konno, H.; Tsukada, A. Size- and ion-selective adsorption of organic dyes from aqueous solutions using functionalized UiO-66 frameworks. Colloids Surf. A 2022, 651, 129749. [Google Scholar] [CrossRef]
- Xu, H.; Xie, J.; Jia, W.; Wu, G.; Cao, Y. The formation of visible-light-driven Ag/Ag2O photocatalyst with excellent property of photocatalytic activity and photocorrosion inhibition. J. Colloid Interface Sci. 2018, 516, 511–521. [Google Scholar] [CrossRef] [PubMed]
- Ou, K.; Dong, X.; Qin, C.; Ji, X.; He, J. Properties and toughening mechanisms of PVA/PAM double-network hydrogels prepared by freeze-thawing and anneal-swelling. Mater. Sci. Eng. C 2017, 8, 1017–1026. [Google Scholar] [CrossRef]
- Woodrow, J.E.; Seiber, J.N.; Miller, G.C. Acrylamide release resulting from sunlight irradiation of aqueous polyacrylamide/iron mixtures. J. Agric. Food Chem. 2008, 56, 2773–2779. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Ling, T.; Li, J.; Cao, Y.; Fang, J.; Chen, Y. A simple and controllable black hydrogel coating strategy to prepare self-cleaning and durable evaporator for efficient solar steam generation. Desalination 2023, 549, 116341. [Google Scholar] [CrossRef]
- Wang, L.; Petrescu, F.I.T.; Liu, J.; Li, H.; Shi, G. Synthesis of dimpled particles by seeded emulsion polymerization and their application in superhydrophobic coatings. Membranes 2022, 12, 876. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.; Xue, J.; Li, J.; Ma, S.; Wang, M. PCN-222/Ag2O-Ag p-n heterojunction modified fabric as recyclable photocatalytic platform for boosting bacteria inactivation and organic pollutant degradation. Colloids Surf. A 2023, 656, 130474. [Google Scholar] [CrossRef]
- Yang, H.; Tian, J.; Li, T.; Cui, H. Synthesis of novel Ag/Ag2O heterostructures with solar full spectrum (UV, Visible and near-Infrared) light-driven photocatalytic activity and enhanced photoelectrochemical performance. Catal. Commun. 2016, 87, 82–85. [Google Scholar] [CrossRef]
- Panpa, W.; Jinawath, S.; Kashima, D.P. Ag2O-Ag/CAC/SiO2 composite for visible light photocatalytic degradation of cumene hydroperoxide in water. J. Mater. Res. Technol. 2019, 8, 5180–5193. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Feng, J.; Wang, H.; Petrescu, F.I.T.; Li, Y. Self-Healing Hydrogel Membrane Provides a Strategy for the Steady Production of Clean Water from Organic Wastewater. Membranes 2023, 13, 648. https://doi.org/10.3390/membranes13070648
Li X, Feng J, Wang H, Petrescu FIT, Li Y. Self-Healing Hydrogel Membrane Provides a Strategy for the Steady Production of Clean Water from Organic Wastewater. Membranes. 2023; 13(7):648. https://doi.org/10.3390/membranes13070648
Chicago/Turabian StyleLi, Xin, Jionghao Feng, Haijun Wang, Florian Ion Tiberiu Petrescu, and Ying Li. 2023. "Self-Healing Hydrogel Membrane Provides a Strategy for the Steady Production of Clean Water from Organic Wastewater" Membranes 13, no. 7: 648. https://doi.org/10.3390/membranes13070648
APA StyleLi, X., Feng, J., Wang, H., Petrescu, F. I. T., & Li, Y. (2023). Self-Healing Hydrogel Membrane Provides a Strategy for the Steady Production of Clean Water from Organic Wastewater. Membranes, 13(7), 648. https://doi.org/10.3390/membranes13070648