TRP Channels: The Neglected Culprits in Breast Cancer Chemotherapy Resistance?
Abstract
:1. Introduction
2. Breast Cancer Chemotherapy: Decoding the Enigma of Resistance
2.1. Anthracyclines
2.2. Taxanes
2.3. Platinum-Based Drugs
3. TRP Channels
4. How Does TRP Channels Modulate Chemotherapy Resistance in Breast Cancer?
4.1. TRPA1
4.2. TRPC5
4.3. TRPV1
4.4. TRPV2
4.5. TRPM2
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gucalp, A.; Gupta, G.P.; Pilewskie, M.L.; Sutton, E.J.; Norton, L. Advances in Managing Breast Cancer: A Clinical Update. F1000Prime Rep. 2014, 6, 66. [Google Scholar] [CrossRef]
- Luqmani, Y.A. Mechanisms of Drug Resistance in Cancer Chemotherapy. Med. Princ. Pract. 2005, 14, 35–48. [Google Scholar] [CrossRef] [PubMed]
- Wilson, T.R.; Longley, D.B.; Johnston, P.G. Chemoresistance in Solid Tumours. Ann. Oncol. 2006, 17, x315–x324. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, L.N.; Chow, E.K.-H. Mechanisms of Chemoresistance in Cancer Stem Cells. Clin. Transl. Med. 2013, 2, 3. [Google Scholar] [CrossRef]
- Chun, S.-Y.; Kwon, Y.-S.; Nam, K.-S.; Kim, S. Lapatinib Enhances the Cytotoxic Effects of Doxorubicin in MCF-7 Tumorspheres by Inhibiting the Drug Efflux Function of ABC Transporters. Biomed. Pharmacother. 2015, 72, 37–43. [Google Scholar] [CrossRef]
- The International Transporter Consortium; Giacomini, K.M.; Huang, S.-M.; Tweedie, D.J.; Benet, L.Z.; Brouwer, K.L.R.; Chu, X.; Dahlin, A.; Evers, R.; Fischer, V.; et al. Membrane Transporters in Drug Development. Nat. Rev. Drug Discov. 2010, 9, 215–236. [Google Scholar] [CrossRef]
- Wang, Y.-J.; Zhang, Y.-K.; Kathawala, R.J.; Chen, Z.-S. Repositioning of Tyrosine Kinase Inhibitors as Antagonists of ATP-Binding Cassette Transporters in Anticancer Drug Resistance. Cancers 2014, 6, 1925–1952. [Google Scholar] [CrossRef]
- Filomeni, G.; Turella, P.; Dupuis, M.L.; Forini, O.; Ciriolo, M.R.; Cianfriglia, M.; Pezzola, S.; Federici, G.; Caccuri, A.M. 6-(7-Nitro-2,1,3-Benzoxadiazol-4-Ylthio)Hexanol, a Specific Glutathione S-Transferase Inhibitor, Overcomes the Multidrug Resistance (MDR)-Associated Protein 1–Mediated MDR in Small Cell Lung Cancer. Mol. Cancer Ther. 2008, 7, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Antona, C.; Ingelman-Sundberg, M. Cytochrome P450 Pharmacogenetics and Cancer. Oncogene 2006, 25, 1679–1691. [Google Scholar] [CrossRef]
- Mansoori, B.; Mohammadi, A.; Davudian, S.; Shirjang, S.; Baradaran, B. The Different Mechanisms of Cancer Drug Resistance: A Brief Review. Adv. Pharm. Bull. 2017, 7, 339–348. [Google Scholar] [CrossRef]
- Housman, G.; Byler, S.; Heerboth, S.; Lapinska, K.; Longacre, M.; Snyder, N.; Sarkar, S. Drug Resistance in Cancer: An Overview. Cancers 2014, 6, 1769–1792. [Google Scholar] [CrossRef] [PubMed]
- Lowe, S.W.; Ruley, H.E.; Jacks, T.; Housman, D.E. P53-Dependent Apoptosis Modulates the Cytotoxicity of Anticancer Agents. Cell 1993, 74, 957–967. [Google Scholar] [CrossRef] [PubMed]
- Bedi, A.; Barber, J.P.; Bedi, G.C.; el-Deiry, W.S.; Sidransky, D.; Vala, M.S.; Akhtar, A.J.; Hilton, J.; Jones, R.J. BCR-ABL-Mediated Inhibition of Apoptosis with Delay of G2/M Transition after DNA Damage: A Mechanism of Resistance to Multiple Anticancer Agents. Blood 1995, 86, 1148–1158. [Google Scholar] [CrossRef] [PubMed]
