Effects of High Pharmaceutical Concentrations in Domestic Wastewater on Membrane Bioreactor Treatment Systems: Performance and Microbial Community
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Analytical Methods
2.3. Analysis of Microbial Taxa and Functional Genes
3. Results and Discussion
3.1. Effluent Water Quality
3.2. Mixed Liquor Properties
3.3. Microbial Community Characterization
3.3.1. Alpha Biodiversity Analysis
3.3.2. Microbial Taxonomic Analysis
3.3.3. Potential Pathways for Nitrogen and Carbohydrate Transformation in Each MBR
3.4. Membrane Fouling
4. Conclusions
- (1)
- Both MBR systems could remove organics effectively, although the TN removal efficiency was higher in the MBRe system (approximately 90%) than in the MBRc system (83.20%). However, the TP removal efficiency in the MBRe was 19.70% lower than in the MBRc. In addition, membrane fouling became severe, and the floc size decreased after the addition of pharmaceuticals.
- (2)
- The addition of high pharmaceutical concentrations had no significant effect on the relative abundance of Proteobacteria, while the relative abundances of Nitrospirae and Kiritimatiellaeota increased in the MBRe system compared to the MBRc system. However, after 180 days of operation, the relative abundance of Dechloromonas decreased in the MBRe compared to the MBRc, which may contribute to the poor phosphate removal efficiency of the MBRe system.
- (3)
- After the addition of high pharmaceutical concentrations (at 180 days), the total relative abundance of genes involved in glycolysis, assimilatory nitrate reduction and nitrification processes increased, which could account for the higher organics and nitrogen removal in the MBRe compared to the MBRc. This work could reveal the effects of high pharmaceutical concentrations on the treatment efficiency of MBR and provide suggestions for MBR operation in practical applications.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kaleem, M.; Ahmad, A.; Ahmad, W.; Nur, S.M.; Tabrez, S. Membrane bioreactor as an advanced wastewater treatment technology. In Development in Wastewater Treatment Research and Processes; Elsevier: Amsterdam, The Netherlands, 2022; pp. 401–434. [Google Scholar]
- Chen, M.; Ren, L.; Qi, K.; Li, Q.; Lai, M.; Li, Y.; Wang, Z. Enhanced removal of pharmaceuticals and personal care products from real municipal wastewater using an electrochemical membrane bioreactor. Bioresour. Technol. 2020, 311, 123579. [Google Scholar] [CrossRef]
- Li, R.; Kadrispahic, H.; Jørgensen, M.K.; Berg, S.B.; Thornberg, D.; Mielczarek, A.T.; Bester, K. Removal of micropollutants in a ceramic membrane bioreactor for the post-treatment of municipal wastewater. Chem. Eng. J. 2022, 427, 131458. [Google Scholar] [CrossRef]
- Zhang, J.; Xiao, K.; Liu, Z.; Gao, T.; Liang, S.; Huang, X. Large-Scale Membrane Bioreactors for Industrial Wastewater Treatment in China: Technical and Economic Features, Driving Forces, and Perspectives. Engineering 2021, 7, 868–880. [Google Scholar] [CrossRef]
- Luo, Y.; Guo, W.; Ngo, H.H.; Nghiem, L.D.; Hai, F.I.; Zhang, J.; Wang, X.C. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 2014, 473, 619–641. [Google Scholar] [CrossRef] [PubMed]
- Sadutto, D.; Andreu, V.; Ilo, T.; Akkanen, J.; Picó, Y. Pharmaceuticals and personal care products in a Mediterranean coastal wetland: Impact of anthropogenic and spatial factors and environmental risk assessment. Environ. Pollut. 2021, 271, 116353. [Google Scholar] [CrossRef]
- Wang, C.; Lu, Y.; Wang, C.; Xiu, C.; Cao, X.; Zhang, M.; Song, S. Distribution and ecological risks of pharmaceuticals and personal care products with different anthropogenic stresses in a coastal watershed of China. Chemosphere 2022, 303, 135176. [Google Scholar] [CrossRef]
