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Abstract: The generation of H2 via the catalytic hydrolysis of sodium borohydride (SBH) has promise
as a practical and secure approach to produce H2, a secure and environmentally friendly energy
source for the foreseeable future. In this study, distinctive trimetallic NiCoPd nanoparticle-supported
carbon nanofibers (NiCoPd tri-NPs@CNFs) is synthesized via sol-gel and electrospinning approaches.
The fabricated trimetallic catalysts show an excellent catalytic performance for the generation of
H2 from the hydrolysis of SBH. Standard physicochemical techniques were used to characterize
the as-prepared NiCoPd tri-NPs@CNFs. The results show that NiCoPd tri-NPs@CNFs is formed,
with an average particle size of about 21 nm. When compared to NiCo bimetallic NP @CNFS, all
NiCoPd tri-NPs@CNFs formulations demonstrated greater catalytic activates for the hydrolysis of
SBH. The improved catalytic activity may be due in the majority to the synergistic interaction between
the three metals in the trimetallic architecture. Furthermore, the activation energy for the catalytic
hydrolysis of SBH by the NiCoPd tri-NPs@CNFs was determined to be 16.30 kJ mol−1. The kinetics
studies show that the reaction is of a first order with respect to the catalyst loading amount and a half
order with respect to the SBH concentration [SBH].

Keywords: chemical reaction engineering; sol-gel; electrospinning; catalytic nanofiber; trimetallic;
hydrogen; sodium borohydride

