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Abstract: Despite pharmaceuticals being widely detected in water-bodies worldwide, what remain
unclear are the effects of high pharmaceutical concentrations on the treatment efficiency of biological
wastewater treatment processes, such as membrane bioreactor (MBR) systems. This study investi-
gated the efficiency of MBR technology in the treatment of synthetic wastewater containing a mixture
of five typical pharmaceuticals (ofloxacin, sulfamethoxazole, sulfamethylthiadiazole, carbamazepine
and naproxen) with a total concentration of 500 µg/L. Both the control MBR (MBRc) without phar-
maceutical dosing and the MBR operated with high influent pharmaceutical concentrations (MBRe)
were operated under room temperature with the same hydraulic retention time of 11 h and the same
sludge retention time of 30 d. The removal efficiency rates of total nitrogen and total phosphorus
were 83.2% vs. 90.1% and 72.6% vs. 57.8% in the MBRc vs. MBRe systems, and both MBRs achieved
>98% removal of organics for a 180-day period. The floc size decreased, and membrane fouling
became more severe in the MBRe system. Microbial diversity increased in the MBRe system and the
relative abundances of functional microbe differed between the two MBRs. Furthermore, the total
relative abundances of genes involved in glycolysis, assimilating nitrate reduction and nitrification
processes increased in the MBRe system, which could account for the higher organics and nitrogen
removal performance. This work provides insights for MBR operation in wastewater treatment with
high pharmaceutical concentrations.

Keywords: membrane bioreactor; pharmaceutical; microbial community; metabolic pathway;
wastewater treatment

1. Introduction

Membrane bioreactor (MBR) systems consist of bioreactors coupled with a membrane
filtration unit [1]. MBR has been widely applied for the removal of nitrogen, phosphorus
and micropollutants, as it has the advantages of high activated sludge concentrations, high
volumetric loading rates, a small footprint, relatively low levels of sludge generation and
the ability to achieve high performance levels by combining biological degradation and
membrane filtration processes [2–4]. In recent years, pollutants originating from phar-
maceuticals and personal care products (PPCPs) have been identified as key emerging
micropollutants, which are widely detectable in natural water-bodies at concentrations
in the ng/L to µg/L range, posing a threat to both environmental and human health [3].
The high concentration of PPCPs in natural water-bodies has been attributed to their
widespread accessibility and high usage levels worldwide [5]. The distribution and con-
centration of PPCPs have been shown to be affected by both spatial and anthropogenic
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factors [6]. For example, it has been reported that a high concentration of sulfisoxazole
(330.8 ng/L) was detected in a river located close to pharmaceutical manufacturer facilities
in a coastal watershed of China [7]. Previous studies have reported micropollutant con-
centrations reaching 104–105 ng/L in wastewater treatment plant influent in Canada [8],
while pharmaceutical concentrations ranging from 90–31,000 µg/L have been detected in
pharmaceutical wastewater in Patancheru, near Hyderabad, India [9]. High concentrations
of PPCPs have also been reported in landfill leachate. For example, 37 types of emerging
contaminant were detected in landfill leachate (southern China), with concentrations in the
range of 272–1780 µg/L [10].

