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Abstract: Blend membranes consisting of two polymer pairs improve gas separation, but compromise
mechanical and thermal properties. To address this, incorporating titanium dioxide (TiO2) nanoparti-
cles has been suggested, to enhance interactions between polymer phases. Therefore, the objective
of this study was to investigate the impact of TiO2 as a filler on the thermal, surface mechanical,
as well as gas separation properties of blend membranes. Blend polymeric membranes consisting
of polyetherimide (PEI) and polyvinyl acetate (PVAc) with blend ratios of (99:1) and (98:2) were
developed via a wet-phase inversion technique. In the latter, TiO2 was incorporated in ratios of
1 and 2 wt.% while maintaining a blend ratio of (98:2). TGA and DSC analyses were used to examine
thermal properties, and nano-indentation tests were carried out to ascertain surface mechanical
characteristics. On the other hand, a gas permeation set-up was used to determine gas separation
performance. TGA tests showed that blend membranes containing TiO2 had better thermal char-
acteristics. Indentation tests showed that TiO2-containing membranes exhibited greater surface
hardness compared to other membranes. The results of gas permeation experiments showed that
TiO2-containing membranes had better separation characteristics. PEI–PVAc blend membranes with
2 wt.% TiO2 as filler displayed superior separation performance for both gas pairs (CO2/CH4 and
CO2/N2). The compatibility between the rubbery and glassy phases of blend membranes was im-
proved as a result of the inclusion of TiO2, which further benefited their thermal, surface mechanical,
and gas separation performances.

Keywords: polyetherimide; polyvinyl acetate; titanium dioxide; blend membrane; composite
membrane; gas separation

1. Introduction

Membrane technology resulting in benefits in terms of energy efficiency and from an
economical point of view is regarded as a viable emerging technology in gas separation
applications [1,2]. Nevertheless, due to the inherent trade-off between gas permeability
and selectivity, commercially available membranes (either organic or inorganic) used in gas
separation are available with particular constraints [3,4]. A probable and viable alternative
in membrane-based gas separation technology is the use of polymer blends. However,
one of the main challenges of this approach is establishing compatibility between paired
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polymers while maintaining the desired mechanical properties. Blending different poly-
mers together can create composite materials that synergistically combine the properties
of the individual components, which would otherwise be unattainable [5]. Adjusting
the composition can obtain customized properties for specific applications. In particular,
for membrane-based gas separations, it is advantageous to have a dense structure that
facilitates the solution–diffusion mechanism. Therefore, in addition to considering the
sizes of gases that pass through the membrane, it is also crucial to take into account the
interaction between the molecules and the membrane.

Previous studies of polymer blends have highlighted the issue of immiscibility, which
affects the physical and chemical properties of the product at the molecular level. Although
immiscible blends are commercially available, their propensity to exhibit unstable phase
morphology during melt processing frequently leads to inadequate mechanical perfor-
mance [6,7]. To achieve a fine and stable morphology and improve the properties of the
blend, the use of a suitable compatibilizer that acts as a surfactant has been explored [8].
This compatibilizer facilitates better interfacial interactions of the polymer phases and
enhances the properties of the blend [8,9]. The most commonly used compatibilizer is
a copolymer derived from monomers of the matrix polymer that is present in the blend.
However, the complex synthesis process and limited applicability of specific blends have
led researchers to seek better alternatives [10]. Recently, there has been a significant increase
in studying the incorporation of nanoparticles into immiscible polymer blends. The nano-
effects of these nanoparticles not only reduce phase separation behavior in the blend, but
also enhance the mechanical and thermal stabilities of the resulting blend membrane [11].
Based on this hypothesis, incorporating nanoparticles into a PEI–PVAc blend can improve
the physiochemical properties of the blend and enhance compatibility by refining the
co-continuous structure of the blend through the addition of TiO2 nano-particles.