- Kim, M.; Guerra, P.; Shah, A.; Parsa, M.; Alaee, M.; Smyth, S.A. Removal of pharmaceuticals and personal care products in a membrane bioreactor wastewater treatment plant. Water Sci. Technol. 2014, 69, 2221–2229. [Google Scholar] [CrossRef]
- Larsson, D.J.; de Pedro, C.; Paxeus, N. Effluent from drug manufactures contains extremely high levels of pharmaceuticals. J. Hazard. Mater. 2007, 148, 751–755. [Google Scholar] [CrossRef]
- Han, Y.; Hu, L.X.; Liu, T.; Liu, J.; Wang, Y.Q.; Zhao, J.H.; Ying, G.G. Non-target, suspect and target screening of chemicals of emerging concern in landfill leachates and groundwater in Guangzhou, South China. Sci. Total Environ. 2022, 837, 155705. [Google Scholar] [CrossRef]
- Asif, M.B.; Li, C.; Ren, B.; Maqbool, T.; Zhang, X.; Zhang, Z. Elucidating the impacts of intermittent in-situ ozonation in a ceramic membrane bioreactor: Micropollutant removal, microbial community evolution and fouling mechanisms. J. Hazard. Mater. 2021, 402, 123730. [Google Scholar] [CrossRef]
- Asif, M.B.; Ren, B.; Li, C.; Maqbool, T.; Zhang, X.; Zhang, Z. Powdered activated carbon—Membrane bioreactor (PAC-MBR): Impacts of high PAC concentration on micropollutant removal and microbial communities. Sci. Total Environ. 2020, 745, 141090. [Google Scholar] [CrossRef] [PubMed]
- Hena, S.; Znad, H. Membrane bioreactor for pharmaceuticals and personal care products removal from wastewater. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2018; Volume 81, pp. 201–256. [Google Scholar]
- Zhang, X.; Song, Z.; Ngo, H.H.; Guo, W.; Zhang, Z.; Liu, Y.; Long, Z. Impacts of typical pharmaceuticals and personal care products on the performance and microbial community of a sponge-based moving bed biofilm reactor. Bioresour. Technol. 2020, 295, 122298. [Google Scholar] [CrossRef]
- Chiemchaisri, W.; Chiemchaisri, C.; Witthayaphirom, C.; Saengam, C.; Mahavee, K. Reduction of antibiotic-resistant-E. coli, -K. pneumoniae, -A. baumannii in aged-sludge of membrane bioreactor treating hospital wastewater. Sci. Total Environ. 2022, 812, 152470. [Google Scholar] [CrossRef]
- Radjenović, J.; Petrović, M.; Barceló, D. Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment. Water Res. 2009, 43, 831–841. [Google Scholar] [CrossRef]
- Kim, S.D.; Cho, J.; Kim, I.S.; Vanderford, B.J.; Snyder, S.A. Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water Res. 2007, 41, 1013–1021. [Google Scholar] [CrossRef]
- Tambosi, J.L.; de Sena, R.F.; Favier, M.; Gebhardt, W.; José, H.J.; Schröder, H.F.; Moreira, R.d.F.P.M. Removal of pharmaceutical compounds in membrane bioreactors (MBR) applying submerged membranes. Desalination 2010, 261, 148–156. [Google Scholar] [CrossRef]
- Feng, L.; Casas, M.E.; Ottosen, L.D.M.; Møller, H.B.; Bester, K. Removal of antibiotics during the anaerobic digestion of pig manure. Sci. Total Environ. 2017, 603, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Nasrollahi, N.; Vatanpour, V.; Khataee, A. Removal of antibiotics from wastewaters by membrane technology: Limitations, successes, and future improvements. Sci. Total Environ. 2022, 838, 156010. [Google Scholar] [CrossRef] [PubMed]
- García Galán, M.J.; Díaz-Cruz, M.S.; Barceló, D. Removal of sulfonamide antibiotics upon conventional activated sludge and advanced membrane bioreactor treatment. Anal. Bioanal. Chem. 2012, 404, 1505–1515. [Google Scholar] [CrossRef]
- Sipma, J.; Osuna, B.; Collado, N.; Monclús, H.; Ferrero, G.; Comas, J.; Rodriguez-Roda, I. Comparison of removal of pharmaceuticals in MBR and activated sludge systems. Desalination 2010, 250, 653–659. [Google Scholar] [CrossRef]