The presence of high levels of PPCPs in wastewater can have serious toxic effects
on aquatic ecosystems if not effectively removed. MBR systems can effectively remove
PPCPs with the removal mechanism by MBR including volatilization, membrane retention,
biodegradation and sludge adsorption [11,12]. Hena and Znad [13] summarized the
average removal efficiency of MBR systems for various PPCPs, which ranged from 28%
to 99.8%. However, most studies in this field have focused on the removal of PPCPs
present at low concentrations, while few studies have investigated the removal of PPCPs
at high concentrations [14]. In addition, MBR technology has been practically applied
for the treatment of PPCP micropollutants, with reported removal efficiencies for the
antibiotic ofloxacin and the non-steroidal anti-inflammatory naproxen ranging from 33.9%
to 95.2% [15–18]. Sulfamethoxazole and sulfamethizole are commonly used sulfonamide
antibiotics, and it has previously been reported that 20–92% of sulfamethoxazole can be
eliminated by MBR treatment [19,20], while sulfamethizole was found to be the most
recalcitrant sulfonamide with a negligible removal efficiency [21]. Similarly, the removal
efficiency of the anti-epileptic drug carbamazepine ranged from negative to 23% [22]. The
micropollutant removal efficiencies achieved using MBR systems have been shown to vary
significantly due to different operational parameters, although the mechanisms of effect are
unknown. Furthermore, it remains unclear the effect of high PPCPs concentrations on MBR
wastewater treatment performance, in terms of microbial community dynamics, metabolic
characteristics and membrane fouling.

Herein, the performance of MBR systems was investigated in the presence and ab-
sence of high pharmaceutical concentrations during the treatment of domestic wastewater,
determining the treatment efficiency, effect on sludge properties and membrane fouling
characteristics. Furthermore, 16S rRNA and metagenomic high-throughput sequencing
were applied to analyze the effect of high pharmaceutical concentrations on the sludge mi-
crobial community characteristics. The aims of this study were to explain the mechanisms
of pharmaceutical effect at high concentrations on water quality, microbial community
structure and membrane fouling characteristics in the MBR system, providing theoretical
guidance for the effective treatment of pharmaceutical contaminated wastewater using
MBR systems.

2. Materials and Methods
2.1. Experimental Setup

As shown in Figure 1, two laboratory-scale anoxic–aerobic ceramic MBRs were oper-
ated in parallel to investigate the effects of high pharmaceutical concentrations on domestic
sewage treatment efficiency. The bioreactors were constructed of plexiglass and included
an anoxic tank (2 L, DO = 0.5–1.0 mg/L), an aerobic zone (3 L, DO = 1.5–2.5 mg/L) and a
membrane tank (2 L, DO = 1.5–2.5 mg/L). The anoxic–oxic–oxic membrane bioreactor has
been proved to achieve high nutrients and pharmaceutical removal efficiency in our previ-
ous studies [11,12]. The active area of the flat sheet ceramic membrane (Al2O3, Meidensha
Corp., Japan) was 0.043 m2, and the average pore size was 0.1 µm.
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Figure 1. Schematic of the ceramic MBR system. (a) MBRc: control MBR; (b) MBRe: MBR operated
with high influent pharmaceutical concentrations.

Both bioreactor systems were inoculated using seed sludge collected from a local
wastewater treatment plant in Shenzhen (China). The anoxic sludge was injected into the
anoxic chamber, while the aerobic sludge was fed into the aerobic and membrane chambers.
To achieve stable performance, the MBRs were fed continuously with synthetic wastewater
for a three-month period prior to use in experiments, with a permeate flux of 15 L/m2.h and
a filtration/relaxation time ratio of 8/2 (minutes). Both MBRs were operated under the same
environmental conditions at room temperature. Other operational conditions included a
mixed liquor suspended solid (MLSS) concentration of 6–6.5 g/L, a hydraulic retention time
(HRT) of 11 h, a sludge retention time (SRT) of 30 days and a recirculation ratio of 300%.
The MBRs operated with or without the five micropollutants (ofloxacin, sulfamethoxazole,
sulfamethylthiadiazole, carbamazepine and naproxen, with 100 µg/L each) added to the
influent were labelled as MBRe and MBRc, respectively. A detailed description of the
synthetic wastewater composition and the main physicochemical properties of the selected
micropollutants are provided in Tables S1 and S2 (Supplementary Information). The trans-
membrane pressure (TMP) of the membrane module was monitored continuously in each
MBR, and when the normalized TMP (∆TMP = total TMP − intrinsic membrane TMP) was
above 30 kPa, physical and chemical cleaning methods were implemented to ensure the
continuous operation at the constant membrane flux of 15 L/m2.h [23,24].

