Effect of Birch Sap as Solvent and Source of Bioactive Compounds in Casein and Gelatine Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Birch Sap Samples
2.2. Compositional Analysis of Birch Sap
2.2.1. Carbohydrate Content
2.2.2. Reducing-Sugar Content
2.2.3. Protein Content
2.2.4. Phenolic Compound Content
2.2.5. Salt Composition Analysis
2.2.6. Sugars and Organic Acid Analysis by HPLC
2.3. Concentrated Birch Sap Solution
2.4. Preparation of Gelatine and Casein Films with Concentrated Birch Sap
2.5. Physical Properties of Birch Sap Gelatine and Casein Films
2.5.1. Light Transmission and Transparency
2.5.2. Colorimetric Properties
2.5.3. Mechanical Properties
2.5.4. Water Vapour Permeability and Solubility
2.5.5. Scanning Electron Microscopy (SEM)
2.6. Antioxidant Activity
Release Kinetics of Antioxidants
2.7. Ferrous Ion Chelating Capacity
2.8. Film Application as Active Packaging
Film Application as Active Pouches to Pack Curcumin Solution
2.9. Statistical Analysis
3. Results and Discussion
3.1. Birch Sap Composition
3.2. Physical Properties of Birch Sap Gelatine and Casein Films
3.2.1. Visual Aspect, Light Transmission and Transparency
3.2.2. Colorimetric Properties
3.2.3. Mechanical Properties
3.2.4. Water Vapour Permeability (WVP) and Solubility
3.2.5. Microstructure
3.2.6. Antioxidant Activity and Chelating Capacity
3.2.7. Antioxidant Release Kinetics
3.2.8. Film Application as Active Packaging: Packing Curcumin Solutions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lebreton, L.; Andrady, A. Future Scenarios of Global Plastic Waste Generation and Disposal. Palgrave Commun. 2019, 5, 6. [Google Scholar] [CrossRef]
- Picchio, M.L.; Linck, Y.G.; Monti, G.A.; Gugliotta, L.M.; Minari, R.J.; Alvarez Igarzabal, C.I. Casein Films Crosslinked by Tannic Acid for Food Packaging Applications. Food Hydrocoll. 2018, 84, 424–434. [Google Scholar] [CrossRef]
- González, A.; Alvarez Igarzabal, C.I. Soy Protein—Poly (Lactic Acid) Bilayer Films as Biodegradable Material for Active Food Packaging. Food Hydrocoll. 2013, 33, 289–296. [Google Scholar] [CrossRef]
- da Rocha, M.; de Souza, M.M.; Prentice, C. Chapter 9—Biodegradable Films: An Alternative Food Packaging. In Food Packaging and Preservation; Grumezescu, A.M., Holban, A.M., Eds.; Handbook of Food Bioengineering; Academic Press: Cambridge, MA, USA, 2018; pp. 307–342. ISBN 978-0-12-811516-9. [Google Scholar]
- Dordevic, S.; Dordevic, D.; Sedlacek, P.; Kalina, M.; Tesikova, K.; Antonic, B.; Tremlova, B.; Treml, J.; Nejezchlebova, M.; Vapenka, L.; et al. Incorporation of Natural Blueberry, Red Grapes and Parsley Extract By-Products into the Production of Chitosan Edible Films. Polymers 2021, 13, 3388. [Google Scholar] [CrossRef]
- Marcet, I.; Weng, S.; Sáez-Orviz, S.; Rendueles, M.; Díaz, M. Production and Characterisation of Biodegradable PLA Nanoparticles Loaded with Thymol to Improve Its Antimicrobial Effect. J. Food Eng. 2018, 239, 26–32. [Google Scholar] [CrossRef]
- Chambi, H.; Grosso, C. Edible Films Produced with Gelatin and Casein Cross-Linked with Transglutaminase. Food Res. Int. 2006, 39, 458–466. [Google Scholar] [CrossRef]