1. Introduction

Hydrogen (H2) has garnered considerable attention as a potential viable fuel source
for a variety of industrial operations in new energy vehicles [1–3]. Chemical H2 storage
materials have received significant attention in recent years due to their potential to serve as
an alternative source for producing H2 by releasing a substantial volume of hydrogen gas at
room temperature [2–4]. Sodium borohydride (SBH, NaBH4) has a number of advantages
over competing chemical H2 storage materials, such as ammonia borane and hydrazine
hydrate, including the better regulation of the H2 generation rate (HGR) and purity, a safe
manufacturing method, the ability to recycle the byproduct NaBO2 back into borohydride,
and a lower temperature at which H2 may be liberated [2,5–7]. Moreover, it has superior
physicochemical features, such as non-flammability, small molar mass (37.83 g mol−1),
high H2 capacity (10.8 wt%), high solid-state stability at room temperature, and secure and
reliable H2 production by hydrolysis. It is essential to use an efficient catalyst to generate
a practical amount of H2 from SBH with an acceptable reaction rate. Catalysts for H2
production typically consist of noble metal nanoparticles (NPs) [8–12]. However, the high
cost of their production and restricted availability hamper their eventual industrial uses.
As an alternative, inexpensive transition-metal NPs, including iron, cobalt, and nickel, have
been used in recent years for H2 production from SBH [13–16]. It has been suggested that
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bi- and trimetallic NPs possess higher catalytic activities in various chemical processes
than their counterparts due to such lattice geometric, strain, and electronic charge transfer
influences [2]. In addition, it is also believed that the alloying of noble metals with other
non-noble transition metals results in increasing the catalytic performance and reducing
the overall cost of the process [16]. For instance, Jiang et al. [17] found that bimetallic
AgCo alloy catalysts displayed a five-times-better catalytic performance than Co catalysts
in the hydrolysis of SBH. Bimetallic synthesis and catalytic activity have received a lot of
attention compared to trimetallic ones during H2 production from SBH. It is noteworthy
to highlight that the amount of research on the latter has been steadily increasing in the
recent years. In light of the fact that the synergistic interaction of multiple components
has an impact on the catalytic performance, attempts have been conducted to synthesize
trimetallic catalysts in the hopes of improving the catalytic activities of the hydrolysis of
SBH [18]. For instance, Wang et al. [18] synthesized 2D CuCoNi nanosheets through an in
situ reduction using SBH. The prepared catalyst exhibited a superior catalytic performance
and great stability to SBH hydrolysis compared to bimetallic NPs. It demonstrated a
1.3-fold higher catalytic activity towards H2 release from SBH than the bimetallic CuCo
alloy. Moreover, the separation process of the solid catalyst from the liquid reaction
solution was easy. In fact, having two magnetic elements, Co and Ni, makes the catalyst
practical recycling process more suitable. Patil et al. [19] fabricated an iron–cobalt–copper
trimetallic oxide catalyst via the combustion synthesis process. The synthesized catalyst
demonstrated effective catalytic activity for H2 release from SBH. The maximal rate of
H2 generation was 1380 mL min−1 g−1, while the rates for Fe, Co, and Cu oxides were
965, 226, and 126 mL min−1 g−1, respectively, whereas bimetallic FeCu, CuCo, and FeCo
oxides had values of 861, 784, and 756.3 mL min−1 g−1, respectively. In this way, the high
HGR was achieved by the synergistic action of the three metals in the FeCuCo trimetallic
oxide. The catalytic performance of the catalyst was demonstrated to be superior for
eight cycles. Jiao et al. [2] prepared two different compositions of colloidal Ni/Au/Co
trimetallic NPs shielded by PVP used in the in situ co-reduction of metal ions via SBH.
The catalytic performance of prepared trimetallic formulations were compared to that of
their previously reported bimetallic NiAu [20] in the H2 production via the hydrolysis of
SBH. The prepared trimetallic NPs (Ni50Au10Co40) demonstrated the HGR was 790 mol-H2
per h per mol-M, while Ni50Au50 produced 800 mol-H2 per h per mol-M. The activity of
the trimetallic compound was lower than that of the bimetallic alloy. It should be noted,
however, that trimetallic NPs (Ni50Au10Co40) are much more cost-effective catalysts for
hydrogen generation from SBH than bimetallic NPs (Ni50Au50) when accounting for the
Au%. Khan et al.’s [21] stepwise metal-displacement plating technique was applied to
produce Cu0-based NPs, Cu-Ag-Ir, Cu-Pd-Ir, and Cu-Ag-Pd. The fabricated catalysts were
used to produce H2 from hydrazine hydrogen storage material. The trimetallic (Cu-Pd-Ir,
Cu-Ag-Ir, and Cu-Ag-Pd)) catalysts showed better catalytic activates than the bimetallic
(Cu-Ag, Cu-Ir, and Cu-Pd) catalysts because of the three metals’ synergistic effects and
electron interactions. The results prove that the existence of an appropriate third noble
metal may result in an increase in the catalytic activity of the Cu-based bimetallic alloys.
Since metal NPs have a high surface energy and a magnetic attraction to each other, they
tend to aggregate, which can decrease their catalytic activity and shorten the lifetime of
catalysts. In this context, the depositing of metal NPs on the matrix of supporting materials
with higher specific surface areas (e.g., graphene, carbon-based materials, metal oxides,
metal–organic framework, polymer, etc.) can maximize the dispersion of metal NPs without
aggregation and may be an appropriate strategy to enhance the characteristics of metal
NP catalysts [22–33]. Our group reports the effect of using carbon nanofibers (CNFs) as
an efficient catalytic support matrix for mono- and bimetallic NPs in the H2 production
from SBH and ammonia borane [7,34,35]. Here, the electrospinning technique is applied to
decorate CNFs with trimetallic Ni-Co-Pd NPs for H2 production from SBH hydrolysis. The
NiCoPd trimetallic NPs@CNFs are prepared using sol-gel and electrospinning approaches.
To evaluate the catalytic activity of the synthesized NiCoPd trimetallic NPs@CNFs, it is
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compared with NiCo bimetallic NPs@CNFs under the same reaction conditions. This study
shows that as-prepared trimetallic NPs possess a significantly higher catalytic activity for
SBH hydrolysis than the comparable bimetallic NPs. The constructed catalytic trimetallic
NFs are extremely stable toward H2 production from SBH for 10 cycles.

2. Experimental
2.1. Materials

Sodium borohydride (NaBH4, SBH), cobalt (II) acetate tetrahydrate (CoAc), nickel
(II) acetate tetrahydrate (NiAc), palladium (II) acetate (PdAc, 99.9%), and polyvinylpyrroli-
done (PVP, average Mw~1,300,000) were used. N, N, Dimethylformamide (DMF) and
acetone were used as solvents. All chemicals were purchased from Aldrich Co., St. Louis,
MO, USA.

