Surface Treatment of Polymer Membranes for Effective Biofouling Control
Abstract
:1. Introduction
- (i)
- Inorganic fouling is due to the precipitation and deposition of minerals, salts, oxide, hydroxide, etc.;
- (ii)
- Organic fouling includes proteins, polysaccharides, nucleic acids, fatty acids, etc.;
- (iii)
- Particulate fouling is due to the deposition of solid particles;
- (iv)
- Microbial fouling consists of aggregates of microbes deposited on the membrane’s surface.
Materials for Membrane Modification | Advantages |
---|---|
Membrane modified with polyethylene glycol | Arrest adsorption process [15], hydrophobicity [16] |
Polyglycerol with polydopamine (PDA) coatings | Antifouling and resistance to bacterial adhesion [17] |
PSF then poly(arylene ether ketone) membranes are altered with chlorosulfonic acid, chloromethylation, sulfuric acid, etc. | Attachment of hydrophilic group, anticoagulant antibacterial [18,19] |
Poly(4-vinylpyridine-coethylene glycol diacrylate) deposition on RO membrane | Reduced bacterial attachment [20] |
Thin film composite polyamide membrane improved with amine terminated sulfonated poly(arylene ether sulfone). | Hydrophilic group on membrane surface [21] |
Metal organic framework (MOFs) | Heat resistance, high surface area, permeable with enhanced flow rate [22] |
Zwitterionic chemical based modification | Fouling control [23] |
Polydopamine coating on polypropylene membrane | Reduce the waster contact angle by 110° to 67° and improve hydrophilicity of membrane [24] |
Inorganic nanoparticles such as SiO2, TiO2, ZnO reinforced in polyvinyl chloride, polyvinyl alcohol | Enhanced performance of membrane and its antibacterial activities [25] |
2. Surface Treatment of the Polymer Membrane
3. Base and Consequences of Membrane Biofouling
4. Quantification of Polymer Membrane Biofouling
4.1. Epifluorescence Microscopy
4.2. Scanning Electron Microscopy (SEM)
4.3. Transmission Electron Microscopy (TEM)
4.4. Atomic Force Microscope (AFM)
4.5. Surface Enhanced Raman Spectroscopy (SERS)
4.6. Confocal Laser Scanning Microscopy (CLSM)
4.7. Fourier Transform Infrared Spectroscopy (FTIR)
4.8. Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI)
4.9. Thermography
5. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, H.; Zhu, S.; Yang, J.; Ma, A. Advancing Strategies of Biofouling Control in Water-Treated Polymeric Membranes. Polymers 2022, 14, 1167. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Yaoyao, F.; Peng, L.; Xia, H. Effects of online chemical cleaning on removing biofouling and resilient microbes in a pilot membrane bioreactor. Int. Biodeter. Biodegr. 2016, 112, 119–127. [Google Scholar] [CrossRef]
- Nguyen, T.; Roddick, F.A.; Fan, L. Biofouling of Water Treatment Membranes: A Review of the Underlying Causes, Monitoring Techniques and Control Measures. Membranes 2012, 2, 804–840. [Google Scholar] [CrossRef]
- Alsawaftah, N.; Abuwatfa, W.; Darwish, N.; Husseini, G. A Comprehensive Review on Membrane Fouling: Mathematical Modelling, Prediction, Diagnosis, and Mitigation. Water 2021, 13, 1327. [Google Scholar] [CrossRef]
- Xu, X.; Yang, Y.; Liu, T.; Chu, B. Cost-Effective Polymer-Based Membranes for Drinking Water Purification. Giant 2022, 10, 100099. [Google Scholar] [CrossRef]
