State of the Art Membrane Science and Technology in the Iberian Peninsula 2021–2022
Acknowledgments
Conflicts of Interest
References
- Calvo, J.I.; Casado-Coterillo, C.; Hernández, A. Past, Present and Future of Membrane Technology in Spain. Membranes 2021, 11, 808. [Google Scholar] [CrossRef] [PubMed]
- Soto-Herranz, M.; Sánchez-Báscones, M.; García-González, M.C.; Martín-Ramos, P. Comparison of the Ammonia Trapping Performance of Different Gas-Permeable Tubular Membrane System Configurations. Membranes 2022, 12, 1104. [Google Scholar] [CrossRef] [PubMed]
- Soto-Herranz, M.; Sánchez-Báscones, M.; Antolín-Rodríguez, J.M.; Martín-Ramos, P. Evaluation of Different Capture Solutions for Ammonia Recovery in Suspended Gas Permeable Membrane Systems. Membranes 2022, 12, 572. [Google Scholar] [CrossRef] [PubMed]
- Calvo, J.I.; Asensio, J.; Sainz, D.; Zapatero, R.; Carracedo, D.; Fernández-Fernández, E.; Prádanos, P.; Palacio, L.; Hernández, A. Membrane Dialysis for Partial Dealcoholization of White Wines. Membranes 2022, 12, 468. [Google Scholar] [CrossRef] [PubMed]
- González Díaz, E.; Álvarez-García, S.; Luque, S.; Álvarez, J.R. Low-Temperature Hydrophilic Pervaporation of Lactic Acid Esterification Reaction Media. Membranes 2022, 12, 96. [Google Scholar] [CrossRef] [PubMed]
- Arregoitia-Sarabia, C.; González-Revuelta, D.; Fallanza, M.; Ortiz, A.; Gorri, D. PEBA/PDMS Composite Multilayer Hollow Fiber Membranes for the Selective Separation of Butanol by Pervaporation. Membranes 2022, 12, 1007. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Robles, R.; Moreno-Torralbo, B.M.; Badia, J.D.; Martínez-Soria, V.; Izquierdo, M. Flat PVDF Membrane with Enhanced Hydrophobicity through Alkali Activation and Organofluorosilanisation for Dissolved Methane Recovery. Membranes 2022, 12, 426. [Google Scholar] [CrossRef] [PubMed]
- Lejarazu-Larrañaga, A.; Ortiz, J.M.; Molina, S.; Pawlowski, S.; Galinha, C.F.; Otero, V.; García-Calvo, E.; Velizarov, S.; Crespo, J.G. Nitrate Removal by Donnan Dialysis and Anion-Exchange Membrane Bioreactor Using Upcycled End-of-Life Reverse Osmosis Membranes. Membranes 2022, 12, 101. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; López-Grimau, V. Reduction of Cost and Environmental Impact in the Treatment of Textile Wastewater Using a Combined MBBR-MBR System. Membranes 2021, 11, 892. [Google Scholar] [CrossRef] [PubMed]
- León, G.; Gómez, E.; Miguel, B.; Hidalgo, A.M.; Gómez, M.; Murcia, M.D.; Guzmán, M.A. Feasibility of Adsorption Kinetic Models to Study Carrier-Mediated Transport of Heavy Metal Ions in Emulsion Liquid Membranes. Membranes 2022, 12, 66. [Google Scholar] [CrossRef] [PubMed]
- Alguacil, F.J.; Lopez, F.A. Separation Iron(III)-Manganese(II) via Supported Liquid Membrane Technology in the Treatment of Spent Alkaline Batteries. Membranes 2021, 11, 991. [Google Scholar] [CrossRef]
- Fontàs, C.; Vera, R.; Anticó, E.; Martínez de Yuso, M.d.V.; Rodríguez-Castellón, E.; Benavente, J. New Insights on the Effects of Water on Polymer Inclusion Membranes Containing Aliquat 336 Derivatives as Carriers. Membranes 2022, 12, 192. [Google Scholar] [CrossRef]
- Lima-Rodriguez, A.; Garcia-Manrique, J.; Dong, W.; Gonzalez-Herrera, A. A Novel Methodology to Obtain the Mechanical Properties of Membranes by Means of Dynamic Tests. Membranes 2022, 12, 288. [Google Scholar] [CrossRef] [PubMed]
- Tomé, L.C.; Santos, D.M.F.; Velizarov, S.; Coelhoso, I.M.; Mendes, A.; Crespo, J.G.; de Pinho, M.N. Overview of Membrane Science and Technology in Portugal. Membranes 2022, 12, 197. [Google Scholar] [CrossRef] [PubMed]
- Janeca, A.; Rodrigues, F.S.C.; Gonçalves, M.C.; Faria, M. Novel Cellulose Acetate-Based Monophasic Hybrid Membranes for Improved Blood Purification Devices: Characterization under Dynamic Conditions. Membranes 2021, 11, 825. [Google Scholar] [CrossRef] [PubMed]
- Rita, A.I.; Nabais, A.R.; Neves, L.A.; Huertas, R.; Santos, M.; Madeira, L.M.; Sanches, S. Assessment of the Potential of Using Nanofiltration Polymeric and Ceramic Membranes to Treat Refinery Spent Caustic Effluents. Membranes 2022, 12, 98. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casado-Coterillo, C.; Santos, D.M.F.; Tomé, L.C.; Velizarov, S.; Coelhoso, I.; Calvo, J.I. State of the Art Membrane Science and Technology in the Iberian Peninsula 2021–2022. Membranes 2023, 13, 732. https://doi.org/10.3390/membranes13080732
Casado-Coterillo C, Santos DMF, Tomé LC, Velizarov S, Coelhoso I, Calvo JI. State of the Art Membrane Science and Technology in the Iberian Peninsula 2021–2022. Membranes. 2023; 13(8):732. https://doi.org/10.3390/membranes13080732
Chicago/Turabian StyleCasado-Coterillo, Clara, Diogo M. F. Santos, Liliana C. Tomé, Svetlozar Velizarov, Isabel Coelhoso, and José Ignacio Calvo. 2023. "State of the Art Membrane Science and Technology in the Iberian Peninsula 2021–2022" Membranes 13, no. 8: 732. https://doi.org/10.3390/membranes13080732
APA StyleCasado-Coterillo, C., Santos, D. M. F., Tomé, L. C., Velizarov, S., Coelhoso, I., & Calvo, J. I. (2023). State of the Art Membrane Science and Technology in the Iberian Peninsula 2021–2022. Membranes, 13(8), 732. https://doi.org/10.3390/membranes13080732