2.2. Preparation of the NiCoPd tri-NPs@CNFs Catalyst

A total of 1.5 g of PVP was stirred into a solution of 10 mL of ethanol until it was
completely dissolved. PVP was added to the solvent very slowly. Thereafter, trimetallic
precursors were added to the polymer solution. PVP solutions containing trimetallic
acetates of four distinct compositions were produced. After including trimetallic acetates,
the sol-gel underwent a noticeable color shift. At a temperature of 50 ◦C, the produced
sol-gels were mixed for three hours. The subsequent step was electrospinning with a
lab-sized spinner and a high voltage (18 KV). The homemade glass enclosure protected
the spinning system from its surroundings. The gap between the negative and positive
electrodes was 18 cm. The flow rate of the sol-gels was 0.9 mL/h. This spinning operation
of sol-gel was completed at an ambient temperature. Electrospun NF mats were formed
and then peeled off from a plastic substrate. They were subsequently vacuum dried at
60 ◦C for 12 h. Lastly, they were carbonized at 850 ◦C for 3 h under vacuum with a constant
flow of Ar gas. The heating rate was 3 ◦C min−1. The bimetallic product was also produced
using the same procedures.

2.3. Characterization

The characterizations of the as-prepared NiCoPd tri-NPs@CNFs catalyst were performed
using the identical standard technique presented in our recent publications [7,28,36,37].

2.4. Hydrolysis of SBH Using the NiCoPd tri-NPs@CNFs Catalyst

A round-bottomed flask with two necks, one of which was sealed with a stopper
and the other of which was attached to a gas burette, contained the SBH solution and the
catalyst (Scheme 1). To regulate the reaction temperature, this device was immersed in a
water bath. In order to manage the temperature of the reaction, a thermocouple was used.
The reactions were initiated by adding 1 mmol of alkaline SBH and 0.05 g mg of catalyst to
a flask, followed by magnetic stirring at 1000 rpm at 25 ◦C. The volume of gas produced
was measured with a gas burette using the water displacement technique. The hydrogen
that was evolved was plotted against the duration of time that passed. When no hydrogen
gas was being produced, the process was stopped. The identical method was conducted
without the addition of any catalytic material to serve as a control experiment. All of the
synthesized catalysts were put through the same rigorous testing procedures. To further
examine the kinetics of SBH hydrolysis, the reaction was run at several doses of catalyst,
SBH, and temperatures (from 298 to 313 K). The effectiveness of recycling the proposed NFs
was also evaluated. In order to assess the catalyst’s durability, this process was repeated
multiple times using the same set of catalytic NFs. For each cycle, we used 1 mmol of SBH,
50 mg of catalyst, 25 ◦C, and 1000 rpm.



Membranes 2023, 13, 783 4 of 16

Membranes 2023, 13, x FOR PEER REVIEW  4  of  17 
 

 

 

Scheme 1. Experimental set-up for H2 generation. 

3. Results and Discussion   

3.1. Characterization of Pd‐NiCo@CNFs 

Electrospinning has been widely acknowledged as a straightforward and productive 

method for producing nanofibers (NFs) from a wide range of polymers. A sol-gel can be 

created by mixing the polymer solution with dissolved metal salt, which can be used to 

produce functional metals. Due to their high polycondensation propensity [29], acetates 

have found widespread use as metal precursors. For the formation of the sol-gel network, 

it is imperative that the solution components exhibit complete miscibility and endure pol-

ycondensation, as demonstrated in Equation (1): 

   

 

 

 

 

(1) 

where M is the metals [38]. 

The literature suggests that PVP/metal acetate combinations exhibit an excellent nan-

ofibrous  structure. According  to  the  literature,  electrospinning  is  the  most  common 

method used for producing functional inorganic NFs. The Ni0.2Co0.5Pd0.2 tri-NPs@CNFs 

catalyst with the best catalytic performance was completely characterized. Both low- and 

high-magnification SEM images of the resultant NF mats after electrospinning a polycon-

densate  sol-gel  consisting of CoAc/NiAc/PdAc/PVP  are  shown  in  Figure  1a,b,  respec-

tively. The conclusion that can be drawn from the figure  is that the combination of the 

acetates does not have an effect on the structure as the NFs with a smooth and excellent 

architecture are produced without any beads being noticed. The average size of the pro-

duced NFs is ~431.7 nm (inset: Figure 1b). The SEM images of carbonized electrospun NF 

O=C−M−O−C=O 

CH3  CH3 

O − C − C − O 

O  O 

M 

−  − 
n 

n 
CH3 CH3 

Scheme 1. Experimental set-up for H2 generation.