- Vishwakarma, V.; Josephine, J.; George, R.P.; Krishnan, R.; Dash, S.; Kamruddin, M.; Kalavathi, S.; Manoharan, N.; Tyagi, A.K.; Dayal, R.K. Antibacterial Copper-Nickel Bilayers and Multilayer Coatings by Pulsed Laser Deposition on Titanium. Biofouling 2009, 25, 705–710. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.G.; Son, M.; Yoon, S.H.; Celik, E.; Kang, S.; Park, H.; Park, C.H.; Choi, H. Alginate fouling reduction of functionalized carbon nanotube blended cellulose acetate membrane in forward osmosis. Chemosphere 2015, 136, 204–210. [Google Scholar] [CrossRef]
- Di Martino, P. Extracellular polymeric substances, a key element in understanding biofilm phenotype. AIMS Microbiol. 2018, 30, 274–288. [Google Scholar] [CrossRef]
- López, D.; Vlamakis, H.; Kolter, R. Biofilms. Cold Spring Harb. Perspect. Biol. 2010, 2, a000398. [Google Scholar] [CrossRef]
- Alkhatib, A.; Ayari, M.A.; Hawari, A.H. Fouling mitigation strategies for different foulants in membrane distillation. Chem. Eng. Process. 2021, 167, 108517. [Google Scholar] [CrossRef]
- Saad, M.A. Biofouling prevention in RO polymeric membrane systems. Desalination 1992, 88, 85–105. [Google Scholar] [CrossRef]
- Piatkovsky, M.; Acar, H.; Marciel, A.B.; Tirrell, M.; Herzberg, M. A zwitterionic blockcopolymer, based on glutamic acid and lysine, reduces the biofouling of UF and RO membranes. J. Membr. Sci. 2018, 549, 507–514. [Google Scholar] [CrossRef]
- Kaliaraj, G.S.; Vishwakarma, V.; Dawn, S.S.; Karthik, A.; Vigneshwaran, S.; Naidu, G.D. Reduction of Sulfate Reducing Bacterial Survival by Cu-Ni, Zn-Ni and Cu-Zn-Ni Coatings Using Electroless Plating Technique for Oil/Diesel Pipeline Applications. Mater. Today Proc. 2021, 45, 6804–6806. [Google Scholar] [CrossRef]
- AlSawaftah, N.; Abuwatfa, W.; Darwish, N.; Husseini, G.A. A Review on Membrane Biofouling: Prediction, Characterization, and Mitigation. Membranes 2022, 12, 1271. [Google Scholar] [CrossRef]
- Ma, W.; Rajabzadeh, S.; Shaikh, A.R.; Kakihana, Y.; Sun, Y.; Matsuyama, H. Effect of Type of Poly(Ethylene Glycol) (PEG) Based Amphiphilic Copolymer on Antifouling Properties of Copolymer/Poly(Vinylidene Fluoride) (PVDF) Blend Membranes. J. Memb. Sci. 2016, 514, 429–439. [Google Scholar] [CrossRef]
- Choi, H.; Jung, Y.; Han, S.; Tak, T.; Kwon, Y.N. Surface Modification of SWRO Membranes Using Hydroxyl Poly(Oxyethylene) Methacrylate and Zwitterionic Carboxylated Polyethyleneimine. J. Memb. Sci. 2015, 486, 97–105. [Google Scholar] [CrossRef]
- Li, X.; Cai, T.; Amy, G.L.; Chung, T.S. Cleaning Strategies and Membrane Flux Recovery on Anti-Fouling Membranes for Pressure Retarded Osmosis. J. Memb. Sci. 2017, 522, 116–123. [Google Scholar] [CrossRef]
- Zhang, Y.; Wan, Y.; Pan, G.; Shi, H.; Yan, H.; Xu, J.; Guo, M.; Wang, Z.; Liu, Y. Surface Modification of Polyamide Reverse Osmosis Membrane with Sulfonated Polyvinyl Alcohol for Antifouling. Appl. Surf. Sci. 2017, 419, 177–187. [Google Scholar] [CrossRef]
- Liu, T.M.; Xu, J.J.; Qiu, Y.R. A Novel Kind of Polysulfone Material with Excellent Biocompatibility Modified by the Sulfonated Hydroxypropyl Chitosan. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 79, 570–580. [Google Scholar] [CrossRef]
- Shafi, H.Z.; Khan, Z.; Yang, R.; Gleason, K.K. Surface Modification of Reverse Osmosis Membranes with Zwitterionic Coating for Improved Resistance to Fouling. Desalination 2015, 362, 93–103. [Google Scholar] [CrossRef]
