Recovery of Homogeneous Platinoid Catalysts from Pharmaceutical Media: Review on the Existing Treatments and the Perspectives of Membrane Processes
Abstract
:1. Introduction
1.1. General Information about Platinoids
1.1.1. Use of Platinoids in Industries
1.1.2. Ecotoxicity and Human Toxicity
1.1.3. Rarity and Buying Costs
1.2. Platinoid-Catalyzed Cross-Coupling Reactions
1.2.1. Carbon–Carbon Bonding
1.2.2. Carbon–Nitrogen Bonding
1.3. Life Cycle of a Suzuki’s Catalyst
1.3.1. Suzuki’s Catalysts
1.3.2. Catalyst Degradation
1.3.3. Catalyst Regeneration
1.3.4. Benefits of Catalyst Recovery
2. Treatment Processes for Rare Metal Recovery
2.1. Heterogeneous Catalysts
2.2. Adsorption Processes
2.3. Liquid–Liquid Extractions
2.4. Catalysts’ Intrinsic Properties
2.5. Electrochemical Processes
2.6. Comparison of Treatment Processes
3. State-of-the-Art Catalyst Recovery by Membrane Processes
3.1. Membrane Processes
3.2. Membrane Materials
3.3. Catalyst Enlargement
3.3.1. Use of Another Catalyst with Similar Activity
3.3.2. Ligand Modification Starting from a Known Catalyst
3.3.3. Pincer Ligands
3.3.4. Support Molecules
3.3.5. Nanomicellar Complexes
3.4. Operation of a Membrane Process
3.4.1. Continuous Processes without Fresh Catalyst Input
3.4.2. Continuous Processes with Fresh Catalyst Input
3.5. Combined Processes Using Membranes
3.5.1. Coupled Processes with a Liquid–Liquid Extraction
3.5.2. Membrane Adsorption
3.6. Comparison of Membrane Processes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Dey, S.; Mehta, N.S. Automobile Pollution Control Using Catalysis. Resour. Environ. Sustain. 2020, 2, 100006. [Google Scholar] [CrossRef]
- Cao, Y.; Ran, R.; Wu, X.; Si, Z.; Kang, F.; Weng, D. Progress on Metal-Support Interactions in Pd-Based Catalysts for Automobile Emission Control. J. Environ. Sci. 2023, 125, 401–426. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.; Yang, C.; Csuk, R.; Song, B.; Li, S. Palladium Catalyzed Enantioselective Hayashi–Miyaura Reaction for Pharmaceutically Important 4-Aryl-3,4-Dihydrocoumarins. Org. Lett. 2022, 24, 1329–1334. [Google Scholar] [CrossRef] [PubMed]
- Shaalan, Y.; Boulton, L.; Jamieson, C. Ruthenium-Catalyzed Ester Reductions Applied to Pharmaceutical Intermediates. Org. Process Res. Dev. 2020, 24, 2745–2751. [Google Scholar] [CrossRef]
- Johansson Seechurn, C.C.C.; Kitching, M.O.; Colacot, T.J.; Snieckus, V. Palladium-Catalyzed Cross-Coupling: A Historical Contextual Perspective to the 2010 Nobel Prize. Angew. Chem. Int. Ed. 2012, 51, 5015–5256. [Google Scholar] [CrossRef]
- Le Prix Nobel de Chimie Attribué à un Américain et Deux Japonais. Available online: https://www.lemonde.fr/planete/article/2010/10/06/le-prix-nobel-de-chimie-attribue-a-un-americain-et-deux-japonais_1420979_3244.html (accessed on 8 January 2023).
- Zhao, X.; Han, L.; Xiao, J.; Wang, L.; Liang, T.; Liao, X. A Comparative Study of the Physiological and Biochemical Properties of Tomato (Lycopersicon esculentum M.) and Maize (Zea mays L.) under Palladium Stress. Sci. Total Environ. 2020, 705, 135938. [Google Scholar] [CrossRef]
- Cristaudo, A.; Sera, F.; Severino, V.; De Rocco, M.; Di Lella, E.; Picardo, M. Occupational Hypersensitivity to Metal Salts, Including Platinum, in the Secondary Industry. Allergy 2005, 60, 159–164. [Google Scholar] [CrossRef]
- Melber, C.; Keller, D.; Mangelsdorf, I. Environmental Health Criteria 226: Palladium. Environ. Health Crit. 2002, 181–201. Available online: https://apps.who.int/iris/bitstream/handle/10665/42401/WHO_EHC_226.pdf (accessed on 23 July 2023).
- Ravindra, K.; Bencs, L.; Grieken, R.V. Platinum Group Elements in the Environment and Their Health Risk. Sci. Total Environ. 2004, 318, 1–43. [Google Scholar] [CrossRef]
- Iavicoli, I.; Bocca, B.; Carelli, G.; Caroli, S.; Caimi, S.; Alimonti, A.; Fontana, L. Biomonitoring of Tram Drivers Exposed to Airborne Platinum, Rhodium and Palladium. Int. Arch. Occup. Environ. Health 2007, 81, 109–114. [Google Scholar] [CrossRef]
- Balaram, V. Environmental Impact of Platinum, Palladium, and Rhodium Emissions from Autocatalytic Converters—A Brief Review of the Latest Developments. In Handbook of Environmental Materials Management; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Barbalace, K. Periodic Table of Elements: Palladium—Pd. Available online: https://environmentalchemistry.com/yogi/periodic/Pd.html (accessed on 8 January 2023).
- Njini, F. Palladium Set to Rally for Years on Shortages, Top Miner Says. Available online: https://www.bloomberg.com/news/articles/2022-04-11/palladium-set-to-rally-for-years-on-shortages-top-miner-says (accessed on 8 January 2023).
- Cours Actuel du Palladium en Direct. Available online: https://www.prix-or.fr/cours-du-palladium/ (accessed on 26 April 2023).
- Cours Actuel du Rhodium en Direct. Available online: https://www.prix-or.fr/cours-du-rhodium/ (accessed on 26 April 2023).