Based on these observations as a reference point, this study aimed to investigate the
impact of incorporating TiO2 into a PEI–PVAc blend membrane on its thermal, surface
mechanical, and gas separation properties. The blending of a glassy and a rubbery polymer
was intended to enhance the performance of the membrane systems by leveraging the
distinctive gas separation characteristics of the parent polymers, while also introducing
additional binding sites for carbon dioxide (CO2) at the molecular level. In the realm of
membrane enhancement for gas separation, there are various additives, such as carbon
black, carbon nanotubes, silica, nano-clay, and titanium oxide [12]. The structure of tita-
nium dioxide is depicted in Figure 1. Li et al. reported improved mechanical stability
in polymer membranes through the incorporation of TiO2 nanoparticles [13]. They also
found that the addition of TiO2 reduced the solvent’s precipitation rate during membrane
formation, leading to a denser skin layer in the cross-section of the membrane. Furthermore,
with the addition of TiO2 nanoparticles, Madaeni et al. observed a corresponding rise in
membrane wall thickness, as well as improved separation properties [14]. In a separate
investigation, Ahmad et al. successfully prepared PVAc membranes incorporated with
TiO2 nanocomposites, resulting in improved thermal stability and enhanced membrane
performance [15]. Similarly, Cai et al. observed a reduction in the co-continuous phase of a
polystyrene–polyamide (PS–PA6) blend upon the addition of TiO2 [16]. Hu et al. developed
a poly(amide-imide)–TiO2 nanocomposite membrane that exhibited superior gas separation
performance compared to pure poly(amide-imide), even at low TiO2 loading [17].

Based on these findings, this study hypothesized that incorporating inorganic moieties
into the blend system would improve developed membranes’ mechanical and thermal
characteristics. TiO2 was chosen as a key parameter for investigating the effects of incorpo-
rating these nanoparticles into the polymer blend, with the aim to improve the thermal and
surface properties of blend membranes. Additionally, the gas separation performances of
the membranes were analyzed by varying composition, temperature, and gas pressure.
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Figure 1. Structure of titanium dioxide.

2. Experimental
2.1. Materials

Prior to use, PEI pellets (with a melt flow index of approximately 9 g/10 min) were
dehydrated in a 100 ◦C oven for 24 h to remove any moisture content. Conversely, PVAc
beads (with a density of approximately 1.19 g/cm3 at 25 ◦C) were used as received without
undergoing prior drying. An organic solvent, N-methyl-2-pyrrolidone (NMP), with a purity
of 99.5%, was employed. In addition, particulate fillers were incorporated, consisting of
TiO2 nanoparticles with a primary particle size of 21 nm. All the aforementioned chemicals
were obtained from Sigma Aldrich (St. Louis, MO, USA).

2.2. Methods

In this study, different membranes, including pure PEI, PEI–PVAc blends, and PEI–
PVAc blends with TiO2 nanoparticles, were prepared. Based on the optimized polymeric
membrane ratio observed through previous investigations, the PEI–PVAc polymer blend’s
ratio was established at (98:2) [18]. The pure and blend polymeric dope solutions were
prepared following the methods outlined in our previous study.

However, for the PEI–PVAc–TiO2 membrane, a different approach was taken. In order
to ensure homogeneity, TiO2 nanoparticles were first dispersed in NMP and stirred for
30 min. TiO2 particles were then subjected to an additional 30 min of ultrasonication in
order to efficiently disperse them within the solvent. In a separate process, one half of
the PEI was dissolved in NMP over the course of three hours at a temperature of 70 ◦C.
Subsequently, to ensure complete dissolution, the rest of the PEI pellets and PVAc polymers
were gradually added to the solution, while raising the temperature to 90 ◦C for a duration
of nine hours. After the preparation of the solution, degassing procedures were conducted
for a period of 12 h under ambient conditions to eliminate any trapped air bubbles.

2.3. Membrane Fabrication

The membrane casting solution was applied onto a glass plate and uniformly spread
using a casting knife by adjusting the film thickness to 150 µm. When the casting process
was completed, the freshly formed membranes were placed in a bath of room temperature
water. The membranes were then submerged in distilled water for three days, followed by
air-drying at room temperature to ensure the complete removal of any remaining solvent.
Table 1 provides the developed membranes and their respective properties.

Table 1. Compositions of developed membranes and their respective glass transition temperatures (Tg).

Membrane Code PEI (wt.%) PVAc (wt.%) TiO2 (wt.%) Tg (◦C)

PEI 100 - - 212
PP(1) 99 1 - 211
PP(2) 98 2 209

PPT(1) 98 2 1 210
PPT(2) 98 2 2 212
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The phase inversion method was adopted; as a result, the developed membrane was
asymmetric, with a dense layer at the top and finger-like pores beneath, as depicted in
Figure 2.
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2.4. Characterization and Gas Permeation Tests of the Developed Membranes
2.4.1. Thermal Analysis of the Membranes

Using a TGA (thermogravimetric analysis) analyzer (Perkin Elmer, Waltham, MA, USA,
STA6000) in a nitrogen atmosphere, the blend membranes’ thermal characteristics were
assessed. The measurements were carried out in the 30 to 600 ◦C temperature range with the
heating rate set at 10 ◦C/min. The glass transition temperatures (Tg) of the cast membranes
were determined using DSC (differential scanning calorimetry) analysis. The membrane
samples were heated in a nitrogen atmosphere from room temperature to 250 ◦C, and then
returned to room temperature at a rate of 10 ◦C/min.