- Asif, M.B.; Ren, B.; Li, C.; He, K.; Zhang, X.; Zhang, Z. Understanding the role of in-situ ozonation in Fe(II)-dosed membrane bioreactor (MBR) for membrane fouling mitigation. J. Membr. Sci. 2021, 633, 119400. [Google Scholar] [CrossRef]
- Ren, B.; Li, C.; Zhang, X.; Zhang, Z. Fe (II)-dosed ceramic membrane bioreactor for wastewater treatment: Nutrient removal, microbial community and membrane fouling analysis. Sci. Total Environ. 2019, 664, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, Y.; Leslie, G.L.; Waite, T.D. Effect of ferric and ferrous iron addition on phosphorus removal and fouling in submerged membrane bioreactors. Water Res. 2015, 69, 210–222. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Westerhoff, P.; Leenheer, J.A.; Booksh, K. Fluorescence Excitation−Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter. Environ. Sci. Technol. 2003, 37, 5701–5710. [Google Scholar] [CrossRef]
- Cai, L.; Guo, H.-T.; Zheng, G.-D.; Wang, X.-Y.; Wang, K. Metagenomic analysis reveals the microbial degradation mechanism during kitchen waste biodrying. Chemosphere 2022, 307, 135862. [Google Scholar] [CrossRef]
- Jiang, Z.; Li, P.; Wang, Y.; Liu, H.; Wei, D.; Yuan, C.; Wang, H. Arsenic mobilization in a high arsenic groundwater revealed by metagenomic and Geochip analyses. Sci. Rep. 2019, 9, 12972. [Google Scholar] [CrossRef] [Green Version]
- Hyatt, D.; Chen, G.-L.; Locascio, P.F.; Land, M.L.; Larimer, F.W.; Hauser, L.J. Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010, 11, 119. [Google Scholar] [CrossRef] [Green Version]
- Ma, Q.; Meng, N.; Su, J.; Li, Y.; Gu, J.; Wang, Y.; Sun, Y. Unraveling the skatole biodegradation process in an enrichment consortium using integrated omics and culture-dependent strategies. J. Environ. Sci. 2023, 127, 688–699. [Google Scholar] [CrossRef]
- Steinegger, M.; Söding, J. Clustering huge protein sequence sets in linear time. Nat. Commun. 2018, 9, 2542. [Google Scholar] [CrossRef] [Green Version]
- Kanehisa, M.; Sato, Y.; Kawashima, M.; Furumichi, M.; Tanabe, M. Tanabe KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016, 44, 457–462. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; Sun, P.; Hu, Z.; Han, J.; Wang, R.; Jiao, L.; Yang, P. Short-term performance of enhanced biological phosphorus removal (EBPR) system exposed to erythromycin (ERY) and oxytetracycline (OTC). Bioresour. Technol. 2016, 221, 15–25. [Google Scholar] [CrossRef]
- Meng, F.; Gao, G.; Yang, T.T.; Chen, X.; Chao, Y.; Na, G.; Huang, L.N. Effects of fluoroquinolone antibiotics on reactor performance and microbial community structure of a membrane bioreactor. Chem. Eng. J. 2015, 280, 448–458. [Google Scholar] [CrossRef]
- Bott, C.B.; Love, N.G. Investigating a mechanistic cause for activated-sludge deflocculation in response to shock loads of toxic electrophilic chemicals. Water Environ. Res. 2022, 74, 306–315. [Google Scholar] [CrossRef] [PubMed]
- Lopez, C.; Nnorom, M.A.; Tsang, Y.F.; Knapp, C.W. Pharmaceuticals and personal care products’ (PPCPs) impact on enriched nitrifying cultures. Environ. Sci. Pollut. Res. 2021, 28, 60968–60980. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.; Yue, X.; Shi, X.; Ng, K.K.; Ng, H.Y. Membrane fouling between a membrane bioreactor and a moving bed membrane bioreactor: Effects of solids retention time. Chem. Eng. J. 2017, 309, 397–408. [Google Scholar] [CrossRef]
- Huang, S.; Shi, X.; Bi, X.; Lee, L.Y.; Ng, H.Y. Effect of ferric hydroxide on membrane fouling in membrane bioreactor treating pharmaceutical wastewater. Bioresour. Technol. 2019, 292, 121852. [Google Scholar] [CrossRef] [PubMed]