- Zhang, X.; Tian, J.; Gao, S.; Zhang, Z.; Cui, F.; Tang, C.Y. In Situ Surface Modification of Thin Film Composite Forward Osmosis Membranes with Sulfonated Poly(Arylene Ether Sulfone) for Anti-Fouling in Emulsified Oil/Water Separation. J. Memb. Sci. 2017, 527, 26–34. [Google Scholar] [CrossRef]
- Campbell, J.; Burgal, J.D.S.; Szekely, G.; Davies, R.P.; Braddock, D.C.; Livingston, A. Hybrid Polymer/MOF Membranes for Organic Solvent Nanofiltration (OSN): Chemical Modification and the Quest for Perfection. J. Memb. Sci. 2016, 503, 166–176. [Google Scholar] [CrossRef]
- Miller, D.J.; Dreyer, D.R.; Bielawski, C.W.; Paul, D.R.; Freeman, B.D. Surface Modification of Water Purification Membranes. Angew. Chem. Int. Ed. Engl. 2017, 56, 4662–4711. [Google Scholar] [CrossRef] [PubMed]
- Wardani, A.K.; Ariono, D.; Subagjo; Wenten, I.G. Hydrophilic Modification of Polypropylene Ultrafiltration Membrane by Air-Assisted Polydopamine Coating. Polym. Adv. Technol. 2019, 30, 1148–1155. [Google Scholar] [CrossRef]
- Tul Muntha, S.; Kausar, A.; Siddiq, M. Functional Polymeric Membrane Containing Inorganic Nanoparticle: Recent Advances and Applications. Polym. Plast. Technol. Eng. 2016, 56, 364–381. [Google Scholar] [CrossRef]
- Devaisy, S.; Kandasamy, J.; Nguyen, T.V.; Ratnaweera, H.; Vigneswaran, S. Membranes in Water Reclamation: Treatment, Reuse and Concentrate Management. Membranes 2023, 13, 605. [Google Scholar] [CrossRef]
- Kim, S.; Nam, S.-N.; Jang, A.; Jang, M.; Park, C.M.; Son, A.; Her, N.; Heo, J.; Yoon, Y. Review of Adsorption–Membrane Hybrid Systems for Water and Wastewater Treatment. Chemosphere 2022, 286, 131916. [Google Scholar] [CrossRef]
- He, Q.; Zhu, Z.; Dong, H.; Xiao, K. A Sulfonated Polymer Membrane with Ag-Based Graft: Morphology, Characterization, Antimicrobial Activity and Interception Ability. RSC Adv. 2017, 7, 37000–37006. [Google Scholar] [CrossRef]
- Shtreimer Kandiyote, N.; Avisdris, T.; Arnusch, C.J.; Kasher, R. Grafted Polymer Coatings Enhance Fouling Inhibition by an Antimicrobial Peptide on Reverse Osmosis Membranes. Langmuir 2019, 35, 1935–1943. [Google Scholar] [CrossRef]
- Díez, B.; Amariei, G.; Rosal, R. Electrospun Composite Membranes for Fouling and Biofouling Control. Ind. Eng. Chem. Res. 2018, 57, 14561–14570. [Google Scholar] [CrossRef]
- Zhao, D.L.; Feng, F.; Shen, L.; Huang, Z.; Zhao, Q.; Lin, H.; Chung, T.S. Engineering Metal–Organic Frameworks (MOFs) Based Thin-Film Nanocomposite (TFN) Membranes for Molecular Separation. Chem. Eng. J. 2023, 454, 140447. [Google Scholar] [CrossRef]
- Chen, Z.; Hanna, S.L.; Redfern, L.R.; Alezi, D.; Islamoglu, T.; Farha, O.K. Reticular Chemistry in the Rational Synthesis of Functional Zirconium Cluster-Based MOFs. Coord. Chem. Rev. 2019, 386, 32–49. [Google Scholar] [CrossRef]
- Liu, H.; Peng, H.; Xin, Y.; Zhang, J. Metal–Organic Frameworks: A Universal Strategy towards Super-Elastic Hydrogels. Polym. Chem. 2019, 10, 2263–2272. [Google Scholar] [CrossRef]
- Li, F.; Liu, T.D.; Xie, S.; Guan, J.; Zhang, S. 2D Metal-Organic Framework-Based Thin-Film Nanocomposite Membranes for Reverse Osmosis and Organic Solvent Nanofiltration. ChemSusChem 2021, 14, 2452–2460. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, X.; Zong, Z.; Lin, R.; Zhang, X.; Chen, F.; Ding, W.; Zhang, L.; Meng, X.; Hou, J. Thin Film Nanocomposite Membrane Incorporated with 2D-MOF Nanosheets for Highly Efficient Reverse Osmosis Desalination. J. Memb. Sci. 2022, 653, 120520. [Google Scholar] [CrossRef]