- Johnson Matthey. PGM Market Report May 2023; Johnson Matthey: San Jose, CA, USA, 2023. [Google Scholar]
- Sigma-Aldrich. Available online: https://www.sigmaaldrich.com/FR/fr/search/pdcl2(pph3)2?focus=products&page=1&perpage=30&sort=relevance&term=pdcl2%28pph3%292&type=product (accessed on 15 March 2023).
- Arthur, J.B.; David, H.W. Homogeneous Hydrogenation Catalysts in Organic Synthesis. Org. React. 2011, 24, 1–186. [Google Scholar] [CrossRef]
- Vougioukalakis, G.C.; Grubbs, R.H. Ruthenium-Based Heterocyclic Carbene-Coordinated Olefin Metathesis Catalysts. Chem. Rev. 2010, 110, 1746–1787. [Google Scholar] [CrossRef] [PubMed]
- Miyaura, N.; Yamada, K.; Suzuki, A. A New Stereospecific Cross-Coupling by the Palladium-Catalyzed Reaction of 1-Alkenylboranes with 1-Alkenyl or 1-Alkynyl Halides. Tetrahedron Lett. 1979, 20, 3437–3440. [Google Scholar] [CrossRef]
- Baba, S.; Negishi, E. A Novel Stereospecific Alkenyl-Alkenyl Cross-Coupling by a Palladium- or Nickel-Catalyzed Reaction of Alkenylalanes with Alkenyl Halides. J. Am. Chem. Soc. 1976, 98, 6729–6731. [Google Scholar] [CrossRef]
- Tsai, S.-Y.; Huang, Y.-W.; Chou, C.-M. Carboxylate-Directed Palladium-Catalyzed Regioselective Mizoroki-Heck Alkenylation of γ,Δ-Unsaturated Carboxylic Acids. Adv. Synth. Catal. 2023, 365, 699–703. [Google Scholar] [CrossRef]
- Miyagi, S.; Yokoo, R.; Tanigawa, T.; Pitna, D.B.; Hirose, M.; Usuki, T. Synthesis of Desmosine-BSA/KLH Conjugates via Sonogashira/Negishi Cross-Coupling Reactions. Tetrahedron Lett. 2022, 90, 153616. [Google Scholar] [CrossRef]
- Takeda, Y.; Ikeda, Y.; Kuroda, A.; Tanaka, S.; Minakata, S. Pd/NHC-Catalyzed Enantiospecific and Regioselective Suzuki− Miyaura Arylation of 2-Arylaziridines: Synthesis of Enantioenriched 2-Arylphenethylamine Derivatives. J. Am. Chem. Soc. 2014, 136, 8544–8547. [Google Scholar] [CrossRef]
- Ng, S.S.; Chen, Z.; Yuen, O.Y.; So, C.M. Palladium-Catalyzed Chemoselective Borylation of (Poly)Halogenated Aryl Triflates and Their Application in Consecutive Reactions. Adv. Synth. Catal. 2022, 364, 1596–1601. [Google Scholar] [CrossRef]
- Stille, J.K. The Palladium-Catalyzed Cross-Coupling Reactions of Organotin Reagents with Organic Electrophiles [New Synthetic Methods (58)]. Angew. Chem. Int. Ed. Engl. 1986, 25, 508–524. [Google Scholar] [CrossRef]
- Makhloutah, A.; Hatych, D.; Chartier, T.; Rocard, L.; Goujon, A.; Felpin, F.-X.; Hudhomme, P. An Investigation of Palladium-Catalyzed Stille-Type Cross-Coupling of Nitroarenes in Perylenediimide Series. Org. Biomol. Chem. 2022, 20, 362–365. [Google Scholar] [CrossRef]
- Sonogashira, K. Development of Pd–Cu Catalyzed Cross-Coupling of Terminal Acetylenes with Sp2-Carbon Halides. J. Organomet. Chem. 2002, 653, 46–49. [Google Scholar] [CrossRef]
- Cao, Y.; Yang, H.; Blakemore, P.R. Synthesis of Thioalkynes by Desilylative Sonogashira Cross-Coupling of Aryl Iodides and 1-Methylthio-2-(Trimethylsilyl)Ethyne. Eur. J. Org. Chem. 2022, 2022, e202200498. [Google Scholar] [CrossRef]
- Heck, R.F.; Nolley, J.P. Palladium-Catalyzed Vinylic Hydrogen Substitution Reactions with Aryl, Benzyl, and Styryl Halides. J. Org. Chem. 1972, 37, 2320–2322. [Google Scholar] [CrossRef]
- Paul, F.; Patt, J.; Hartwig, J.F. Palladium-Catalyzed Formation of Carbon-Nitrogen Bonds. Reaction Intermediates and Catalyst Improvements in the Hetero Cross-Coupling of Aryl Halides and Tin Amides. J. Am. Chem. Soc 1994, 116, 5969–5970. [Google Scholar] [CrossRef]
- Guram, A.S.; Buchwald, S.L. Palladium-Catalyzed Aromatic Aminations with in Situ Generated Aminostannanes. J. Am. Chem. Soc. 1994, 116, 7901–7902. [Google Scholar] [CrossRef]
- Zhong, J.; Long, Y.; Yan, X.; He, S.; Ye, R.; Xiang, H.; Zhou, X. Rhodium-Catalyzed Pyridine N-Oxide Assisted Suzuki–Miyaura Coupling Reaction via C(O)–C Bond Activation. Org. Lett. 2019, 21, 9790–9794. [Google Scholar] [CrossRef]