- Luo, Q.; Hossen, M.A.; Zeng, Y.; Dai, J.; Li, S.; Qin, W.; Liu, Y. Gelatin-Based Composite Films and Their Application in Food Packaging: A Review. J. Food Eng. 2022, 313, 110762. [Google Scholar] [CrossRef]
- Belyamani, I.; Prochazka, F.; Assezat, G. Production and Characterization of Sodium Caseinate Edible Films Made by Blown-Film Extrusion. J. Food Eng. 2014, 121, 39–47. [Google Scholar] [CrossRef]
- Chevalier, E.; Assezat, G.; Prochazka, F.; Oulahal, N. Development and Characterization of a Novel Edible Extruded Sheet Based on Different Casein Sources and Influence of the Glycerol Concentration. Food Hydrocoll. 2018, 75, 182–191. [Google Scholar] [CrossRef]
- Alhanish, A.; Abu Ghalia, M. Developments of Biobased Plasticizers for Compostable Polymers in the Green Packaging Applications: A Review. Biotechnol. Prog. 2021, 37, e3210. [Google Scholar] [CrossRef]
- Omar, A.A.; Hanafi, M.H.M.; Razak, N.H.; Ibrahim, A.; Razak, N.A.A. A Best-Evidence Review of Bio-Based Plasticizer and the Effects on the Mechanical Properties of PLA. Chem. Eng. Trans. 2021, 89, 241–246. [Google Scholar] [CrossRef]
- Suderman, N.; Isa, M.I.N.; Sarbon, N.M. The Effect of Plasticizers on the Functional Properties of Biodegradable Gelatin-Based Film: A Review. Food Biosci. 2018, 24, 111–119. [Google Scholar] [CrossRef]
- Grabek-Lejko, D.; Kasprzyk, I.; Zaguła, G.; Puchalski, C. The Bioactive and Mineral Compounds in Birch Sap Collected in Different Types of Habitats. Baltic Forestry 2017, 23, 394–401. [Google Scholar]
- Keita, D.; Léger, G.; Bordenave, N. Rheological and Water Binding Properties of Xanthan, Guar and Ultra-Finely Milled Oatmeal in White Birch Sap: Influence of Sap Minor Constituents. Food Res. Int. 2021, 147, 110478. [Google Scholar] [CrossRef]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Miller, G.L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Martínez-Sanz, M.; Gomez-Barrio, L.P.; Zhao, M.; Tiwari, B.; Knutsen, S.H.; Ballance, S.; Zobel, H.K.; Nilsson, A.E.; Krewer, C.; Östergren, K.; et al. Alternative Protocols for the Production of More Sustainable Agar-Based Extracts from Gelidium Sesquipedale. Algal. Res. 2021, 55, 102254. [Google Scholar] [CrossRef]
- Weng, S.; López, A.; Sáez-Orviz, S.; Marcet, I.; García, P.; Rendueles, M.; Díaz, M. Effectiveness of Bacteriophages Incorporated in Gelatine Films against Staphylococcus Aureus. Food Control 2021, 121, 107666. [Google Scholar] [CrossRef]
- Carpintero, M.; Marcet, I.; Rendueles, M.; Díaz, M. Egg Yolk Oil as a Plasticizer for Polylactic Acid Films. Membranes 2022, 12, 46. [Google Scholar] [CrossRef]
- Stoll, L.; Rech, R.; Flôres, S.H.; Nachtigall, S.M.B.; Rios, A.d.O. Carotenoids Extracts as Natural Colorants in Poly(Lactic Acid) Films. J. Appl. Polym. Sci. 2018, 135, 46585. [Google Scholar] [CrossRef]
- Asadi, S.; Pirsa, S. Production of Biodegradable Film Based on Polylactic Acid, Modified with Lycopene Pigment and TiO2 and Studying Its Physicochemical Properties. J. Polym. Environ. 2020, 28, 433–444. [Google Scholar] [CrossRef]