- Wen, Y.; Zhang, X.; Li, X.; Wang, Z.; Tang, C.Y. Metal-Organic Framework Nanosheets for Thin-Film Composite Membranes with Enhanced Permeability and Selectivity. ACS Appl. Nano Mater. 2020, 3, 9238–9248. [Google Scholar] [CrossRef]
- Lee, T.H.; Oh, J.Y.; Hong, S.P.; Lee, J.M.; Roh, S.M.; Kim, S.H.; Park, H.B. ZIF-8 Particle Size Effects on Reverse Osmosis Performance of Polyamide Thin-Film Nanocomposite Membranes: Importance of Particle Deposition. J. Memb. Sci. 2019, 570–571, 23–33. [Google Scholar] [CrossRef]
- Aljundi, I.H. Desalination Characteristics of TFN-RO Membrane Incorporated with ZIF-8 Nanoparticles. Desalination 2017, 420, 12–20. [Google Scholar] [CrossRef]
- Wang, J.; Chen, X.; Reis, R.; Chen, Z.; Milne, N.; Winther-Jensen, B.; Kong, L.; Dumée, L.F. Plasma Modification and Synthesis of Membrane Materials—A Mechanistic Review. Membranes 2018, 8, 56. [Google Scholar] [CrossRef]
- Mu, I.M. Water Management—Social and Technological Perspectives, 1st ed.; Mu, I.M., Ed.; CRC Press: Boca Raton, FL, USA, 2018; Volume 1, ISBN 9781315158778. [Google Scholar]
- Rehan, Z.; Gzara, L.; Khan, S.; Alamry, K.; El-Shahawi, M.S.; Albeirutty, M.; Figoli, A.; Drioli, E.; Asiri, A. Synthesis and Characterization of Silver Nanoparticles-Filled Polyethersulfone Membranes for Antibacterial and Anti-Biofouling Application. Recent Pat. Nanotechnol. 2016, 10, 231–251. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Y.; Sun, C.; Ji, H.; Zhao, W.; Suna, S.; Zhao, C. Graphene oxide-based polymeric membranes for broad water pollutant removal. RSC Adv. 2015, 5, 100651–100662. [Google Scholar] [CrossRef]
- Pichardo-Romero, D.; Garcia-Arce, Z.P.; Zavala-Ramírez, A.; Castro-Muñoz, R. Current Advances in Biofouling Mitigation in Membranes for Water Treatment: An Overview. Processes 2020, 8, 182. [Google Scholar] [CrossRef]
- Díez, B.; Rosal, R. A Critical Review of Membrane Modification Techniques for Fouling and Biofouling Control in Pressure-Driven Membrane Processes. Nanotechnol. Environ. Eng. 2020, 5, 15. [Google Scholar] [CrossRef]
- Khongnakorn, W.; Bootluck, W.; Jutaporn, P. Surface Modification of FO Membrane by Plasma-Grafting Polymerization to Minimize Protein Fouling. J.Watern Process. Eng. 2020, 38, 101633. [Google Scholar] [CrossRef]
- Vatanpour, V.; Zoqi, N. Surface Modification of Commercial Seawater Reverse Osmosis Membranes by Grafting of Hydrophilic Monomer Blended with Carboxylated Multiwalled Carbon Nanotubes. Appl. Surf. Sci. 2017, 396, 1478–1489. [Google Scholar] [CrossRef]
- Ahmed, M.A.; Amin, S.; Mohamed, A.A. Fouling in Reverse Osmosis Membranes: Monitoring, Characterization, Mitigation Strategies and Future Directions. Heliyon 2023, 9, e14908. [Google Scholar] [CrossRef]
- Gao, Q.; Duan, L.; Liu, J.; Zhang, H.; Zhao, Y. Evaluation and optimization of reverse osmosis pretreatment technology using the modified intermediate blocking model. J. Clean. Prod. 2023, 417, 138029. [Google Scholar] [CrossRef]
- McCutcheon, J.; Southam, G. Advanced Biofilm Staining Techniques for TEM and SEM in Geomicrobiology: Implications for Visualizing EPS Architecture, Mineral Nucleation, and Microfossil Generation. Chem. Geol. 2018, 498, 115–127. [Google Scholar] [CrossRef]
- Batt, C.A.; Lou, T. (Eds.) Encyclopedia of Food Microbiology, 2nd ed.; Elsevier: New York, NY, USA, 2014; Volume 1, ISBN 978-0-12-384733-1. [Google Scholar]