- Xu, J.-X.; Zhao, F.; Franke, R.; Wu, X.-F. Ruthenium-Catalyzed Suzuki Coupling of Anilines with Alkenyl Borates via Selective Aryl CN Bond Cleavage. Catal. Commun. 2020, 140, 106009. [Google Scholar] [CrossRef]
- Nair, P.P.; Philip, R.M.; Anilkumar, G. Nickel Catalysts in Sonogashira Coupling Reactions. Org. Biomol. Chem. 2021, 19, 4228–4242. [Google Scholar] [CrossRef]
- Zheng, Y.-L.; Newman, S.G. Nickel-Catalyzed Domino Heck-Type Reactions Using Methyl Esters as Cross-Coupling Electrophiles. Angew. Chem. Int. Ed. 2019, 58, 18159–18164. [Google Scholar] [CrossRef]
- Bhattacherjee, D.; Rahman, M.; Ghosh, S.; Bagdi, A.K.; Zyryanov, G.V.; Chupakhin, O.N.; Das, P.; Hajra, A. Advances in Transition-Metal Catalyzed Carbonylative Suzuki-Miyaura Coupling Reaction: An Update. Adv. Synth. Catal. 2021, 363, 1597–1624. [Google Scholar] [CrossRef]
- Moyo, P.S.; Matsinha, L.C.; Makhubela, B.C.E. Mizoroki-Heck Carbon-Carbon Cross-Coupling Reactions by Water-Soluble Palladium (II) Complexes in Neat Water. Tetrahedron Lett. 2021, 78, 153274. [Google Scholar] [CrossRef]
- Weeden, J.A.; Huang, R.; Galloway, K.D.; Gingrich, P.W.; Frost, B.J. The Suzuki Reaction in Aqueous Media Promoted by P, N Ligands. Molecules 2011, 16, 6215–6231. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Wang, J.; Shang, W.; Chai, Y.; Dai, W.; Wu, G.; Guan, N.; Li, L. Zeolite-Encaged Palladium Catalysts for Heterogeneous Suzuki-Miyaura Cross-Coupling Reactions. Catal. Today 2023, 410, 237–246. [Google Scholar] [CrossRef]
- Papp, A.; Tóth, D.; Molnár, Á. Suzuki-Miyaura Coupling on Heterogenous Palladium Catalysts. React. Kinet. Catal. Lett. 2006, 87, 335–342. [Google Scholar] [CrossRef]
- Vásquez-Céspedes, S.; Betori, R.C.; Cismesia, M.A.; Kirsch, J.K.; Yang, Q. Heterogeneous Catalysis for Cross-Coupling Reactions: An Underutilized Powerful and Sustainable Tool in the Fine Chemical Industry? Org. Process Res. Dev. 2021, 25, 740–753. [Google Scholar] [CrossRef]
- Chul, W.L.; Lee, J.S.; Cho, N.S.; Kim, K.D.; Lee, S.M.; Oh, J.S. Palladium-Catalyzed Oxidation of Triphenylphosphine. J. Mol. Catal. 1993, 80, 31–41. [Google Scholar] [CrossRef]
- Cotton, S.A. Chemistry of Precious Metals; Springer: Dordrecht, The Netherlands, 1997. [Google Scholar]
- Wong, H.; Pink, C.J.; Ferreira, F.C.; Livingston, A.G. Recovery and Reuse of Ionic Liquids and Palladium Catalyst for Suzuki Reactions Using Organic Solvent Nanofiltration. Green Chem. 2006, 8, 373–379. [Google Scholar] [CrossRef]
- Janssen, M.; Wilting, J.; Müller, C.; Vogt, D. Continuous Rhodium-Catalyzed Hydroformylation of 1-Octene with Polyhedral Oligomeric Silsesquioxanes (POSS) Enlarged Triphenylphosphine. Angew. Chem. Int. Ed. 2010, 49, 7738–7741. [Google Scholar] [CrossRef]
- Gerlach, M.; Jameel, F.; Seidel-Morgenstern, A.; Stein, M.; Hamel, C. Operando Characterization of Rhodium Catalyst Degradation in Hydroformylation. Catal. Sci. Technol. 2023, 13, 1788. [Google Scholar] [CrossRef]
- Zeng, L.; Wang, Y.; Hong Nhung, N.T.; He, C.; Chen, H.; Wang, X.; Wei, Y.; Dodbida, G.; Fujita, T. Double Recovery and Regeneration of Pt/C Catalysts: Both Platinum from the Spent Proton Exchange Membrane Fuel Cell Stacks and Carbon from the Pomelo Peel. Electrochim. Acta 2022, 428, 140918. [Google Scholar] [CrossRef]
- ICH.Org. Available online: https://www.ich.org/ (accessed on 6 July 2023).
- Guideline for Elemental Impurities Q3D(R2); International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH): Prague, Czech Republic, 2022.
- Sverdrup, H.U.; Ragnarsdottir, K.V. A System Dynamics Model for Platinum Group Metal Supply, Market Price, Depletion of Extractable Amounts, Ore Grade, Recycling and Stocks-in-Use. Resour. Conserv. Recycl. 2016, 114, 130–152. [Google Scholar] [CrossRef]
- LePan, N. Palladium: The Secret Weapon in Fighting Pollution. Available online: https://www.visualcapitalist.com/palladium-the-secret-weapon-in-fighting-pollution/ (accessed on 7 July 2023).