2.4.2. Nano-Indentation Technique

Indentation tests were performed using the continuous stiffness measurement tech-
nique, which involves monitoring and recording the dynamic load and indenter of a
diamond tip using the three-sided pyramid geometry displacement of a three-sided pyra-
midal diamond (Berkovich) indenter, as depicted in Figure 3a. The indenter had a tip
radius of 0.219 µm with an effective tip-opening angle of 140.6◦. This test was carried out
in load-controlled mode, with the indentation load maintained at approximately 100 mN.
At least 9 points were indented on each membrane; the specific indentation points for the
pure PEI membrane sample are depicted in Figure 3b. Nanoindentation provided a means
to measure mechanical properties of thin layers.

2.4.3. Gas Permeation Study of the Developed Membranes

Permeability testing for pure CO2, N2, and CH4 gases was performed on developed
membranes using a gas permeation unit specifically designed for these measurements.
During testing, the gas pressure and permeation testing temperature were varied. To ensure
accurate measurements, any remaining gases in the device were expelled using a vacuum
pump prior to testing to ensure precise measurements. Maintaining atmospheric pressure
kept the pressure on the permeate side of the membrane constant. The permeation rates of
gas streams were measured using a bubble flow-meter capable of detecting flow rates as
low as 100 mL/min. The following equation was used to calculate the gas permeation:

Px

l
=

Q
A∆P

273.15
T

(1)

αxy =
Px

Py
(2)
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indentation points.

The GPU measurement unit is used to quantify gas permeance (Px/l), where ‘x’ denotes
the gas being studied (N2, CO2, or CH4). The volumetric flow rate is represented by ‘Q’, and
the effective surface area of the membrane is denoted by ‘A’. The permeation process occurs
at a specific temperature (T) and is conducted by applying a pressure difference (∆P). The
ideal selectivity, denoted as αxy, represents the ratio of the permeabilities of the competing
incident gases x and y across the membrane.

3. Results and Discussion
3.1. Thermal Analysis

The thermal properties of the developed membranes were assessed through TGA
and DSC analysis. Decomposition curves (Figure 4) indicated a single major mass loss
for all membrane fibers. Notably, no weight loss was observed below 100 ◦C, indicating
the absence of moisture in the developed membranes. The pure PEI membrane exhibited
an onset temperature of approximately 440 ◦C, consistent with the previously published
literature [19]. A 10% weight loss was used as a reference point to compare the degradation
of the membranes. Weight loss between 100 and 300 ◦C is referred to as the mass of solvent
retained in the membranes that evaporated as the temperature increased.
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Furthermore, it was observed that the addition of PVAc to the PEI matrix resulted
in a decrease in thermal properties as the proportion of the rubbery phase increased. In
reference to the degradation temperature, neat PEI displayed a degradation temperature
of 482 ◦C, which decreased to 340 ◦C for PP(2). These findings imply that adding rubbery
PVAc to the glassy PEI matrix reduces its thermal properties. However, this trend was
reversed with the addition of TiO2 into the blend membranes. The incorporation of 2 wt.%
of TiO2 into the PEI–PVAc blend led to a recovery in the degradation temperature, which
reached 450 ◦C. This indicates that an improvement in thermal stability was achieved by
adding titanium to the blend membrane. Similar observations have been reported, such as
the development of a polyethersulfone (PES) and PVAc blend membrane, which exhibited
lower thermal stability compared to a plain PES membrane [20]. However, the addition
of TiO2 reversed the thermal stability and restored it. These observations have also been
reported in other studies [21].

The stiffness of polymeric materials is characterized by their Tg values, which were
determined through DSC analysis, and are shown in Table 1. It can be observed that the
Tg of pure PEI was approximately 212 ◦C, which aligns with the previous literature [18].
As the proportion of the rubbery PVAc component increased in the blend, the flexibility
of the structure also increased, resulting in a lower Tg, as indicated in Table 1. However,
the presence of a single Tg value suggests a uniform blending of the two polymers in the
blend samples.