2.2. Analytical Methods

Samples were collected for dissolved organic carbon (DOC), total nitrogen (TN) and
total phosphorus (TP) quantification from the influent, effluent and the supernatant of
the anoxic and aerobic tanks of each MBR system. Briefly, the DOC concentrations were
measured using a TOC analyzer (TOC-VCSH, Shimadzu, Japan). TP and TN concentrations
were determined using the ascorbic acid reduction method and the spectrophotometric
screening method after persulfate digestion, respectively. Protein and polysaccharide con-
centrations are the main components of soluble microbial products (SMP) and extracellular
polymeric substances (EPS), and they were determined using the Lowry and phenol/H2SO4
methods, respectively [25]. The average floc size was measured using a particle size an-
alyzer (Master-sizer MS3000, Malvern, UK) with data expressed as a volume equivalent
diameter (Dx 50). The excitation–emission matrix (EEM) was obtained using a fluorescence
spectrometer (F-700, Hitachi, Japan), and the fluorescence regional integration (FRI) method
was applied to compare the distribution of dissolved organic matter (DOM) in samples [26].
Finally, a liquid chromatography-ultraviolet (LC-UV) system (LC-20AT, Shimadzu, Japan)
was used to determine the molecular weight (MW) distribution of supernatant samples.

2.3. Analysis of Microbial Taxa and Functional Genes

Samples were collected from the anoxic tank, aerobic tank and membrane tank from
each MBR for microbial community analysis at the 1st, 100th and 180th days (Magigene
Biotechnology Co. Ltd., Guangzhou, China). A detailed description of the procedure used
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for microbial community analysis has been reported by Ren et al. [24] and is provided in
the Supplementary Information (Text S1). Metagenomic analysis was conducted using the
Illumina NovaSeq platform. Quality control was performed using Trimmomactic (v.0.32),
with the clean reads then assembled using MEGAHIT (v.1.0.6) (k-min 35, k-max 95, k-
step 20) to obtain assembly contigs with a minimum length of 500 bp [27,28]. The open
reading frames (ORFs) were predicted using Prodigal (v.2.6.3) and clustered using Linclust
to acquire gene catalogues [29–31]. Finally, the functional genes were annotated against
the Kyoto Encyclopedia of Genes and Genomes (KEGG) database based on an E-value
threshold of 10−5 [32].

3. Results and Discussion
3.1. Effluent Water Quality

The concentrations of DOC and TN in the effluent of each MBR system were mon-
itored at weekly intervals for 180 days, as presented in Figure 2. Both MBRs were able
to effectively remove >98% of organics, with average DOC concentrations in the MBRc
and MBRe effluents of 2.92 and 2.78 mg/L, respectively (Figure 2a). High influent phar-
maceutical compound concentrations had no significant adverse impact on the DOC
removal efficiency, which may have remained consistently high due to DOC biodegrada-
tion by activated sludge [23]. The obtained EEM spectra (Figure S1) were divided into
five regions including protein-like (regions I and II, Ex/Em = 220–250/280–330 nm, and
Ex/Em = 220–250/330–380 nm), fulvic-like (region III, Ex/Em = 220–250/380–480 nm),
SMP-like (region IV, Ex/Em = 250–440/280–380 nm) and humic-like (region V,
Ex/Em = 250–400/380–540 nm) substances [26]. According to the fluorescence regional
integration method presented in Table 1, the intensities of effluent fluorescence decreased in
both MBRs with time, although the addition of pharmaceuticals appears to have a negative
effect on the removal of fluorescent substances.

Table 1. Partition of intensity in each region of the fluorescence spectra for the control MBR (MBRc)
and experimental MBR (MBRe) systems.