- Poovan, F.; Chandrashekhar, V.G.; Natte, K.; Jagadeesh, R.V. Synergy between Homogeneous and Heterogeneous Catalysis. Catal. Sci. Technol. 2022, 12, 6623–6649. [Google Scholar] [CrossRef]
- Antony, A.M.; Kandathil, V.; Kempasiddaiah, M.; Dateer, R.B.; Patil, S.A. Magnetic Nanoparticles Embedded Hexagonal Boron Nitride Tethered N -Heterocyclic Carbene-Palladium(II): An Efficient and Reusable Magnetic Catalyst for Fluoride-Free Hiyama Cross-Coupling and 4-Nitrophenol Reduction Reactions. J. Phys. Chem. Solids 2023, 177, 111283. [Google Scholar] [CrossRef]
- Rahman, L.; Sarjadi, M.S.; Akhter, M.S.; Hannan, J.J.; Sarkar, S.M. Silica-Coated Magnetic Palladium Nanocatalyst for Suzuki-Miyaura Cross-Coupling. Arab. J. Chem. 2022, 15, 103983. [Google Scholar] [CrossRef]
- Dubey, A.V.; Kumar, A.V. A Biomimetic Magnetically Recoverable Palladium Nanocatalyst for Suzuki Cross-Coupling Reaction. RSC Adv. 2016, 6, 46864–46870. [Google Scholar] [CrossRef]
- Zheng, K.; Yang, F.; Huang, Z.; Zhan, Y.; Xiao, Z.; Li, W.; Wang, W.; Qin, C. Preparation of Chitosan Film-Loaded Palladium Catalyst Materials and Their Application in Suzuki Coupling Reactions. J. Mater. Res. Technol. 2022, 20, 3905–3917. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Z.; Wang, Y.; Dong, J.; Jia, X.; Hu, Z.; Wei, Q.; Zhang, W.; Jiang, Y.; Zhang, J.; et al. Schiff Base Modified Starch: A Promising Biosupport for Palladium in Suzuki Cross-Coupling Reactions. Int. J. Biol. Macromol. 2023, 233, 123596. [Google Scholar] [CrossRef]
- Awual, R.; Yaita, T.; El-Safty, S.A.; Shiwaku, H.; Okamoto, Y.; Suzuki, S. Investigation of Palladium(II) Detection and Recovery Using Ligand Modified Conjugate Adsorbent. Chem. Eng. J. 2013, 222, 172–179. [Google Scholar] [CrossRef]
- Chaudhuri, H.; Lin, X.; Yun, Y.-S. Graphene Oxide-Based Dendritic Adsorbent for the Excellent Capturing of Platinum Group Elements. J. Hazard. Mater. 2023, 451, 131206. [Google Scholar] [CrossRef]
- Gregg, Z.R.; Glickert, E.; Xu, R.; Diver, S.T. Ruthenium Removal Using Silica-Supported Aromatic Isocyanides. J. Organomet. Chem. 2021, 944, 121800. [Google Scholar] [CrossRef]
- Sharma, S.; Santhana Krishna Kumar, A.; Rajesh, N. A Perspective on Diverse Adsorbent Materials to Recover Precious Palladium and the Way Forward. RSC Adv. 2017, 7, 52133–52142. [Google Scholar] [CrossRef]
- Hasani, M. Selective Recovery of Pt, Pd, and Rh from Spent Catalysts by Functionalized Magnetite Nanoparticles. J. Min. Environ. 2022, 13, 483–493. [Google Scholar] [CrossRef]
- Grad, O.; Ciopec, M.; Negrea, A.; Duteanu, N.; Vlase, G.; Negrea, P.; Dumitrescu, C.; Vlase, T.; Vodă, R. Precious Metals Recovery from Aqueous Solutions Using a New Adsorbent Material. Sci. Rep. 2021, 11, 2016. [Google Scholar] [CrossRef] [PubMed]
- Asere, T.G.; Mincke, S.; Folens, K.; Vanden Bussche, F.; Lapeire, L.; Verbeken, K.; Van Der Voort, P.; Tessema, D.A.; Du Laing, G.; Stevens, C.V. Dialdehyde Carboxymethyl Cellulose Cross-Linked Chitosan for the Recovery of Palladium and Platinum from Aqueous Solution. React. Funct. Polym. 2019, 141, 145–154. [Google Scholar] [CrossRef]
- Akiba, N.; Omori, A.T.; Gaubeur, I. Kraft Lignin and Its Derivates—A Study on the Adsorption of Mono and Multielement Metals, Potential Use for Noble Metal Recycling and an Alternative Material for Solid Base Catalyst. Chemosphere 2022, 308, 136538. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Rajesh, N. Expeditious Preparation of β-Cyclodextrin Grafted Chitosan Using Microwave Radiation for the Enhanced Palladium Adsorption from Aqueous Waste and an Industrial Catalyst. J. Environ. Chem. Eng. 2017, 5, 1927–1935. [Google Scholar] [CrossRef]
- Ryberg, P. Development of a Mild and Robust Method for Large-Scale Palladium-Catalysed Cyanation of Aryl Bromides: Importance of the Order of Addition. Org. Process Res. Dev. 2008, 12, 540–543. [Google Scholar] [CrossRef]
- Stumpf, A.; McClory, A.; Yajima, H.; Segraves, N.; Angelaud, R.; Gosselin, F. Development of an Efficient, Safe, and Environmentally Friendly Process for the Manufacture of GDC-0084. Org. Process Res. Dev. 2016, 20, 751–759. [Google Scholar] [CrossRef]
- Case Study: Two-Steps Purification with E-PAK® Cartridges Following a Direct Pd-Catalyzed Borylation. Available online: https://www.silicycle.com/products/e-pak-purification-cartridges/case-study (accessed on 9 May 2023).