Nevertheless, the introduction of TiO2 resulted in a distinct and singular Tg value
across all tested membranes, indicating a molecular-level combination of polymer chains
and TiO2, and the formation of a new material. The TiO2 content of blend membranes
caused the Tg value to increase. The homogeneous dispersion of titanium nanoparticles,
which combined with the polymeric chains and decreased the free volume within the
polymer structure, was responsible for this increase. Consequently, this restriction in the
movement of chain fragments caused the polymer chains to become more rigid and raised
the Tg value. Numerous authors have extensively documented the rise of Tg with the
incorporation of TiO2 into the polymer matrix in the literature [22].

3.2. Surface Mechanical Analysis

Figure 5 illustrates the compliance curve of neat PEI, PP(2), and PPT(2) membranes.
A total of nine indents were applied to each sample, with a spacing of 40 µm between
them. The membrane samples were subjected to a constant load of 15 mN, resulting in a
maximum penetration depth of 15 µm. The unloading phase following the application of
constant force exhibited a creep region, as depicted in Figure 5. Creep refers to a change in
depth over time while maintaining a constant force, and it reached a new limit just before
unloading. Subsequently, the indenter began to unload. The absence of overlap between the
loading and unloading curves shown in Figure 5 suggests that the developed membranes
demonstrated both elastic behavior and distinct plastic characteristics [23]. The loading
and unloading curves appeared continuous and stable for all developed membranes.

The spacing between indents was adjusted to prevent overlapping of the internal stress
generated around each indent. In the case of the neat PEI sample, the indenter penetrated
up to a maximum contact depth of 7.7 µm, while this value increased to 14.00 µm for
PP(2). However, the value decreased to 5.08 µm for the blend sample incorporating 2 wt.%
of TiO2. It can be observed that the presence of PVAc in the PEI matrix reduced the
hardness and stiffness of the surface. Conversely, incorporating TiO2 nanoparticles into
the blend sample caused the surface to become stiff and hard. This can be attributed to
the uniform dispersion of TiO2 nanoparticles within the polymer matrix, which imparted
stiffness to the membranes. These findings are indirectly validated by the thermal analysis
discussed in the previous section. Consistent with the previous literature, the addition
of nanoparticles inside the polymer matrix resulted in a stiffer and harder surface [24].
Therefore, appropriate dispersion of nanoparticles can enhance membrane hardness and
resistance to indenter penetration.
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3.3. Gas Permeation Study

Figure 6 depicts the CO2 permeance and ideal selectivity (CO2/CH4, CO2/N2) of pure
PEI, PEI–PVAc blend, and PES–PVAc–TiO2 membranes. The figure clearly demonstrates
that the composite membrane outperformed the other membranes in terms of performance.
CO2 permeance showed an increasing trend with the addition of PVAc. The permeance
of CO2 in the PEI–PVAc (98:2) blend membrane was 26.1% higher than that of the neat
PEI membrane at ambient temperature and 2 bar pressure. The inclusion of the rubbery
PVAc phase in the blend led to polymer chains being loosely packed, resulting in increased
free volume. This loose structure facilitated the diffusion of smaller molecules through
the blend matrix. As a result, the addition of the rubbery PVAc component enhanced the
permeation of CO2, CH4, and N2. Furthermore, the CO2 benefited from higher solubility
and a smaller kinetic diameter, which gave it an advantage in dissolving and diffusing
through the blend membrane matrix. This advantage was reflected in the relative ideal
selectivity of the developed blend membrane. Similar observations were reported by
Farman et al. when PVAc was added to PES [25]. They observed (compared to neat PES)
an almost double value of CO2 permeance and a 3.6 times increase in ideal (CO2/CH4)
selectivity at 10 bar pressure.