- Lee, J.W.; Jeong, S.-Y.; Kim, T.G. Epifluorescence Microscopy with Image Analysis as a Promising Method for Multispecies Biofilm Quantification. J. Microbiol. Biotechnol. 2023, 3, 348–355. [Google Scholar] [CrossRef]
- Ziel, R.; Haus, A.; Tulke, A. Quantification of the Pore Size Distribution (Porosity Profiles) in Microfiltration Membranes by SEM, TEM and Computer Image Analysis. J. Memb. Sci. 2008, 323, 241–246. [Google Scholar] [CrossRef]
- Mohamad, M.; Fong, Y. Preparation of Defect—Free Polysulfone Membrane: Optimization of Fabrication Method. Int. J. Sci. Dev. Res. 2016, 3, 126–131. [Google Scholar]
- Tian, J.-Y.; Chen, Z.-L.; Yang, Y.-L.; Liang, H.; Nan, J.; Li, G.-B. Consecutive chemical cleaning of fouled PVC membrane using NaOH and ethanol during ultrafiltration of river water. Water Res. 2010, 44, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Khulbe, K.C.; Feng, C.Y.; Matsuura, T. Synthetic Polymeric Membranes: Characterization by Atomic Force Microscopy, 1st ed.; Khulbe, K.C., Feng, C.Y., Matsuura, T., Eds.; Springer: Berlin, Germany, 2008; Volume 1, ISBN 9783540739944. [Google Scholar]
- Alqaheem, Y.; Alomair, A.A. Microscopy and Spectroscopy Techniques for Characterization of Polymeric Membranes. Membranes 2020, 10, 33. [Google Scholar] [CrossRef]
- Huang, Q.; Wu, H.; Cai, P.; Fein, J.B.; Chen, W. Atomic force microscopy measurements of bacterial adhesion and biofilm formation onto clay-sized particles. Sci Rep. 2015, 5, 16857. [Google Scholar] [CrossRef]
- Chen, P.; Cui, L.; Zhang, K. Surface-Enhanced Raman Spectroscopy Monitoring the Development of Dual-Species Biofouling on Membrane Surfaces. J. Memb. Sci. 2015, 473, 36–44. [Google Scholar] [CrossRef]
- Keleştemur, S.; Avci, E.; Çulha, M. Raman and Surface-Enhanced Raman Scattering for Biofilm Characterization. Chemosensors 2018, 6, 5. [Google Scholar] [CrossRef]
- Benladghem, Z.; Seddiki, S.M.L.; Dergal, F.; Mahdad, Y.M.; Aissaoui, M.; Choukchou-Braham, N. Biofouling of Reverse Osmosis Membranes: Assessment by Surface-Enhanced Raman Spectroscopy and Microscopic Imaging. Biofouling 2022, 38, 852–864. [Google Scholar] [CrossRef]
- Chatterjee, S.; Biswas, N.; Datta, A.; Dey, R.; Maiti, P. Atomic force microscopy in biofilm study. Microscopy 2014, 63, 269–278. [Google Scholar] [CrossRef]
- Henry, V.A.; Jessop, J.L.P.; Peeples, T.L. Differentiating Pseudomonas sp. strain ADP cells in suspensions and biofilms using Raman spectroscopy and scanning electron microscopy. Anal. Bioanal. Chem. 2017, 409, 1441–1449. [Google Scholar] [CrossRef]
- Song, C.L.; Kazarian, S.G. Three-dimensional depth profiling of prostate tissue by micro ATR-FTIR spectroscopic imaging with variable angles of incidence. Analyst 2019, 144, 2954–2964. [Google Scholar] [CrossRef]
- Beyenal, H.; Donovan, C.; Lewandowski, Z.; Harkin, G. Three-Dimensional Biofilm Structure Quantification. J. Microbiol. Methods 2004, 59, 395–413. [Google Scholar] [CrossRef] [PubMed]
- Daims, H.; Lücker, S.; Wagner, M. Daime, a Novel Image Analysis Program for Microbial Ecology and Biofilm Research. Environ. Microbiol. 2006, 8, 200–213. [Google Scholar] [CrossRef] [PubMed]
- Milferstedt, K.; Pons, M.N.; Morgenroth, E. Analysing Characteristic Length Scales in Biofilm Structures. Biotechnol. Bioeng. 2009, 102, 368–379. [Google Scholar] [CrossRef] [PubMed]