- Sáez-Orviz, S.; Marcet, I.; Rendueles, M.; Díaz, M. Bioactive Packaging Based on Delipidated Egg Yolk Protein Edible Films with Lactobionic Acid and Lactobacillus Plantarum CECT 9567: Characterization and Use as Coating in a Food Model. Food Hydrocoll. 2021, 119, 106849. [Google Scholar] [CrossRef]
- Bruschi, M.L. (Ed.) 5—Mathematical Models of Drug Release. In Strategies to Modify the Drug Release from Pharmaceutical Systems; Woodhead Publishing: Sawston, UK, 2015; pp. 63–86. ISBN 978-0-08-100092-2. [Google Scholar]
- Jain, A.; Jain, S.K. In Vitro Release Kinetics Model Fitting of Liposomes: An Insight. Chem. Phys. Lipids 2016, 201, 28–40. [Google Scholar] [CrossRef]
- Decker, E.A.; Crum, A.D.; Calvert, J.T. Differences in the Antioxidant Mechanism of Carnosine in the Presence of Copper and Iron. J. Agric. Food Chem. 1992, 40, 756–759. [Google Scholar] [CrossRef]
- Sancho, A.I.; Birk, T.; Gregersen, J.M.; Rønne, T.; Hornslet, S.E.; Madsen, A.M.; Bøgh, K.L. Microbial Safety and Protein Composition of Birch Sap. J. Food Compos. Anal. 2022, 107, 104347. [Google Scholar] [CrossRef]
- Kūka, M.; Čakste, I.; Geršebeka, E. Determination of Bioactive Compounds and Mineral Substances in Latvian Birch and Maple Saps. Proc. Latv. Acad. Sciences. Sect. B Nat. Exact. Appl. Sci. 2013, 67, 437–441. [Google Scholar] [CrossRef]
- Bocqué, M.; Voirin, C.; Lapinte, V.; Caillol, S.; Robin, J.-J. Petro-Based and Bio-Based Plasticizers: Chemical Structures to Plasticizing Properties. J. Polym. Sci. A Polym. Chem. 2016, 54, 11–33. [Google Scholar] [CrossRef]
- Gao, W.; Liu, P.; Li, X.; Qiu, L.; Hou, H.; Cui, B. The Co-Plasticization Effects of Glycerol and Small Molecular Sugars on Starch-Based Nanocomposite Films Prepared by Extrusion Blowing. Int. J. Biol. Macromol. 2019, 133, 1175–1181. [Google Scholar] [CrossRef]
- Liu, H.; Cao, J.; Jiang, W. Evaluation and Comparison of Vitamin C, Phenolic Compounds, Antioxidant Properties and Metal Chelating Activity of Pulp and Peel from Selected Peach Cultivars. LWT—Food Sci. Technol. 2015, 63, 1042–1048. [Google Scholar] [CrossRef]
- Zongo, O.; Cruvellier, N.; Leray, F.; Bideaux, C.; Lesage, J.; Zongo, C.; Traoré, Y.; Savadogo, A.; Guillouet, S. Physicochemical Composition and Fermentation Kinetics of a Novel Palm Sap-Based Kefir Beverage from the Fermentation of Borassus Aethiopum Mart. Fresh Sap with Kefir Grains and Ferments. Sci. Afr. 2020, 10, e00631. [Google Scholar] [CrossRef]
- Adamczak, A.; Ożarowski, M.; Karpiński, T.M. Antibacterial Activity of Some Flavonoids and Organic Acids Widely Distributed in Plants. J. Clin. Med. 2020, 9, 109. [Google Scholar] [CrossRef] [PubMed]
- dos Santos Lima, M.; da Conceição Prudêncio Dutra, M.; Toaldo, I.M.; Corrêa, L.C.; Pereira, G.E.; de Oliveira, D.; Bordignon-Luiz, M.T.; Ninow, J.L. Phenolic Compounds, Organic Acids and Antioxidant Activity of Grape Juices Produced in Industrial Scale by Different Processes of Maceration. Food Chem. 2015, 188, 384–392. [Google Scholar] [CrossRef]
- Hafidz, R.; Yaakob, C.M.; Amin, I.; Noorfaizan, A. Chemical and Functional Properties of Bovine and Porcine Skin Gelatin. Int. Food Res. J. 2011, 18, 787–791. [Google Scholar]