3. Results and Discussion
3.1. Characterization of Pd-NiCo@CNFs

Electrospinning has been widely acknowledged as a straightforward and productive
method for producing nanofibers (NFs) from a wide range of polymers. A sol-gel can be
created by mixing the polymer solution with dissolved metal salt, which can be used to
produce functional metals. Due to their high polycondensation propensity [29], acetates
have found widespread use as metal precursors. For the formation of the sol-gel network,
it is imperative that the solution components exhibit complete miscibility and endure
polycondensation, as demonstrated in Equation (1):
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where M is the metals [38].
The literature suggests that PVP/metal acetate combinations exhibit an excellent

nanofibrous structure. According to the literature, electrospinning is the most common
method used for producing functional inorganic NFs. The Ni0.2Co0.5Pd0.2 tri-NPs@CNFs
catalyst with the best catalytic performance was completely characterized. Both low-
and high-magnification SEM images of the resultant NF mats after electrospinning a
polycondensate sol-gel consisting of CoAc/NiAc/PdAc/PVP are shown in Figure 1a,b,
respectively. The conclusion that can be drawn from the figure is that the combination
of the acetates does not have an effect on the structure as the NFs with a smooth and
excellent architecture are produced without any beads being noticed. The average size
of the produced NFs is ~431.7 nm (inset: Figure 1b). The SEM images of carbonized
electrospun NF mats at 850 ◦C in an Ar atmosphere is shown in Figure 1c,d. As shown in
Figure, a good nanofibrous morphology and continuous NFs are preserved after calcination.
The proposed calcination strategy did not have an effect on the nanofibrous morphology.
The mean size reduced to an extremely small 169.4 nm (inset: Figure 2b). The diameters
reduced because the polymer and acetates used to produce them was decomposed and
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eliminated. XRD is a reliable method for examining inorganic substances. The XRD analysis
pattern of the sintered PVP, CoAc, and NiAc electrospun NF mats is shown in Figure 2a.
Diffraction peaks at 2Θ of 43.78◦, 51.17◦, and 75.19◦ were observed; these angles are typical
of (111), (200), (110), and (021) crystal orientations, respectively. These planes are consistent
with the synthesis of those of the cubic crystalline Co (JCDPS card number 15-0806) or
crystalline Ni (JCPDS card number 04-085) or both [39]. The following are some possible
explanations for this: in the periodic table, nickel and cobalt are located close to one
another; (ii) their atomic weights are quite close to one another (Ni: 58.7 and Co: 58.9),
making their atoms very similar in size; (iii) the findings of the XRD experiment confirm
that both metals have FCC crystal structures with about the same cell parameters, (Co)
3.544 and (Ni) 3.523); and (iv) the two metals have the same valence. As a result, these
two metals can combine to produce a substitutional alloy. That is to say, atoms of nickel
can be substituted for atoms of cobalt in an FCC cobalt crystal, and vice versa. Due to
the high melting points of Co (1495 ◦C) and Ni (1453 ◦C), no metal vaporizes during the
carbonization process, despite the fact that a significant quantity of both precursors were
used in the initial electrospun solution. This means that the resulting NFs are composed
of pure CoNi metals with an FCC crystal structure. The Scherrer’s equation was used to
determine the average grain size of Ni, Co, and Pd, which was found to be about 27 nm.
If there was no catalyst present to catalyze the graphitization reaction, calcination in an
argon environment caused practically all of the PVP to completely vanish. The existence
of a single peak at 26.5◦ coincided with an observed d spacing of 3.37 A, resulting in the
formation of graphite-like carbon ((002), JCPDS: 41-1487), confirming the graphitization
of PVP in the presence of the trimetallic alloy [40]. The results from the XRD analysis of
calcined PVP, CoAc, NiAc, and PdAc electrospun NF mats are shown in Figure 2b. The
spectra support the development of cubic palladium (Sp.gr Fm3m (225)) at 2Θ of 42.19◦,
46.85◦, and 64.82◦, which agree with the (111), (200), and (220) crystal planes, respectively,
and are consistent with the initial composition of the electrospun mats [41]. The main
grain size was estimated to be 21 nm using Scherrer’s equation. The existence of the weak
intensity peak of graphite indicated the very slight presence of carbon. Barakat et al. [41]
revealed that the good graphitization of PVA could be achieved during the calcination of
electrospun CoAc/PVA. However, because of the presence of Pd NPs, the graphitization
of PVA could be eliminated using electrospun Pd NPs-CoAc/PVA. In addition to this,
it appeared that the process of graphitization was not the one that was catalyzed by the
Pd, but rather the disintegration of PVA into compounds with a low molecular weight.
The TEM picture of the obtained nanofibers is shown in Figure 3. Normal TEM images
(Figure 3a) show that metallic NPs are randomly dispersed around NFs, suggesting that
the resulting product is Ni-Pd-Co-@CNFs. The HR TEM picture in Figure 3b shows the
thin layer of carbon with good crystallinity that is produced, which may boost adsorption
and electric conductivity; in other words, it provides very good electron transportation. As
can be seen in Figure 3a, the associated metallic NPs are likewise dispersed throughout
the thin layer of CNFs. Linear analysis TEM EDX was used to investigate the Ni, Co, and
Pd distributions throughout the length of the formed NFs (Figure 4). Figure 4a shows that
metallic NPs are distributed along the chosen line. Remarkably, the distribution curves
for both Ni (Figure 4b) and Co (Figure 4d) metals are identical, indicating that they are
intermixed at the crystalline level. On the contrary, the spectral evidence points to Pd
(Figure 4c) as the doping element, which indicates the formation of Pd-NiCo. Carbon is
the outermost component of the prepared NFs (Figure 4e). This suggests that the CNFs
formed a protective layer around the metal NPs. It may be easy for CNFs to adsorb SBH
and transfer electrons, both of which contribute to it being easy to separate H atoms.
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3.2. Catalytic Hydrolysis of SBH