- West, S.; Horn, H.; Hijnen, W.A.M.; Castillo, C.; Wagner, M. Confocal Laser Scanning Microscopy as a Tool to Validate the Efficiency of Membrane Cleaning Procedures to Remove Biofilms. Sep. Purif. Technol. 2014, 122, 402–411. [Google Scholar] [CrossRef]
- Ashfaq, M.Y.; Al-Ghouti, M.A.; Qiblawey, H.; Zouari, N. Evaluating the Effect of Antiscalants on Membrane Biofouling Using FTIR and Multivariate Analysis. Biofouling 2019, 35, 1–14. [Google Scholar] [CrossRef]
- Rahman, M.M.; Al-Sulaimi, S.; Farooque, A.M. Characterization of New and Fouled SWRO Membranes by ATR/FTIR Spectroscopy. Appl. Water Sci. 2018, 8, 1–11. [Google Scholar] [CrossRef]
- Chew, S.C.; Yang, L. Encyclopedia of Food and Health. Biofilms 2016, 407–415. [Google Scholar] [CrossRef]
- Bristow, N.W.; Vogt, S.J.; Bucs, S.S.; Vrouwenvelder, J.S.; Johns, M.L.; Fridjonsson, E.O. Novel Magnetic Resonance Measurements of Fouling in Operating Spiral Wound Reverse Osmosis Membrane Modules. Water Res. 2021, 196, 117006. [Google Scholar] [CrossRef]
- Majors, P.D.; McLean, J.S.; Pinchuk, G.E.; Fredrickson, J.K.; Gorby, Y.A.; Minard, K.R.; Wind, R.A. NMR methods for in situ biofilm metabolism studies. J. Microbiol. Methods. 2005, 62, 337–344. [Google Scholar] [CrossRef]
- Ndukaife, K.O.; Ndukaife, J.C.; Agwu Nnanna, A.G. Membrane Fouling Characterization by Infrared Thermography. Infrared Phys. Technol. 2015, 68, 186–192. [Google Scholar] [CrossRef]
Incorporated MOFs | Pore Size | Particle Size | Membrane Used | Pressure Applied (bar) | Pure Water Productivity (L/m2h/bar) | Rejection for the Solution 2 g/L of NaCl | Ref. |
---|---|---|---|---|---|---|---|
(Cu-THQ) MOFs | 1.1 nm | 30–70 nm | RO OSN | 15.0 4.0 | 1.2–2.9 12.2–16.9 | 98.8–98.9% | [34] |
DMF Allura Red Ni-MOFs | <0.4 nm | N.A. | RO | 20.0 | 1.03–2.50 | 99.3–99.2% | [35] |
ZnTCPP | N.A. | 66 nm | RO | 16.0 | 1.71–4.82 | 95.6–97.4% | [36] |
ZIF-8 | 0.34 nm | 150 nm | RO | 15.5 | 2.76–3.95 | 98.9–99.2% | [37] |
ZIF-8 | 0.34 nm | 80 nm | RO | 15.0 | 1.11–2.30 | 98.4–99.4% | [38] |
S.No. | Modification Techniques of Membrane | Applications |
---|---|---|
1 | Surface coatings | Deposition of layer on membrane surface by physical adsorption process [3] |
2 | Blending | Modify the bulk morphology by blending of two or more organic and inorganic compounds [43,44] |
3 | Surface grafting | Addition of functional groups, by plasma treatment as polymerization of mixture of two different gases [45] or by UV irradiation method where free radicals generated upon irradiation by photoinitiated graft polymerization [46]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vishwakarma, V.; Kandasamy, J.; Vigneswaran, S. Surface Treatment of Polymer Membranes for Effective Biofouling Control. Membranes 2023, 13, 736. https://doi.org/10.3390/membranes13080736
Vishwakarma V, Kandasamy J, Vigneswaran S. Surface Treatment of Polymer Membranes for Effective Biofouling Control. Membranes. 2023; 13(8):736. https://doi.org/10.3390/membranes13080736
Chicago/Turabian StyleVishwakarma, Vinita, Jaya Kandasamy, and Saravanamuthu Vigneswaran. 2023. "Surface Treatment of Polymer Membranes for Effective Biofouling Control" Membranes 13, no. 8: 736. https://doi.org/10.3390/membranes13080736
APA StyleVishwakarma, V., Kandasamy, J., & Vigneswaran, S. (2023). Surface Treatment of Polymer Membranes for Effective Biofouling Control. Membranes, 13(8), 736. https://doi.org/10.3390/membranes13080736