- Lee, J.; Kurniawan; Hong, H.-J.; Chung, K.W.; Kim, S. Separation of Platinum, Palladium and Rhodium from Aqueous Solutions Using Ion Exchange Resin: A Review. Sep. Purif. Technol. 2020, 246, 116896. [Google Scholar] [CrossRef]
- Moleko-Boyce, P.; Makelane, H.; Ngayeka, M.Z.; Tshentu, Z.R. Recovery of Platinum Group Metals from Leach Solutions of Spent Catalytic Converters Using Custom-Made Resins. Minerals 2022, 12, 361. [Google Scholar] [CrossRef]
- Firmansyah, M.L.; Kubota, F.; Masahiro, G. Selective Recovery of Platinum Group Metals from Spent Automotive Catalysts by Leaching and Solvent Extraction. ACS Sustain. Chem. Eng. 2019, 52, 835–842. [Google Scholar] [CrossRef]
- Rzelewska-Piekut, M.; Regel-Rosocka, M. Separation of Pt(IV), Pd(II), Ru(III) and Rh(III) from Model Chloride Solutions by Liquid-Liquid Extraction with Phosphonium Ionic Liquids. Sep. Purif. Technol. 2019, 212, 791–801. [Google Scholar] [CrossRef]
- Gupta, B.; Singh, I. Extraction and Separation of Platinum, Palladium and Rhodium Using Cyanex 923 and Their Recovery from Real Samples. Hydrometallurgy 2013, 134–135, 11–18. [Google Scholar] [CrossRef]
- Paiva, A.P.; Piedras, F.V.; Rodrigues, P.G.; Nogueira, C.A. Hydrometallurgical Recovery of Platinum-Group Metals from Spent Auto-Catalysts—Focus on Leaching and Solvent Extraction. Sep. Purif. Technol. 2022, 286, 120474. [Google Scholar] [CrossRef]
- Radzyminska-Lenarcik, E.; Pyszka, I.; Kosciuszko, A. Separation and Recovery of Gold(III), Palladium(II) and Platinum(IV) by Solvent Extraction Using a New β-Diketone Derivative from Acidic Solutions. Materials 2021, 14, 4436. [Google Scholar] [CrossRef]
- McCrary, A.L.; Howard, W.L. Chelating Agents. In Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed.; John Wiley and Sons: Hoboken, NJ, USA, 2000; Volume 5, pp. 339–368. [Google Scholar] [CrossRef]
- Dreimann, J.M.; Hoffmann, F.; Skiborowski, M.; Behr, A.; Vorholt, A.J. Merging Thermomorphic Solvent Systems and Organic Solvent Nanofiltration for Hybrid Catalyst Recovery in a Hydroformylation Process. Ind. Eng. Chem. Res. 2017, 56, 1354–1359. [Google Scholar] [CrossRef]
- Tessema, E.; Fan, Y.-W.; Chiu, C.-F.; Elakkat, V.; Rahayu, H.A.; Shen, C.-R.; Shanthakumar, K.C.; Zhang, P.; Lu, N. Recoverable Low Fluorine Content Palladium Complex-Catalyzed Suzuki-Miyaura and Sonogashira Coupling Reactions under Thermomorphic Mode. Tetrahedron 2022, 122, 132961. [Google Scholar] [CrossRef]
- Ghalehkhondabi, V.; Fazlali, A.; Daneshpour, F. Electrochemical Extraction of Palladium from Spent Heterogeneous Catalysts of a Petrochemical Unit Using the Leaching and Flat Plate Graphite Electrodes. Sep. Purif. Technol. 2021, 258, 117527. [Google Scholar] [CrossRef]
- Varentsov, V.K.; Varentsova, V.I. Electrolysis with Fibrous Carbon Electrodes in Recovery of Platinum Metals from Mineral and Secondary Raw Materials. Russ. J. Appl. Chem. 2020, 93, 1068–1076. [Google Scholar] [CrossRef]
- Warner, N.; Free, M.L. The Electrochemical Recovery of Metallic Palladium from Spent Electroless Plating Solution. JOM 2009, 61, 27–30. [Google Scholar] [CrossRef]
- Horbaczewskyj, C.S.; Fairlamb, I.J.S. Pd-Catalyzed Cross-Couplings: On the Importance of the Catalyst Quantity Descriptors, Mol % and Ppm. Org. Process Res. Dev. 2022, 26, 2240–2269. [Google Scholar] [CrossRef]
- Blackburn, J.W. Electrodialysis Applications for Pollution Prevention in the Chemical Processing Industry. J. Air Waste Manag. Assoc. 1999, 49, 934–942. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Gwak, G.; Dorji, P.; He, D.; Phuntsho, S.; Hong, S.; Shon, H. Palladium Recovery through Membrane Capacitive Deionization (MCDI) from Metal Plating Wastewater. ACS Sustain. Chem. Eng. 2018, 6, 1692–1701. [Google Scholar] [CrossRef]
- Juve, J.-M.A.; Christensen, F.M.S.; Wang, Y.; Wei, Z. Electrodialysis for Metal Removal and Recovery: A Review. Chem. Eng. J. 2022, 435, 134857. [Google Scholar] [CrossRef]
- Beletskaya, I.P.; Kashin, A.N.; Khotina, I.A.; Khokhlov, A.R. Efficient and Recyclable Catalyst of Palladium Nanoparticles Stabilized by Polymer Micelles Soluble in Water for Suzuki–Miyaura Reaction, Ostwald Ripening Process with Palladium Nanoparticles. Synlett 2008, 2008, 1547–1552. [Google Scholar] [CrossRef]
- Milano-Brusco, J.S.; Nowothnick, H.; Schwarze, M.; Schomäcker, R. Catalytic Reactions in Surfactant Systems:Product Isolation and Catalyst Recycling. Ind. Eng. Chem. Res. 2010, 49, 1098–1104. [Google Scholar] [CrossRef]
- Balaska, F.; Bencheikh-Lehocine, M.; Chikhi, M.; Meniai, A.-H.; Bouledjouidja, A. Experimental Study and Simulation of Complexation Reaction of Chromium by EDTA for Its Recovery by Ultrafiltration. Energy Procedia 2012, 19, 249–258. [Google Scholar] [CrossRef]
- Esser, T.; Huber, M.; Voß, D.; Albert, J. Development of an Efficient Downstream Process for Product Separation and Catalyst Recycling of a Homogeneous Polyoxometalate Catalyst by Means of Nanofiltration Membranes and Design of Experiments. Chem. Eng. Res. Des. 2022, 185, 37–50. [Google Scholar] [CrossRef]
- Vondran, J.; Peters, M.; Schnettger, A.; Sichelschmidt, C.; Seidensticker, T. From Tandem to Catalysis—Organic Solvent Nanofiltration for Catalyst Separation in the Homogeneously W-Catalyzed Oxidative Cleavage of Renewable Methyl 9,10-Dihydroxystearate. Catal. Sci. Technol. 2022, 12, 3622. [Google Scholar] [CrossRef]
- Xaba, B.M.; Modise, S.J.; Okoli, B.J.; Monapathi, M.E.; Nelana, S. Characterization of Selected Polymeric Membranes Used in the Separation and Recovery of Palladium-Based Catalyst Systems. Membranes 2020, 10, 166. [Google Scholar] [CrossRef]
- Keraani, A.; Renouard, T.; Fischmeister, C.; Rabiller-Baudry, M. Recyclage de catalyseurs volumineux par nanofiltration. In Récents Progrès en Génie des Procédés; SFGP: Paris, France, 2009; Available online: https://www.researchgate.net/publication/236584293_Recyclage_de_catalyseurs_volumineux_par_nanofiltration_synergie_entre_un_procede_de_separation_vert_et_une_ingenierie_moleculaire (accessed on 6 July 2023).