Sample I II III IV V

MBRc day 10 1.38 × 107 2.91 × 107 1.90 × 107 1.75 × 107 1.16 × 107

MBRe day 10 1.37 × 107 3.07 × 107 2.24 × 107 1.85 × 107 1.40 × 107

MBRc day 100 1.25 × 107 2.42 × 107 1.85 × 107 1.62 × 107 1.16 × 107

MBRe day 100 8.85 × 106 2.06 × 107 1.64 × 107 1.52 × 107 1.14 × 107

MBRc day 180 4.89 × 106 1.22 × 107 1.28 × 107 1.39 × 107 1.10 × 107

MBRe day 180 9.45 × 106 2.18 × 107 1.63 × 107 1.75 × 107 1.26 × 107

The average TN concentration in the effluent of both MBRs met the requirements of
the Chinese discharge standard, although the TN removal efficiency was slightly higher in
the MBRe system (90.1%) than the MBRc system (83.2%) (Figure 2b). However, the average
TP concentrations in the MBRc and MBRe effluents were 2.74 ± 0.42 and 4.22 ± 0.85 mg/L,
respectively (Figure 2c), showing that the MBRe system achieved a poorer TP removal effi-
ciency than the MBRc system. It has previously been reported that higher pharmaceutical
concentrations may have a negative impact on polyphosphate-accumulating organisms
(PAOs), affecting the TP removal efficiency [33]. A detailed discussion of the microbial
community compositions responsible for nutrient removal is presented in the following
section.

3.2. Mixed Liquor Properties

The polysaccharide and protein compositions of SMP and EPS in each MBR system
are shown in Figure 3. The average SMP polysaccharide and protein concentrations in
the aerobic tank of the MBRe system were 1.52 and 2.57 mg/L, showing a reduction
compared to the MBRc system at 2.09 and 4.10 mg/L, respectively. However, the average
EPS polysaccharide concentration in the MBRe system was 71.32 mg/L, while in the MBRc,
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it was only 65.11 mg/L. Conversely, the EPS protein concentration in the MBRc system
reached 213.82 mg/L, which was significantly higher than in the MBRe system, reaching
only 164.26 mg/L. In summary, SMP and EPS secretion can be affected when the microbial
community is exposed to high concentrations of pharmaceutical compounds.
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By comparing the molecular weight distribution of SMP samples from the aerobic
tank of each MBR system (Figure 4), a slight increase in substances with weights of 100 Da
was observed in the MBRe system, as compared to the MBRc, except for the MBRc on
the 40th day, which exhibited a large increase in DOC intensity. However, a decrease
in DOC intensity was also observed for substances in the size range of 105–106 Da in
the MBRe system, compared to the MBRc. The differences in changes in SMP molecular
weight distribution may be associated with the variation in microbial activity and metabolic
function after the addition of pharmaceuticals [11,12].

High pharmaceutical concentrations not only affected the SMP and EPS compositions,
but also altered the floc size. As shown in Figure 5, the average floc size varied in the
aerobic tank of each MBR. In the MBRc system, the average floc size in the aerobic tank
was 76.15 µm. However, the average floc size in the aerobic tank of the MBRe system was
56.58 µm. The observed reduction in floc size due to the addition of pharmaceuticals is in
agreement with a previous study showing that floc size decreased from 389 µm to 202 µm
following the addition of fluoroquinolone antibiotics into a MBR system [34]. The possible
reason could be the death of bacteria cells and deflocculation of activated sludge when
exposed to toxic pharmaceuticals [35].
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3.3. Microbial Community Characterization
3.3.1. Alpha Biodiversity Analysis

The microbial community composition has a major impact on the stability of activated
sludge processes and the ability of microbes to transform nutrients [36]. To study the
effect of high pharmaceutical concentrations on the microbial community structure and
metabolic characteristics, samples were collected from the anoxic and aerobic tanks for 16S
rRNA high-throughput sequencing analysis at the start (day 1), middle (day 100) and end
(day 180) of the experimental period.