- Zhou, P.; Mulvaney, S.J.; Regenstein, J.M. Properties of Alaska Pollock Skin Gelatin: A Comparison with Tilapia and Pork Skin Gelatins. J. Food Sci. 2006, 71, C313–C321. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, W. Effective Strategies to Enhance Ultraviolet Barrier Ability in Biodegradable Polymer-Based Films/Coatings for Fruit and Vegetable Packaging. Trends Food Sci. Technol. 2023, 139, 104139. [Google Scholar] [CrossRef]
- Vandenbussche, S.; Díaz, D.; Fernández-Alonso, M.C.; Pan, W.; Vincent, S.P.; Cuevas, G.; Cañada, F.J.; Jiménez-Barbero, J.; Bartik, K. Aromatic–Carbohydrate Interactions: An NMR and Computational Study of Model Systems. Chem.—Eur. J. 2008, 14, 7570–7578. [Google Scholar] [CrossRef] [PubMed]
- Insaward, A.; Duangmal, K.; Mahawanich, T. Mechanical, Optical, and Barrier Properties of Soy Protein Film as Affected by Phenolic Acid Addition. J. Agric. Food Chem. 2015, 63, 9421–9426. [Google Scholar] [CrossRef] [PubMed]
- Scartazzini, L.; Tosati, J.V.; Cortez, D.H.C.; Rossi, M.J.; Flôres, S.H.; Hubinger, M.D.; Di Luccio, M.; Monteiro, A.R. Gelatin Edible Coatings with Mint Essential Oil (Mentha Arvensis): Film Characterization and Antifungal Properties. J. Food Sci. Technol. 2019, 56, 4045–4056. [Google Scholar] [CrossRef]
- Tongnuanchan, P.; Benjakul, S.; Prodpran, T.; Nilsuwan, K. Emulsion Film Based on Fish Skin Gelatin and Palm Oil: Physical, Structural and Thermal Properties. Food Hydrocoll. 2015, 48, 248–259. [Google Scholar] [CrossRef]
- Nuthong, P.; Benjakul, S.; Prodpran, T. Effect of Phenolic Compounds on the Properties of Porcine Plasma Protein-Based Film. Food Hydrocoll. 2009, 23, 736–741. [Google Scholar] [CrossRef]
- Farah, S.; Anderson, D.G.; Langer, R. Physical and Mechanical Properties of PLA, and Their Functions in Widespread Applications—A Comprehensive Review. Adv. Drug Deliv. Rev. 2016, 107, 367–392. [Google Scholar] [CrossRef] [PubMed]
- Rawdkuen, S.; Faseha, A.; Benjakul, S.; Kaewprachu, P. Application of Anthocyanin as a Color Indicator in Gelatin Films. Food Biosci. 2020, 36, 100603. [Google Scholar] [CrossRef]
- Pruneda, E.; Peralta-Hernández, J.M.; Esquivel, K.; Lee, S.y.; Godínez, L.a.; Mendoza, S. Water Vapor Permeability, Mechanical Properties and Antioxidant Effect of Mexican Oregano–Soy Based Edible Films. J. Food Sci. 2008, 73, C488–C493. [Google Scholar] [CrossRef]
- Friesen, K.; Chang, C.; Nickerson, M. Incorporation of Phenolic Compounds, Rutin and Epicatechin, into Soy Protein Isolate Films: Mechanical, Barrier and Cross-Linking Properties. Food Chem. 2015, 172, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Gheribi, R.; Puchot, L.; Verge, P.; Jaoued-Grayaa, N.; Mezni, M.; Habibi, Y.; Khwaldia, K. Development of Plasticized Edible Films from Opuntia Ficus-Indica Mucilage: A Comparative Study of Various Polyol Plasticizers. Carbohydr. Polym. 2018, 190, 204–211. [Google Scholar] [CrossRef]
- Sáez-Orviz, S.; Marcet, I.; Weng, S.; Rendueles, M.; Díaz, M. PLA Nanoparticles Loaded with Thymol to Improve Its Incorporation into Gelatine Films. J. Food Eng. 2020, 269, 109751. [Google Scholar] [CrossRef]