- Chau, J.; Sirkar, K.K. Organic Solvent Mixture Separation during Reverse Osmosis and Nanofiltration by a Perfluorodioxole Copolymer Membrane. J. Membr. Sci. 2021, 618, 118663. [Google Scholar] [CrossRef]
- Liu, C.; Dong, G.; Tsuru, T.; Matsuyama, H. Organic Solvent Reverse Osmosis Membranes for Organic Liquid Mixture Separation: A Review. J. Membr. Sci. 2021, 650, 118882. [Google Scholar] [CrossRef]
- Xiang, H.; Min, X.; Tang, C.-J.; Sillanpää, M.; Zhao, F. Recent Advances in Membrane Filtration for Heavy Metal Removal from Wastewater: A Mini Review. J. Water Process Eng. 2022, 49, 103023. [Google Scholar] [CrossRef]
- Cui, Y.; Chung, T.-S. Pharmaceutical Concentration Using Organic Solvent Forward Osmosis for Solvent Recovery. Nat. Commun. 2018, 9, 1426. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Luo, X.; Zhang, J.; Zhang, F.; Fang, W.; Jin, J. Polymer Membranes for Organic Solvent Nanofiltration: Recent Progress, Challenges and Perspectives. Adv. Membr. 2023, 3, 100063. [Google Scholar] [CrossRef]
- Chen, Y.; Toth, M.; He, C. Facile and Fast Fabrication of High Structure-Stable Thin Film Nanocomposite Membrane for Potential Application in Solvent Resistance Nanofiltration. Appl. Surf. Sci. 2019, 496, 143483. [Google Scholar] [CrossRef]
- Han, R.; Wu, K.; Xu, L. Facile Preparation of Loose P84 Copolyimide/GO Composite Membrane with Excellent Selectivity and Solvent Resistance. Polymers 2022, 14, 1353. [Google Scholar] [CrossRef]
- Razak, N.; Shaharun, M.S.; Mukhtar, H.; Taha, M. Separation of Hydridocarbonyltris(Triphenylphosphine) Rhodium (I) Catalyst Using Solvent Resistant Nanofiltration Membrane. Sains Malays. 2013, 42, 515–520. [Google Scholar]
- White, L.S. Transport Properties of a Polyimide Solvent Resistant Nanofiltration Membrane. J. Membr. Sci. 2002, 205, 191–202. [Google Scholar] [CrossRef]
- Tandel, A.M.; Guo, W.; Bye, K.; Huang, L.; Galizia, M.; Lin, H. Designing Organic Solvent Separation Membranes: Polymers, Porous Structures, 2D Materials, and Their Combinations. Mater. Adv. 2021, 2, 4574–4603. [Google Scholar] [CrossRef]
- Su, Q.; Wang, Y.; Chen, J.; Zhao, D.; Long, H.; Li, M. Ultrafast Organic Solvent Nanofiltration in C–C Bonded Conjugated Microporous Membrane-Based Nanochannels by Space-Confined Polymerization. Chem. Eng. J. 2023, 457, 141130. [Google Scholar] [CrossRef]
- Ormerod, D.; Lefevre, N.; Dorbec, M.; Eyskens, I.; Vloemans, P.; Duyssens, K.; Maes, B.U.W. Potential of Homogeneous Pd Catalyst Separation by Ceramic Membranes. Application to Downstream and Continuous Flow Processes. Org. Process Res. Dev. 2016, 20, 911–920. [Google Scholar] [CrossRef]
- Kim, T.; Lingam, G.K.; Paul, B.K.; Remcho, V.T. On-Line, Continuous Nanofiltration of Gold Eleven Nanoparticles (Au11) Produced Synthetically in a Microreactor. Presented at the MicroTAS 2009. In Proceedings of the 13th International Conference on Miniaturized Systems for Chemistry and Life Sciences, Hangzhou, China, 23–27 October 2009. [Google Scholar]
- Zuo, Y.; Yao, Y.; Chen, C.; Liang, Y.; Yang, K.-F.; Li, Z.; Lai, G.-Q.; Zhang, P.; Luh, T.-Y. Chemoselective Ring-Opening Metathesis Polymerization of Cyclopropenes Spirally Appended with N-Aryl Saturated Heterocycles. Polym. Chem. 2022, 14, 600–607. [Google Scholar] [CrossRef]
- Martínez, J.P.; Trzaskowski, B. Electrophilicity of Hoveyda-Grubbs Olefin Metathesis Catalysts as the Driving Force That Controls Initiation Rates. ChemPhysChem 2022, 23, e202200580. [Google Scholar] [CrossRef] [PubMed]
- Ettari, R.; Micale, N. Chloro-Substituted Hoveyda–Grubbs Ruthenium Carbene: Investigation of Electronic Effects. J. Organomet. Chem. 2007, 692, 3574–3576. [Google Scholar] [CrossRef]
- JM Catalyst Product Guide. Available online: https://matthey.com/-/media/health-assets/catalysts/product-guide/jm-catalysts-brochure-a4-2020.pdf (accessed on 15 October 2020).