The sequencing of bacterial 16S rRNA genes generated 64,091 to 75,051 and 64,395 to
76,220 active sequences in total from the samples obtained from the anoxic and aerobic tanks
of the MBRc and MBRe systems, respectively (Table 2). The number of OTUs identified
using the UPARSE method (with a 97% threshold value) in the anoxic tank of the MBRe
system was higher (1470 on the 180th day) than in the MBRc anaerobic tank (1317 on
the 180th day). A similar trend was observed in the number of OTUs in the aerobic
tanks of each MBR system, increasing from 1118 to 1290 in the MBRc and from 1190 to
1431 in the MBRe. Chao, Shannon and Simpson indices were used to assess the richness,
diversity and evenness of microbial communities. An increase in microbial richness was
observed following the addition of high pharmaceutical concentrations, with Chao index
values of 1291–1318 and 1417–1432 in the MBRc and MBRe systems, respectively. On the
180th day, the Shannon index value was higher in the MBRe (7.12–7.21) than in the MBRc
(5.95–5.97), indicating an increase in bacterial community diversity after the addition of
pharmaceuticals, with this result supported by the Simpson index values (0.018–0.024 for
MBRc vs. 0.059–0.060 for MBRe). Overall, these findings are in agreement with a previous
study showing that the addition of PPCPs at concentrations below 2 mg/L could increase
microbial diversity and promote microbial growth [14].

3.3.2. Microbial Taxonomic Analysis

The microbial communities were investigated at the phylum and genus levels to com-
pare the effect of additional pharmaceuticals on wastewater treatment in each MBR. As
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shown in Figure 6, Proteobacteria and Bacteroidetes were the dominant phyla in both MBR
systems, which was in accordance with results previously reported in the literature [37,38].
Compared to the initial stage of operation (day 1), Proteobacteria were eventually enriched
in both the MBRc and MBRe systems, resulting in Proteobacteria being dominant in the
anoxic and aerobic tanks of both MBRs by the final stage of operation (day 180). Therefore,
the addition of high pharmaceutical concentrations had no significant effect on Proteobacte-
ria within the MBR systems. Proteobacteria have been reported to play an important role in
the removal of antimicrobial and anti-inflammatory substances, and previous studies have
shown that PPCPs can promote the dominance of Proteobacteria and Bacteroidetes [39].
Acidobacteria are closely associated with the degradation of organic compounds [40], with
the relative abundance of Acidobacteria increasing initially in both MBR systems, before
finally decreasing. In addition, by the 180th day, the relative abundances of Nitrospirae
and Kiritimatiellaeota had increased in the MBRe system compared to the MBRc system,
which was associated with nitrogen removal [41,42]. However, following the addition of
pharmaceuticals, the relative abundance of Planctomycetes decreased in the anoxic and
aerobic tanks by 16% and 54% compared to the MBRc system, which may be due to some
pharmaceuticals, such as carbamazepine, being toxic to these bacteria [39].

Table 2. Bacterial 16S rRNA gene sequencing results and alpha diversity indices for the microbial
taxa in the control MBR (MBRc) and experimental MBR (MBRe) systems in different operational
periods.

Sludge Samples
Description

Serial
No. Reads OTUs Chao Shannon

Index
Simpson

Index

MBRc d 1/anoxic A1 70,065 1227 1228 7.18 0.030
MBRc d 1/oxic A2 64,091 1188 1189 7.11 0.032
MBRc d 100/anoxic A3 75,051 1430 1431 6.93 0.023
MBRc d 100/oxic A4 73,113 1359 1360 6.91 0.024
MBRc d 180/anoxic A5 74,864 1317 1318 5.97 0.059
MBRc d 180/oxic A6 74,001 1290 1291 5.95 0.060
MBRe d 1/anoxic B1 64,931 1193 1194 6.42 0.062
MBRe d 1/oxic B2 64,395 1198 1199 6.64 0.051
MBRe d 100/anoxic B3 76,220 1540 1541 7.02 0.031
MBRe d 100/oxic B4 65,816 1374 1375 6.93 0.033
MBRe d 180/anoxic B5 74,241 1470 1471 7.12 0.024
MBRe d 180/oxic B6 71,799 1431 1432 7.21 0.018