The hydrolysis of SBH was accomplished using the as-prepared NiCoPd tri-NPs@CNFs
catalyst. Different catalytic activities were shown when the catalyst’s composition was
altered. All Ni/Co/Pd@CNFs demonstrated good catalytic performances towards H2
generation from SBH, as shown in Figure 5a, albeit having somewhat varying generation
rates. When compared to other formulations, the Ni0.3Co0.5Pd0.2 tri-NPs@CNFs catalyst
demonstrated the highest catalytic activity. The highest generated hydrogen yields and
HGR were calculated from the hydrolysis of 1 mmol SBH at 25 ◦C using 0.05 g catalysts
with different Ni/Co/Pd ratios, and the results are displayed in Table 1. In addition, the
produced NiCoPd tri-NPs@CNFs showed enhanced H2 production activity compared to
the bimetallic NiCo@CNFs (Table 1). The interpretation points to the synergistic impact
between the three metals in NiCoPd tri-NPs@CNFs as the likely cause of the high HGR.
Increases in H2 production were also seen when the ratio of Co to Ni in the catalyst was in-
creased (Figure 5b), which could be attributed to the superior activity of Co NPs compared
to Ni NPs in H2 production from SBH.

The compound SBH functioned as a hydrogen donor, providing one of the two
hydrogen atoms in the resulting H2 molecule. The second hydrogen atom was obtained
from a proton originating from H2O [42,43]. The rate-determining step was the activation of
one O–H bond in the adsorbed water. Oxidative addition can potentially occur through the
facilitation of a hydrogen-bonding interaction between a proton from H2O and a surface-
coordinated BH4− in [BH3–H–H–OH]−. This interaction aided the oxidative addition
process by decreasing the electron density of the O–H bond. Moreover, the transfer of the
negative charge of BH3− to H2 was facilitated by the excellent conductivity of the CNF
substrate [44]. Ultimately, H2 was liberated from the surface of the catalyst through either
reductive elimination (Scheme 2a) or a concerted σ-bond metathesis-like process involving
a surface-coordinated BH4− and a hydrogen atom derived from H2O, likely facilitated by a
surface hydroxide ion (OH−) (Scheme 2b) [45].
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Table 1. The H2 generation rate for the hydrolysis of 1 mmol of SBH at 25 ◦C catalyzed by different
compositions of Ni/Co/Pd@CNFs.