- Tohma, H.; Gülçin, I.; Bursal, E.; Gören, A.; Alwasel, S.; Koksal, E. Antioxidant Activity and Phenolic Compounds of Ginger (Zingiber Officinale Rosc.) Determined by HPLC-MS/MS. J. Food Meas. Charact. 2017, 11, 556–566. [Google Scholar] [CrossRef]
- Cheng, S.; Lin, Q.; Wang, Y.; Luo, H.; Huang, Z.; Fu, H.; Chen, H.; Xiao, R. The Removal of Cu, Ni, and Zn in Industrial Soil by Washing with EDTA-Organic Acids. Arab. J. Chem. 2020, 13, 5160–5170. [Google Scholar] [CrossRef]
- Dolev, N.; Katz, Z.; Ludmer, Z.; Ullmann, A.; Brauner, N.; Goikhman, R. Natural Amino Acids as Potential Chelators for Soil Remediation. Environ. Res. 2020, 183, 109140. [Google Scholar] [CrossRef]
- Afzal, S.; Lone, M.S.; Maswal, M.; Dar, A.A. Modulation of Surface Tension and Rheological Behavior of Methyl Cellulose—Amino Acid Based Surfactant Mixture by Hydrophobic Drug Rifampicin: An Insight into Drug Stabilization and PH-Responsive Release. J. Mol. Liq. 2020, 319, 114353. [Google Scholar] [CrossRef]
- Tomé Constantino, A.B.; Garcia-Rojas, E.E. Microencapsulation of Betanin by Complex Coacervation of Carboxymethylcellulose and Amaranth Protein Isolate for Application in Edible Gelatin Films. Food Hydrocoll. 2022, 133, 107956. [Google Scholar] [CrossRef]
- Nasri, R.; Hamdi, M.; Touir, S.; Li, S.; Karra-Chaâbouni, M.; Nasri, M. Development of Delivery System Based on Marine Chitosan: Encapsulationand Release Kinetic Study of Antioxidant Peptides from Chitosan Microparticle. Int. J. Biol. Macromol. 2021, 167, 1445–1451. [Google Scholar] [CrossRef]
- Chang, C.; Meikle, T.G.; Su, Y.; Wang, X.; Dekiwadia, C.; Drummond, C.J.; Conn, C.E.; Yang, Y. Encapsulation in Egg White Protein Nanoparticles Protects Anti-Oxidant Activity of Curcumin. Food Chem. 2019, 280, 65–72. [Google Scholar] [CrossRef] [PubMed]
- del Castillo, M.L.R.; López-Tobar, E.; Sanchez-Cortes, S.; Flores, G.; Blanch, G.P. Stabilization of Curcumin against Photodegradation by Encapsulation in Gamma-Cyclodextrin: A Study Based on Chromatographic and Spectroscopic (Raman and UV–Visible) Data. Vib. Spectrosc. 2015, 81, 106–111. [Google Scholar] [CrossRef]
Proteins (g/L) | Total Carbohydrates (g/L) | Simple Sugars (g/L) | Phenolic Compounds (g/L) | Antioxidant Capacity (%) | Iron Chelating Capacity (%) | ||||
0.32 ± 0.01 | 7.03 ± 0.32 | 6.25 ± 0.27 | 0.09 ± 0.01 | 28.47 ± 1.40 | 30.27 ± 0.05 | ||||
Mg (ppb) | P (ppb) | K (ppb) | Ca (ppb) | Cr (ppb) | Mn (ppb) | Fe (ppb) | Cu (ppb) | Zn (ppb) | Se (ppb) |
1.1 × 104 ± 0.5 | 9.2 × 103 ± 2.1 | 7.4 × 104 ± 0.2 | 4.8 × 104 ± 0.6 | 2.4 × 10−1 ± 1.3 | 5.2 × 103 ± 0.3 | 9.7 × 101 ± 1.3 | 3.5 × 101 ± 1.1 | 1.5 × 103 ± 0.5 | <0.000 |
Oxalic acid (mg/L) | Formic acid (mg/L) | Succinic acid (mg/L) | Acetic acid (mg/L) | Propionic acid (mg/L) | Glucose (mg/L) | Fructose (mg/L) | |||
41.55 ± 5.82 | 67.27 ± 6.85 | 584.00 ± 13.47 | 145.27 ± 23.37 | 565.50 ± 29.09 | 542.30 ± 13.34 | 3495.00 ± 182.86 |
Films | Transmittance (%) | Transparency | ||||||
200 nm | 280 nm | 350 nm | 400 nm | 500 nm | 600 nm | 700 nm | ||