At the genus level (Figure 7), after 180 days, the addition of pharmaceuticals increased
the abundance of genera such as Tolumonas, Haliangium, Nitrospira and Terrimonas, as com-
pared to the MBRc system. Nitrospira are classed as nitrifying bacteria, while Haliangium
and Terrimonas are responsible for denitrification [24,43]. The enrichment of these bacterial
genera contributed to the nitrogen removal performance of the MBRe system. However,
compared with the MBRc system, a decrease was observed in the relative abundance of
Dechloromonas in the MBRe system in the final stage of operation (day 180), which may
explain the poor phosphate removal efficiency in the MBRe system treating high influent
pharmaceutical concentrations as these are denitrifying phosphate-accumulating organisms
(DPAOs) [44]. Tolumonas has the capability to degrade complex organic contaminants and
PPCPs, while Terrimonas have been reported to metabolize recalcitrant aromatic hydrocar-
bons [45–47]. Once complex PPCP structures are metabolized by functional bacteria, the
reduced PPCPs can be further transformed into persistent PPCP pollutants which are less
toxic (or non-toxic) to the bacterial community [48,49]. Overall, the observed microbial
community dynamics could be due to microbial self-defense mechanisms responding to
the stress of pharmaceutical exposure [14].
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The addition of high pharmaceutical concentrations could have an impact on the
metabolic characteristic of microbial communities. Therefore, the carbon and nitrogen
metabolic pathways and variations in functional genes were compared in each MBR system,
to determine the effect of high pharmaceutical concentrations on the MBR performance.
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3.3.3. Potential Pathways for Nitrogen and Carbohydrate Transformation in Each MBR

In this study, two fundamental metabolic pathways, glycolysis and nitrogen
metabolism processes were studied to determine the effect of high pharmaceutical concen-
trations on microbial function and activity. Glucose utilization plays a vital role in energy
metabolism [50], and therefore, in order to assess the influence of high pharmaceutical
concentrations on microbial carbon metabolism, the variations in functional genes involved
in glycolysis were analyzed in each MBR. As shown in Figure S2 and Figure 8a, after
180 days of operation, the relative abundances of pfk, a gene relating to the initial part of
the glycolysis process, were 0.0000144% and 0.000066% in the MBRc and MBRe systems,
respectively, exhibiting a significant increase following the addition of pharmaceuticals. In
addition, the total relative abundances of key glycolysis process genes in the MBRc were
0.193% (day 1) and 0.194% (day 180), while in the MBRe system, they were 0.205% (day 1)
and 0.198% (day 180). Therefore, after the addition of pharmaceuticals, the total relative
abundance of genes involved in the glycolysis process were slightly increased, implying
enhanced microbial activity [51] and resulting in higher organics removal in the MBRe
system. This result is consistent with the lower DOC concentration detected in the effluent
of the MBRe system, as compared to the MBRc system (Figure 2).
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To further understand the role of microorganisms in nitrogen conversion, the relative
abundances of genes encoding key enzymes involved in nitrogen metabolism were deter-
mined. As shown in Figure S3 and Figure 8b, compared to the MBRc system on the 180th
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day of operation the total relative abundances of functional genes in the MBRe involved
in nitrogen conversation processes: nitrogen fixation, dissimilatory nitrate reduction and
ammonification reduced by 24.66%, 14.43%, 3.877% and 12.51%, respectively, while genes
associated with assimilatory nitrate reduction and nitrification increased by 742.17% and
359.37%, respectively. The high relative abundance of nitrification genes was consistent
with the observed increasing trend in total nitrogen removal efficiency in the MBRe system,
since nitrification was the rate-limiting step of the biological nitrogen removal [52].