Catalyst Volume (mL) Time (min) Yield (%) Rate
(mL H2/min)

Rate
(mol H2/h. mol Metal)

Ni0.5Co0.5 103 31 86 3.30 468
Ni0.7Co0.1Pd0.2 107 31 89 3.45 486
Ni0.5Co0.3Pd0.2 115 31 95.8 3.70 522
Ni0.3Co0.5Pd0.2 118 14 100 8.42 1188
Ni0.1Co0.7Pd0.2 118 21 100 5.60 792
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4. Influences of Catalyst Dose

HGR from the hydrolysis of SBH as a function of catalyst concentration is shown in
Figure 5. All other conditions (i.e., SBH = 1 mmol at 25 ◦C and a stirring speed of 1000 rpm)
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were held constant, and Ni0.3Co0.5Pd0.2 tri-NPs@CNFs were utilized at quantities of 0.05,
0.1, 0.15, and 0.2 g. The effect of various amounts of Ni0.3Co0.5Pd0.2 tri-NPs@CNFs on
the developed H2 is depicted in Figure 6a. The rate at which H2 was produced increased
gradually as the catalyst loading was increased (Table 2). This may have occurred because
there were more surface active sites available, allowing SBH hydrolysis to proceed more
rapidly [46–48]. Overall, the results show that the rate at which hydrogen is produced from
SBH hydrolysis is proportional to the loading of the Ni0.3Co0.5Pd0.2 tri-NPs@CNFs catalyst.
However, it is well known that, for any given catalytic reaction, an efficient operation at a
low catalyst loading level is always the best. The logarithmic plot of HGR versus the sloped
line depicting the catalyst amount is 0.92 in Figure 5b. The hydrolysis of SBH proceeds
according to 1st-order kinetics with regard to Ni0.3Co0.5Pd0.2 tri-NPs@CNFs dosage. It has
been reported elsewhere [49] that more catalysts result in more H2 being produced because
they enhance the competition for the same quantity of SBH.
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Table 2. The H2 generation rate for hydrolysis of 1 mmol SBH at 25 ◦C catalyzed by different catalyst
loading amounts of Ni/Co/Pd@CNFs.

Catalyst Loading (g) Volume (mL) Time (min) Yield (%) Rate
(mL H2/min)

0.05 118 14 100 8.42
0.1 118 11 100 10.7
0.15 118 8 100 14.75
0.2 118 6 100 19.67

5. Influences of SBH Concentration

The HGR relies considerably on the SBH. The effects of 1–4 mmol SBH were examined
while keeping all other variables constant (0.05 g of Ni0.3Co0.5Pd0.2 tri-NPs@CNFs, 25 ◦C,
and 1000 rpm stirring rate). The volume of H2 produced was found to gradually increase as
the SBH concentration increase (Figure 7a). The rate at which H2 was produced, however,
remained practically unchanged, regardless of the concentration of SBH present. The loga-
rithmic plot of HGR versus catalyst concentration is plotted in Figure 7b, and the line slope
is 0.27. These results show that the Ni0.3Co0.5Pd0.2 tri-NPs@CNFs catalyzed hydrolysis of
SBH follows a 0.27-order kinetics with respect to the change in SBH concentration. This
was due to the use of a low SBH concentration, as higher concentrations resulted in the
formation of sodium metaborate that both increased the viscosity and slowed down the
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rate of the reaction [50–52]. A zero-order reaction was observed at higher concentrations
than those explored in our investigation.
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6. Influences of Reaction Temperature