- Govdi, A.I.; Vasilevsky, S.F.; Malysheva, S.F.; Kazheva, O.N.; Dyachenko, O.A.; Kuimov, V.A. Tri(1-naphthyl)Phosphine as a Ligand in Palladium-free Sonogashira Cross-coupling of Arylhalogenides with Acetylenes. Heteroat. Chem. 2018, 29, 21443. [Google Scholar] [CrossRef]
- Tang, J.; Gooßen, L.J. Arylalkene Synthesis via Decarboxylative Cross-Coupling of Alkenyl Halides. Org. Lett. 2014, 16, 2664–2667. [Google Scholar] [CrossRef]
- Lejeune, A.; Le Goanvic, L.; Renouard, T.; Couturier, J.-L.; Dubois, J.-L.; Carpentier, J.-F.; Rabiller-Baudry, M. Coupling Rhodium-Catalyzed Hydroformylation of 10-Undecenitrile with Organic Solvent Nanofiltration: Toluene Solution versus Solvent-Free Processes. ChemPlusChem 2019, 84, 1744–1760. [Google Scholar] [CrossRef] [PubMed]
- Kargar, H.; Fallah-Mehrjardi, M.; Behjatmanesh-Ardakani, R.; Bahadori, M.; Moghadam, M.; Muhammad, A.; Munawar, K.S.; Tahir, M.N. Pd(II) and Ni(II) Complexes Containing ONNO Tetradentate Schiff Base Ligand: Synthesis, Crystal Structure, Spectral Characterization, Theoretical Studies, and Use of PdL as an Efficient Homogeneous Catalyst for Suzuki–Miyaura Cross-Coupling Reaction. Polyhedron 2022, 213, 115622. [Google Scholar] [CrossRef]
- Bei, X.; Turner, H.W.; Weinberg, W.H.; Guram, A.S.; Petersen, J.L. Palladium/P,O-Ligand-Catalyzed Suzuki Cross-Coupling Reactions of Arylboronic Acids and Aryl Chlorides. Isolation and Structural Characterization of (P,O)-Pd(Dba) Complex. J. Org. Chem. 1999, 64, 6797–6803. [Google Scholar] [CrossRef]
- Somjit, V.; Wong Chi Man, M.; Ouali, A.; Sangtrirutnugul, P.; Ervithayasuporn, V. Heterogeneous Pd/POSS Nanocatalysts for C–C Cross-Coupling Reactions. ChemistrySelect 2018, 3, 753–759. [Google Scholar] [CrossRef]
- Kajetanowicz, A.; Czaban, J.; Krishnan, G.R.; Wozniak, K.; Siddique, H.; Peeva, L.G.; Livingston, A.G.; Grela, K. Batchwise and Continuous Nanofiltration of POSS-Tagged Grubbs–Hoveyda-Type Olefin Metathesis Catalysts. ChemSusChem 2013, 6, 182–192. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, M.R.; Yamada, M.; Kondo, Y.; Shibayama, A.; Hamada, F. Rapid and selective extraction of Pd(ii) ions using the SCS type pincer ligand 1,3-bis(dimethylthiocarbamoyloxy)benzene, and its Pd(ii) extraction mechanism. RSC Adv. 2016, 6, 1243–1252. [Google Scholar] [CrossRef]
- Goni, A.; Rosenberg, E.; Meregude, S.; Abbott, G. A Methods Study of Immobilization of PONOP Pincer Transition Metal Complexes on Silica Polyamine Composites (SPC). J. Organomet. Chem. 2016, 807, 1–10. [Google Scholar] [CrossRef]
- Rajabi, F.; Burange, A.S.; Voskressensky, L.G.; Luque, R. Supported Phosphine Free Bis-NHC Palladium Pincer Complex: An Efficient Reusable Nanocatalyst for Suzuki-Miyaura Coupling Reaction. Mol. Catal. 2021, 515, 111928. [Google Scholar] [CrossRef]
- Goldman, A.S.; Roy, A.H.; Huang, Z.; Ahuja, R.; Schinski, W.; Brookhart, M. Catalytic Alkane Metathesis by Tandem Alkane Dehydrogenation-Olefin Metathesis. Science 2006, 312, 257–261. [Google Scholar] [CrossRef]
- Lee, H.M.; Zeng, J.Y.; Hu, C.-H.; Lee, M.-T. A New Tridentate Pincer Phosphine/N-Heterocyclic Carbene Ligand: Palladium Complexes, Their Structures, and Catalytic Activities. Inorg. Chem. 2004, 43, 6822–6829. [Google Scholar] [CrossRef]
- Lee, H.M.; Chiu, P.L.; Zeng, J.Y. A Convenient Synthesis of Phosphine-Functionalized N-Heterocyclic Carbene Ligand Precursors, Structural Characterization of Their Palladium Complexes and Catalytic Application in Suzuki Coupling Reaction. Inorg. Chim. Acta 2004, 357, 4313–4321. [Google Scholar] [CrossRef]
- Ronde, N.J.; Totev, D.; Müller, C.; Lutz, M.; Spek, A.L.; Vogt, D. Molecular-Weight-Enlarged Multiple-Pincer Ligands: Synthesis and Application in Palladium-Catalyzed Allylic Substitution Reactions. ChemSusChem 2009, 2, 558–574. [Google Scholar] [CrossRef]
- Zhou, J.; Zhu, D.; Chen, J.; Zhang, X.; Yan, M.; Chan, A.S.C. Polysulfonate Supported Chiral Diamine-Nickel Catalysts: Synthesis and Applications. Tetrahedron Lett. 2021, 65, 152792. [Google Scholar] [CrossRef]
- Janssen, M.; Muller, C.; Vogt, D. Recent Advances in the Recycling of Homogeneous Catalysts Using Membrane Separation. Green Chem. 2011, 13, 2247–2257. [Google Scholar] [CrossRef]
- Janssen, M.; Müller, C.; Vogt, D. ‘Click’ Dendritic Phosphines: Design, Synthesis, Application in Suzuki Coupling, and Recycling by Nanofiltration. Adv. Synth. Catal. 2009, 351, 313–318. [Google Scholar] [CrossRef]
- Schwarze, M.; Rost, A.; Weigel, T.; Schomäcker, R. Selection of Systems for Catalyst Recovery by Micellar Enhanced Ultrafiltration. Chem. Eng. Process. 2009, 48, 356–363. [Google Scholar] [CrossRef]