3.4. Membrane Fouling

The presence of PPCPs is also a major cause of membrane fouling, which severely
limits the operational performance of MBR systems [13], and therefore, the effect of high
pharmaceutical concentrations on membrane fouling was investigated. TMP was continu-
ously monitored as shown in Figure 9. Compared to the MBRc system, the MBRe exhibited
rapid membrane fouling, requiring approximately 28 days for the ∆TMP to increase to
30 kPa in the MBRe, while around 72 days were required in the MBRc. During the first
13 days of operation, there was slight difference observed in the ∆TMP values of each MBR
system. Subsequently, the membrane fouling rate in the MBRc system remained around
1.11 kPa/d from day 14 to day 22, and then it reduced to 0.26 kPa/d until after the 64th
day, when the membrane fouling rate increased to 0.62 kPa/d. In contrast, the membrane
fouling rate in the MBRe was faster overall, reaching around 1.67 kPa/d from day 14 to
day 28. The acceleration of membrane fouling caused by high pharmaceutical concentra-
tions was consistent with a previous study [53], reporting that the addition of 90 µg/L
carbamazepine to an MBR system increased the TMP after 1 day, which was attributed to
the change in EPS concentrations and sludge deflocculation caused by activated sludge
exposure to toxic chemicals. In this study, the observed reduction in floc size in the MBRe
(mean value: 56.58 µm for MBRe vs. 76.15 µm for MBRc) could also aggravate membrane
fouling, which is supported by previous studies showing that microbial physiological and
ecological adjustments for self-protection against high levels of PPCPs are an important
cause of membrane fouling [13]. Also, the severe membrane fouling in the MBRe might be
due to the high polysaccharide concentration in EPS (mean value: 71.32 mg/L for MBRe
vs. 65.11 mg/L for MBRc), referring to the previous studies which mentioned that the
polysaccharide could contribute more significantly to the thickness of biofilm compared to
protein [54,55].
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4. Conclusions

In this study, a mixture of five typical pharmaceuticals (ofloxacin, sulfamethoxazole,
sulfamethoxazole, carbamazepine, naproxen) with a total concentration of 500 µg/L, was
added to the influent of an experimental membrane bioreactor system. The effluent quality,
sludge properties and degree of membrane fouling were assessed in each MBR system. In
addition, the microbial community dynamics and metabolic characteristics were compared
in the presence and absence of high pharmaceutical concentrations, in order to determine
the effect of high pharmaceutical concentrations on the treatment efficiency of domestic
sewage by a ceramic membrane bioreactor system. The conclusions are as follows:

(1) Both MBR systems could remove organics effectively, although the TN removal
efficiency was higher in the MBRe system (approximately 90%) than in the MBRc
system (83.20%). However, the TP removal efficiency in the MBRe was 19.70% lower
than in the MBRc. In addition, membrane fouling became severe, and the floc size
decreased after the addition of pharmaceuticals.

(2) The addition of high pharmaceutical concentrations had no significant effect on the
relative abundance of Proteobacteria, while the relative abundances of Nitrospirae
and Kiritimatiellaeota increased in the MBRe system compared to the MBRc sys-
tem. However, after 180 days of operation, the relative abundance of Dechloromonas
decreased in the MBRe compared to the MBRc, which may contribute to the poor
phosphate removal efficiency of the MBRe system.

(3) After the addition of high pharmaceutical concentrations (at 180 days), the total
relative abundance of genes involved in glycolysis, assimilatory nitrate reduction and
nitrification processes increased, which could account for the higher organics and
nitrogen removal in the MBRe compared to the MBRc. This work could reveal the
effects of high pharmaceutical concentrations on the treatment efficiency of MBR and
provide suggestions for MBR operation in practical applications.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/membranes13070650/s1, Text S1. Microbial community analysis.
Table S1. Composition and characteristics of synthetic wastewater used in this study. Table S2.
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