- Thelusmond, J.-R.; Kawka, E.; Strathmann, T.J.; Cupples, A.M. Diclofenac, carbamazepine and triclocarban biodegradation in agricultural soils and the microorganisms and metabolic pathways affected. Sci. Total Environ. 2018, 640, 1393–1410. [Google Scholar] [CrossRef]
- Huang, J.; Zhou, Z.; Zheng, Y.; Sun, X.; Yu, S.; Zhao, X.; Wang, Z. Biological nutrient removal in the anaerobic side-stream reactor coupled membrane bioreactors for sludge reduction. Bioresour. Technol. 2020, 295, 122241. [Google Scholar] [CrossRef] [PubMed]
- Araujo, A.S.F.; de Pereira, A.P.D.A.; Antunes, J.E.L.; Oliveira, L.M.D.S.; de Melo, W.J.; Rocha, S.M.B.; Mendes, L.W. Dynamics of bacterial and archaeal communities along the composting of tannery sludge. Environ. Sci. Pollut. Res. 2021, 28, 64295–64306. [Google Scholar] [CrossRef]
- He, H.; Xin, X.; Qiu, W.; Li, D.; Liu, Z.; Ma, J. Role of nano-Fe3O4 particle on improving membrane bioreactor (MBR) performance: Alleviating membrane fouling and microbial mechanism. Water Res. 2022, 209, 117897. [Google Scholar] [CrossRef]
- Nguyen, L.N.; Commault, A.S.; Kahlke, T.; Ralph, P.J.; Semblante, G.U.; Johir, M.A.H.; Nghiem, L.D. Genome sequencing as a new window into the microbial community of membrane bioreactors—A critical review. Sci. Total Environ. 2020, 704, 135279. [Google Scholar] [CrossRef]
- Li, H.; Zhong, Y.; Huang, H.; Tan, Z.; Sun, Y.; Liu, H. Simultaneous nitrogen and phosphorus removal by interactions between phosphate accumulating organisms (PAOs) and denitrifying phosphate accumulating organisms (DPAOs) in a sequencing batch reactor. Sci. Total Environ. 2020, 744, 140852. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhang, S.; Yang, X.-L.; Yang, Y.-L.; Xu, H.; Li, X.-N.; Song, H.-L. Enhanced degradation of bisphenol A and ibuprofen by an up-flow microbial fuel cell-coupled constructed wetland and analysis of bacterial community structure. Chemosphere 2019, 217, 599–608. [Google Scholar] [CrossRef] [PubMed]
- Pirete, L.d.M.; Camargo, F.P.; Grosseli, G.M.; Sakamoto, I.K.; Fadini, P.S.; Silva, E.L.; Varesche, M.B.A. Microbial diversity and metabolic inference of diclofenac removal in optimised batch heterotrophic-denitrifying conditions by means of factorial design. Environ. Technol. 2023, 1–20. [Google Scholar] [CrossRef]
- Wang, X.-C.; Shen, J.-M.; Chen, Z.-L.; Zhao, X.; Xu, H. Removal of pharmaceuticals from synthetic wastewater in an aerobic granular sludge membrane bioreactor and determination of the bioreactor microbial diversity. Appl. Microbiol. Biotechnol. 2016, 100, 8213–8223. [Google Scholar] [CrossRef]
- Abatenh, E.; Gizaw, B.; Tsegaye, Z.; Wassie, M. The Role of Microorganisms in Bioremediation- A Review. Open J. Environ. Biol. 2017, 2, 38–46. [Google Scholar] [CrossRef] [Green Version]
- Narayanan, M.; El-Sheekh, M.; Ma, Y.; Pugazhendhi, A.; Natarajan, D.; Kandasamy, G.; Kandasamy, S. Current status of microbes involved in the degradation of pharmaceutical and personal care products (PPCPs) pollutants in the aquatic ecosystem. Environ. Pollut. 2022, 300, 118922. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Zheng, X.; Chen, A.; Chen, Y.; He, G.; Chen, H. Hydroxyl functionalization of single-walled carbon nanotubes causes inhibition to the bacterial denitrification process. Chem. Eng. J. 2015, 279, 47–55. [Google Scholar] [CrossRef]
- Wang, Y.; Li, D.; Song, X.; Cao, X.; Xu, Z.; Huang, W.; Sand, W. Intensifying anoxic ammonium removal by manganese ores and granular active carbon fillings in constructed wetland-microbial fuel cells: Metagenomics reveals functional genes and microbial mechanisms. Bioresour. Technol. 2022, 352, 127114. [Google Scholar] [CrossRef]