- Schwarze, M. Recycling of Catalysts from Surfactant Systems. Chem. Ing. Tech. 2021, 93, 31–41. [Google Scholar] [CrossRef]
- Peeva, L.; Arbour, J.; Livingston, A. On the Potential of Organic Solvent Nanofiltration in Continuous Heck Coupling Reactions. Org. Process Res. Dev. 2013, 17, 967–975. [Google Scholar] [CrossRef]
- O’Neal, E.J.; Jensen, K.F. Continuous Nanofiltration and Recycle of a Metathesis Catalyst in a Microflow System. ChemCatChem 2014, 6, 3004–3011. [Google Scholar] [CrossRef]
- Scharzec, B.; Holtkötter, J.; Bianga, J.; Dreimann, J.M.; Vogt, D.; Skiborowski, M. Conceptual Study of Co-Product Separation from Catalyst-Rich Recycle Streams in Thermomorphic Multiphase Systems by OSN. Chem. Eng. Res. Des. 2020, 157, 65–76. [Google Scholar] [CrossRef]
- Huang, Z.-Q.; Cheng, Z.-F. Recent Advances in Adsorptive Membranes for Removal of Harmful Cations. J. Appl. Polym. Sci. 2020, 137, 48579. [Google Scholar] [CrossRef]
- Hao, S.; Jia, Z.; Wen, J.; Li, S.; Peng, W.; Huang, R.; Xu, X. Progress in Adsorptive Membranes for Separation—A Review. Sep. Purif. Technol. 2021, 225, 117772. [Google Scholar] [CrossRef]
- Liu, J.; Zheng, L.; Li, Y.; Free, M.; Yang, M. Adsorptive Recovery of Palladium (II) from Aqueous Solution onto Cross-Linked Chitosan/Montmorillonite Membrane. RSC Adv. 2016, 6, 51757–51767. [Google Scholar] [CrossRef]
- Merget, R.; Bauer, H.D.; Küpper, H.; Philippou, S.; Bauer, H.; Breitstadt, R.; Bruening, T. Health Hazards Due to the Inhalation of Amorphous Silica. Arch. Toxicol. 2002, 75, 625–634. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; Zhang, L.; Tao, S. Preparation of Hybrid Chitosan Membranes by Selective Laser Sintering for Adsorption and Catalysis. Mater. Des. 2019, 173, 107780. [Google Scholar] [CrossRef]
- Sain, S.; Jain, S.; Srivastava, M.; Vishwakarma, R. Application of Palladium-Catalyzed Cross-Coupling Reactions in Organic Synthesis. Curr. Org. Synth. 2019, 16, 1105–1142. [Google Scholar] [CrossRef] [PubMed]
- Takale, B.S.; Kong, F.-Y.; Thakore, R.R. Recent Applications of Pd-Catalyzed Suzuki–Miyaura and Buchwald–Hartwig Couplings in Pharmaceutical Process Chemistry. Organics 2022, 3, 1–21. [Google Scholar] [CrossRef]
bis(triphenylphosphine) palladium(II) dichloride | tris(triphenylphosphine) rhodium(I) chloride | 1,1′-bis(di-isopropylphosphino) ferrocene palladium dichloride |
788 €/25 g | 460 €/5 g | 488 €/1 g |
Processes | Specificities and Constraints | Type of Recovery | |
---|---|---|---|
Adsorption |
| Metal recovery | |
| Metal recovery | ||
Liquid–liquid extractions |
| if induced by a chelating agent: | Metal recovery |
if there is no need of chelating agent: | Recycling of active catalytic complexes | ||
Catalysts intrinsic properties |
| Recycling of active catalytic complexes | |
Electrolysis |
| Metal recovery, for traces (ppm) | |
Electrodialysis and capacitive deionization |
| Metal recovery, for traces (ppm) |
PdCl2(dtbpf) | PdCl2[P(tBu)2Ph]2 | PdCl2(dcypf) | PdCl2(AmPhos)2 | QPhosPd(crotyl)Cl |
---|---|---|---|---|
651.75 g mol−1 | 621.95 g mol−1 | 755.90 g mol−1 | 708.08 g mol−1 | 907.69 g mol−1 |
CAS: 95408-45-0 | 34409-44-4 | 917511-90-1 | 887919-35-9 | 1252598-33-6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magne, A.; Carretier, E.; Ubiera Ruiz, L.; Clair, T.; Le Hir, M.; Moulin, P. Recovery of Homogeneous Platinoid Catalysts from Pharmaceutical Media: Review on the Existing Treatments and the Perspectives of Membrane Processes. Membranes 2023, 13, 738. https://doi.org/10.3390/membranes13080738
Magne A, Carretier E, Ubiera Ruiz L, Clair T, Le Hir M, Moulin P. Recovery of Homogeneous Platinoid Catalysts from Pharmaceutical Media: Review on the Existing Treatments and the Perspectives of Membrane Processes. Membranes. 2023; 13(8):738. https://doi.org/10.3390/membranes13080738
Chicago/Turabian StyleMagne, Adrien, Emilie Carretier, Lilivet Ubiera Ruiz, Thomas Clair, Morgane Le Hir, and Philippe Moulin. 2023. "Recovery of Homogeneous Platinoid Catalysts from Pharmaceutical Media: Review on the Existing Treatments and the Perspectives of Membrane Processes" Membranes 13, no. 8: 738. https://doi.org/10.3390/membranes13080738
APA StyleMagne, A., Carretier, E., Ubiera Ruiz, L., Clair, T., Le Hir, M., & Moulin, P. (2023). Recovery of Homogeneous Platinoid Catalysts from Pharmaceutical Media: Review on the Existing Treatments and the Perspectives of Membrane Processes. Membranes, 13(8), 738. https://doi.org/10.3390/membranes13080738