The rate at which SBH is catalytically hydrolyzed to generate H2 is highly influenced
by the reaction temperature (T) [46–48]. By changing the (T) from 25 to 55 ◦C, the effect
of (T) on Ni0.3Co0.5Pd0.2 tri-NPs@CNFs stimulated SBH hydrolysis was studied, while
all other parameters were held constant (0.05 g of Ni0.3Co0.5Pd0.2 tri-NPs@CNFs, 1 mmol
of SBH, and a stirring speed of 1000 rpm). Figure 8a displays the dramatic acceleration
of hydrogen production with increasing (T). The Ni0.3Co0.5Pd0.2 tri-NPs@CNFs catalyst
showed initial activity at 25 ◦C, displaying an HGR of 8.43 mL min−1 (118 mL in 16 min).
H2 could be produced at a higher rate thanks to the high number of active sites in the
catalyst, which could effectively activate the SBH reactant and the water molecule [19].
The HGR increased sharply to 11.80 mL min−1 upon increasing the (T) to 35 ◦C, and the
process reached equilibrium in just 11 min. By applying heat, the efficient interaction
between the SBH reactant, water, and Ni0.3Co0.5Pd0.2 tri-NPs@CNFs catalyst was sped up,
which increased the reaction rate [19]. The HGR increased from 16.9 mL min−1 (118 mL in
7 min) to 23.6 mL min−1 (118 mL in 5 min) when the (T) was increased from 45 to 55 ◦C,
respectively. According to the results, the HGR increases proportionally with increases in
the (T), indicating that the process follows first-order kinetics. In Figure 5b, the Arrhenius
equation is used to derive the activation energy (Ea) from the initial rate of produced H2.
HGR is related to (T) and (Ea) according to the Arrhenius equation [46–48]. The reaction
appears to follow 1st-order kinetics with regard to the reaction temperature, as indicated by
the straight line (Figure 8b). Ni0.3Co0.5Pd0.2 tri-NPs@CNFs catalyzed SBH hydrolysis with
an (Ea) of 16.30 kJ mol−1. Since the (Ea) of the Ni0.3Co0.5Pd0.2 tri-NPs@CNFs catalyst was
relatively low, the catalyst was able to generate hydrogen at a rapid rate. The superiority of
the current Ni0.3Co0.5Pd0.2 tri-NPs@CNFs catalyst for H2 generation was demonstrated by
comparing its catalytic performance to that of the reported articles in H2 production from
various precursors using trimetallic NPs; the findings are displayed in Table 3.
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Figure 8. Influence of reaction temperature on the hydrolysis of SBH catalyzed by
Ni0.3Co0.5Pd0.2@CNFs (a) and the Arrhenius plot of ln rate versus 1/T (b) used ([SBH] = 1 mmol,
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Table 3. The activation energies of trimetallic NPs in H2 production using different H2 sources.

Catalyst Ea (KJ/mol) Ref.

(Ni5Pt5)1-(CeOx)0.3/NGH 38.66 [53]
Ni0.25Fe0.25Pd0.5/UiO-66 43.5 [54]

Ni45Au45Co10 18.8 [2]
PdRuNi@GO 55.47 [55]
AC@Pt-Ru-Ni 24.29 [49]

Cu0.04Co0.864Ni0.096 40 [18]
Ru-capped/FeCo 42.9 [56]
Ni0.3Co0.5Pd0.2 16.30 This study

7. Recyclability Studies of Ni0.3Co0.5Pd0.2 tri-NPs@CNFs Catalyst towards SBH
Hydrolysis

Commercial applications of heterogeneous catalysts are possible if the catalysts demon-
strate both high activity and recyclability outcomes [19,57–59]. The results from a recycla-
bility investigation of the Ni0.3Co0.5Pd0.2 tri-NPs@CNFs catalyst are presented in Figure 9.
The hydrolysis of all stoichiometric H2 samples was shown in the reaction with new
Ni0.3Co0.5Pd0.2 tri-NPs@CNFs catalysts at 25 ◦C in the presence of 1 mmol of SBH and
0.05 g of a Ni0.3Co0.5Pd0.2 tri-NPs@CNFs catalyst. In subsequent cycles, 1 mmol of SBH
was added without washing or makeup the catalyst. The initial three cycles showed con-
sistent catalytic activities. While following the third cycle, the catalytic activity gradually
decreased from 94% in the fourth cycle to 72% in the tenth. The FeCuCo catalyst was
kept at 80% of its initially catalytic activity after eight cycles [19]. The AC@Pt-Ru-Ni NP
was reserved at 75% of its initially activity after three cycles [49]. CoBMo/Cu showed a
good performance for five cycles, which kept 98% of its initial activity [60]. A decreased
catalytic performance can be caused by an increase in solution viscosity, which reduces the
number of available active sites or causes pores to become blocked due to the deposition
of a sodium metaborate by-product [61–65]. Overall, the Ni0.3Co0.5Pd0.2 tri-NPs@CNFs
catalyst has a significant recyclable performance of up to ten recycles and may be a suitable
catalyst material for H2 production from the hydrolysis of SBH.
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(468.41 mol H2 per mol-M), the prepared NiCoPd tri-NPs@CNFs demonstrated greater 
activity for H2 generation (Ni0.2Co0.5Pd0.2 tri-NPs@CNFs, 866.42 mol-H2 per mol-M). In ad-
dition, the catalyst had a low activation energy of 16.40 kJ mol−1, which was remarkable in 
comparison to the other reported catalysts. It is interesting to note that the catalyst main-
tained a good activity for up to 10 recycles without any washing or makeup catalyst dur-
ing the recyclability process, which proved its effectiveness and durability. 
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