- Song, K.; Gao, Y.; Yang, Y.; Guo, B.Q.; Wang, Y.Z. Performance of simultaneous carbon and nitrogen removal of high-salinity wastewater in heterotrophic nitrification-aerobic denitrification mode. J. Environ. Chem. Eng. 2023, 11, 109682. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Z.; Liu, Y.; Ngo, H.H.; Guo, W.; Wang, H.; Zhang, D. Impacts of sulfadiazine on the performance and membrane fouling of a hybrid moving bed biofilm reactor-membrane bioreactor system at different C/N ratios. Bioresour. Technol. 2020, 318, 124180. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Lu, Z.; Wang, H.; Yin, H.; Hao, H.; Ma, B.; Shi, B. Microbial interaction energy and EPS composition influenced ultrafiltration membrane biofouling and the role of UV pretreatment. Desalination 2023, 548, 116304. [Google Scholar] [CrossRef]
- Zhuang, Z.; Yang, G.; Mai, Q.; Guo, J.; Liu, X.; Zhuang, L. Physiological potential of extracellular polysaccharide in promoting Geobacter biofilm formation and extracellular electron transfer. Sci. Total Environ. 2020, 741, 140365. [Google Scholar] [CrossRef] [PubMed]
Sample | I | II | III | IV | V |
---|---|---|---|---|---|
MBRc day 10 | 1.38 × 107 | 2.91 × 107 | 1.90 × 107 | 1.75 × 107 | 1.16 × 107 |
MBRe day 10 | 1.37 × 107 | 3.07 × 107 | 2.24 × 107 | 1.85 × 107 | 1.40 × 107 |
MBRc day 100 | 1.25 × 107 | 2.42 × 107 | 1.85 × 107 | 1.62 × 107 | 1.16 × 107 |
MBRe day 100 | 8.85 × 106 | 2.06 × 107 | 1.64 × 107 | 1.52 × 107 | 1.14 × 107 |
MBRc day 180 | 4.89 × 106 | 1.22 × 107 | 1.28 × 107 | 1.39 × 107 | 1.10 × 107 |
MBRe day 180 | 9.45 × 106 | 2.18 × 107 | 1.63 × 107 | 1.75 × 107 | 1.26 × 107 |
Sludge Samples Description | Serial No. | Reads | OTUs | Chao | Shannon Index | Simpson Index |
---|---|---|---|---|---|---|
MBRc d 1/anoxic | A1 | 70,065 | 1227 | 1228 | 7.18 | 0.030 |
MBRc d 1/oxic | A2 | 64,091 | 1188 | 1189 | 7.11 | 0.032 |
MBRc d 100/anoxic | A3 | 75,051 | 1430 | 1431 | 6.93 | 0.023 |
MBRc d 100/oxic | A4 | 73,113 | 1359 | 1360 | 6.91 | 0.024 |
MBRc d 180/anoxic | A5 | 74,864 | 1317 | 1318 | 5.97 | 0.059 |
MBRc d 180/oxic | A6 | 74,001 | 1290 | 1291 | 5.95 | 0.060 |
MBRe d 1/anoxic | B1 | 64,931 | 1193 | 1194 | 6.42 | 0.062 |
MBRe d 1/oxic | B2 | 64,395 | 1198 | 1199 | 6.64 | 0.051 |
MBRe d 100/anoxic | B3 | 76,220 | 1540 | 1541 | 7.02 | 0.031 |
MBRe d 100/oxic | B4 | 65,816 | 1374 | 1375 | 6.93 | 0.033 |
MBRe d 180/anoxic | B5 | 74,241 | 1470 | 1471 | 7.12 | 0.024 |
MBRe d 180/oxic | B6 | 71,799 | 1431 | 1432 | 7.21 | 0.018 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Du, X.; Huang, C.; Zhang, Z. Effects of High Pharmaceutical Concentrations in Domestic Wastewater on Membrane Bioreactor Treatment Systems: Performance and Microbial Community. Membranes 2023, 13, 650. https://doi.org/10.3390/membranes13070650
Li C, Du X, Huang C, Zhang Z. Effects of High Pharmaceutical Concentrations in Domestic Wastewater on Membrane Bioreactor Treatment Systems: Performance and Microbial Community. Membranes. 2023; 13(7):650. https://doi.org/10.3390/membranes13070650
Chicago/Turabian StyleLi, Chengyue, Xin Du, Chuyi Huang, and Zhenghua Zhang. 2023. "Effects of High Pharmaceutical Concentrations in Domestic Wastewater on Membrane Bioreactor Treatment Systems: Performance and Microbial Community" Membranes 13, no. 7: 650. https://doi.org/10.3390/membranes13070650
APA StyleLi, C., Du, X., Huang, C., & Zhang, Z. (2023). Effects of High Pharmaceutical Concentrations in Domestic Wastewater on Membrane Bioreactor Treatment Systems: Performance and Microbial Community. Membranes, 13(7), 650. https://doi.org/10.3390/membranes13070650