On the other hand, the incorporation of TiO2 also had a positive impact on the CO2
permeance of the mixed matrix membrane. The CO2 permeance increased as the TiO2
content in the blend increased. For a 2 wt.% addition of TiO2 filler in the blend, the
permeation was 36% higher compared to the neat sample. The incorporation of TiO2 into
the PES–PVAc polymer blend resulted in nanoparticle aggregation and the creation of voids
at the TiO2–polymer interface, thereby enhancing gas diffusion through the membrane.
Similar observations were reported by Abdullah et al. when TiO2 nanoparticles were
incorporated into PES–PVAc blend membranes [20]. They observed a 32.4% increase in
CO2 permeance and a 65.9% surge in ideal (CO2/CH4) selectivity at 10 bar pressure and
25 ◦C. Thus, the addition of TiO2 nanoparticles proves advantageous for both gas selectivity
and CO2 permeance in blend polymeric membranes. A similar behavior can be expected for
CO2/N2 selectivity, as the kinematic diameter of N2 gas molecules is also smaller compared
to CO2.
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3.4. Effect of Feed Pressure

Gas permeation tests were conducted at different feed pressures and at room tempera-
ture for the best membranes prepared by adopting a PEI–PVAc blend (98:2) and 2 wt.% TiO2
additions. Figure 7 depicts the gas permeations and ideal selectivity of the incident gases
against the feed pressure; a noticeable trend can be observed wherein the permeance of CO2
gas generally decreased as the feed pressure increased. The decline observed in this study
aligns with earlier findings that indicated a decrease in gas permeability for polarizable
gases (such as CO2) with increased pressure in glassy polymers. These findings further
support the dual-mode sorption hypothesis [26]. Additionally, increased feed pressure
caused the membrane matrix to contract, which lessened the effect of swelling. Together,
these two elements lessen CO2 permeability.
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Nonetheless, as the membrane swelling decreases, the competitive transport be-
tween CH4, N2, and CO2 molecules is anticipated to become more pronounced. This
phenomenon leads to a significant decline in gas selectivity. As depicted in Figure 7a,
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the ideal selectivity for CO2/CH4 gas decreased as the temperature increased. The value
decreased from 41.1 to 38.6 as the temperature increased from 2 to 6 bar pressure. The
effect of pressure change was more significant for CO2/N2 gas, as the selectivity decreased
from 34 to 30.53. These results are consistent with those reported in the literature [27]. In
another study, Matsuyama et al. developed polyethylenimine (PEI)-poly(vinyl alcohol)
(PVA) blend membranes, and observed that with an increase in feed pressure, CO2 perme-
ance decreased and N2 permeance remained almost the same, thereby decreasing CO2/N2
selectivity [28].

Therefore, it can be concluded that it is preferable to operate a prepared PPT(2)
membrane at a relatively low feed pressure to attain a high separation performance for
CO2 separation.

3.5. Effect of Temperature

For the most efficient PPT(2) membranes, gas permeation tests were carried out at
different temperatures ranging from 25 to 45 ◦C and at 2 bar pressure. When the temper-
ature increased from 25 to 45 ◦C, the CO2 permeance decreased significantly compared
to other incident gases, such as CH4 and N2, as the solubility of CO2 gas’s polar nature is
high compared to other gas molecules at room temperature. As the temperature increased,
thermodynamically, the solubility of the CO2 gas significantly decreased compared to its
counterparts, as depicted in Figure 8a,b. As the temperature increased, this declining trend
in CO2 permeance had an impact on the developed membrane’s ideal selectivity. The ideal
selectivity for CO2/CH4 over this temperature range decreased 25%. However, it was more
prominent for CO2/N2, for which it reached 45%. These results suggest that these types of
membranes are suitable at low to moderate temperatures. Khan et al. incorporated carbon
nano sheets into a PEI matrix to develop composite membranes. The CO2/CH4 ideal selec-
tivity of the developed membranes was tested at various temperatures from 25 to 50 ◦C;
a slight decreasing trend was observed [29].
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4. Conclusions

This study investigated the impact of incorporating TiO2 nanoparticles into a PEI–
PVAc blend membrane on its thermal, surface mechanical, and gas separation properties.
Incorporating TiO2 nanoparticles into the blend membrane enhanced its thermal stability,
as evidenced by TGA analysis. This improvement was reflected in a higher observed Tg
value, as determined using DSC. Surface analysis revealed a stiffer and harder surface
attributed to the uniform dispersion of nanoparticles within the polymer matrix compared
to both neat and blend counterparts.

When compared to pure PEI, the PEI–PVAc blend membrane had better gas separation
performance, and the addition of TiO2 nanoparticles improved ideal gas separation even
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further. Optimal results were obtained with a 2 wt.% TiO2 addition into the PEI–PVAc (98:2)
matrix, achieving high selectivity for CO2/CH4 and CO2/N2. These findings demonstrate
the potential of incorporating nanoparticles to improve the performance of polymer blend
membranes in gas separation applications.
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