CG | 0.02 ± 0.00 | 12.35 ± 1.20 | 77.24 ± 1.89 | 86.95 ± 1.48 | 91.80 ± 1.84 | 93.50 ± 0.71 | 93.10 ± 1.70 | 0.247 ± 0.032 a |
G | 0.01 ± 0.00 | 0.42 ± 0.11 | 24.00 ± 3.82 | 56.55 ± 2.47 | 81.85 ± 0.49 | 90.40 ± 0.57 | 94.80 ± 2.55 | 0.268 ± 0.038 a |
CC | 0.01 ± 0.00 | 0.04 ± 0.00 | 45.45 ± 2.05 | 72.20 ± 1.56 | 86.55 ± 0.49 | 90.85 ± 1.34 | 92.10 ± 1.41 | 0.230 ± 0.008 b |
C | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.68 ± 0.14 | 8.27 ± 1.31 | 30.40 ± 6.08 | 48.50 ± 6.89 | 58.35 ± 4.74 | 1.664 ± 0.215 a |
Film | L* | a* | b* | b* | ∆E* | WI | Chroma | YI |
CG | 91.30 ± 0.14 a | 1.70 ± 0.00 a | 0.40 ± 0.14 a | 0.40 ± 0.14 a | - | 91.12 ± 0.13 a | 1.75 ± 0.03 b | 0.62 ± 0.22 a |
G | 91.35 ± 1.48 a | 2.40 ± 0.85 a | −4.65 ± 0.92 b | −4.65 ± 0.92 b | 4.98 ± 1.15 | 89.02 ± 1.88 a | 5.20 ± 1.20 a | −7.36 ± 1.57 b |
CC | 91.40 ± 0.70 a | 2.55 ± 0.21 a | −1.60 ± 1.70 b | −1.60 ± 1.70 b | - | 91.39 ± 0.93 a | 1.95 ± 1.22 b | −0.48 ± 1.96 b |
C | 85.65 ± 0.92 b | 3.00 ± 0.14 a | 12.10 ± 4.53 a | 12.10 ± 4.53 a | 17.10 ± 2.40 | 80.77 ± 2.18 b | 13.49 ± 4.42 a | 21.14 ± 7.33 a |
Film | Thickness (mm) | PS (N/mm) | PD (%) | WVP (g × mm/m2 × h × kPa) | Solubility | ||
---|---|---|---|---|---|---|---|
pH 3 | pH 7 | pH 9 | |||||
CG | 0.130 ± 0.019 a | 565.56 ± 30.92 b | 52.75 ± 1.58 b | 1.14 ± 0.04 a | 21.51 ± 5.97 | 35.67 ± 5.72 | 40.81 ± 11.15 |
G | 0.125 ± 0.007 b | 691.00 ± 27.75 a | 116.62 ± 10.72 a | 1.72 ± 0.89 a | 67.90 ± 10.00 | 79.08 ± 2.56 | 84.07 ± 3.95 |
CC | 0.240 ± 0.070 a | 236.19 ± 28.93 b | 25.46 ± 2.71 b | 5.474 ± 0.49 b | 100.00 ± 0 | 100.00 ± 0 | 100.00 ± 0 |
C | 0.133 ± 0.030 b | 425.96 ± 17.81 a | 69.13 ± 4.32 a | 6.76 ± 0.84 a | 100.00 ± 0 | 100.00 ± 0 | 100.00 ± 0 |
System | Kinetic Models | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Zero-Order Model | First-Order Model | Higuchi Model | Ritger–Peppas Model | |||||||
k0 | R2 | K1 | Mmax | R2 | kH | R2 | K | n | R2 | |
Gelatine | 0.187 | 0.954 | 0.0036 | 92.380 | 0.798 | 3.721 | 0.963 | 1.500 | 0.678 | 0.954 |
Casein | 0.200 | 0.951 | 0.0038 | 91.600 | 0.962 | 3.959 | 0.990 | 1.370 | 0.701 | 0.946 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carpintero, M.; Marcet, I.; Zornoza, M.; Rendueles, M.; Díaz, M. Effect of Birch Sap as Solvent and Source of Bioactive Compounds in Casein and Gelatine Films. Membranes 2023, 13, 786. https://doi.org/10.3390/membranes13090786
Carpintero M, Marcet I, Zornoza M, Rendueles M, Díaz M. Effect of Birch Sap as Solvent and Source of Bioactive Compounds in Casein and Gelatine Films. Membranes. 2023; 13(9):786. https://doi.org/10.3390/membranes13090786
Chicago/Turabian StyleCarpintero, María, Ismael Marcet, María Zornoza, Manuel Rendueles, and Mario Díaz. 2023. "Effect of Birch Sap as Solvent and Source of Bioactive Compounds in Casein and Gelatine Films" Membranes 13, no. 9: 786. https://doi.org/10.3390/membranes13090786
APA StyleCarpintero, M., Marcet, I., Zornoza, M., Rendueles, M., & Díaz, M. (2023). Effect of Birch Sap as Solvent and Source of Bioactive Compounds in Casein and Gelatine Films. Membranes, 13(9), 786. https://doi.org/10.3390/membranes13090786