- Vaupel, P. Hypoxia and Aggressive Tumor Phenotype: Implications for Therapy and Prognosis. Oncologist 2008, 13, 21–26. [Google Scholar] [CrossRef]
- Gerweck, L.E.; Vijayappa, S.; Kozin, S. Tumor PH Controls the in Vivo Efficacy of Weak Acid and Base Chemotherapeutics. Mol. Cancer Ther. 2006, 5, 1275–1279. [Google Scholar] [CrossRef]
- Cosse, J.-P.; Michiels, C. Tumour Hypoxia Affects the Responsiveness of Cancer Cells to Chemotherapy and Promotes Cancer Progression. ACAMC 2008, 8, 790–797. [Google Scholar] [CrossRef]
- Chouaib, S.; Noman, M.Z.; Kosmatopoulos, K.; Curran, M.A. Hypoxic Stress: Obstacles and Opportunities for Innovative Immunotherapy of Cancer. Oncogene 2017, 36, 439–445. [Google Scholar] [CrossRef]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef]
- Fisusi, F.A.; Akala, E.O. Drug Combinations in Breast Cancer Therapy. Pharm. Nanotechnol. 2019, 7, 3–23. [Google Scholar] [CrossRef]
- Nedeljković, M.; Damjanović, A. Mechanisms of Chemotherapy Resistance in Triple-Negative Breast Cancer—How We Can Rise to the Challenge. Cells 2019, 8, 957. [Google Scholar] [CrossRef]
- Beretta, G.L.; Zunino, F. Molecular Mechanisms of Anthracycline Activity. In Anthracycline Chemistry and Biology II; Krohn, K., Ed.; Topics in Current Chemistry; Springer: Berlin/Heidelberg, Germany, 2007; Volume 283, pp. 1–19. ISBN 978-3-540-75812-9. [Google Scholar]
- Lim, C.C.; Zuppinger, C.; Guo, X.; Kuster, G.M.; Helmes, M.; Eppenberger, H.M.; Suter, T.M.; Liao, R.; Sawyer, D.B. Anthracyclines Induce Calpain-Dependent Titin Proteolysis and Necrosis in Cardiomyocytes. J. Biol. Chem. 2004, 279, 8290–8299. [Google Scholar] [CrossRef]
- Burger, H.; Foekens, J.A.; Look, M.P.; Meijer-van Gelder, M.E.; Klijn, J.G.M.; Wiemer, E.A.C.; Stoter, G.; Nooter, K. RNA Expression of Breast Cancer Resistance Protein, Lung Resistance-Related Protein, Multidrug Resistance-Associated Proteins 1 and 2, and Multidrug Resistance Gene 1 in Breast Cancer: Correlation with Chemotherapeutic Response. Clin. Cancer Res. 2003, 9, 827–836. [Google Scholar] [PubMed]
- Dunkern, T.R.; Wedemeyer, I.; Baumgärtner, M.; Fritz, G.; Kaina, B. Resistance of P53 Knockout Cells to Doxorubicin Is Related to Reduced Formation of DNA Strand Breaks Rather than Impaired Apoptotic Signaling. DNA Repair. 2003, 2, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Ramu, A.; Cohen, L.; Glaubiger, D. Oxygen Radical Detoxification Enzymes in Doxorubicin-Sensitive and -Resistant P388 Murine Leukemia Cells. Cancer Res. 1984, 44, 1976–1980. [Google Scholar]
- Eijdems, E.; De Haas, M.; Timmerman, A.; Van Der Schans, G.; Kamst, E.; De Nooij, J.; Astaldi Ricotti, G.; Borst, P.; Baas, F. Reduced Topoisomerase II Activity in Multidrug-Resistant Human Non-Small Cell Lung Cancer Cell Lines. Br. J. Cancer 1995, 71, 40–47. [Google Scholar] [CrossRef]
- Nabholtz, J.-M.; Gligorov, J. The Role of Taxanes in the Treatment of Breast Cancer. Expert Opin. Pharmacother. 2005, 6, 1073–1094. [Google Scholar] [CrossRef] [PubMed]
- Chien, A.J.; Moasser, M.M. Cellular Mechanisms of Resistance to Anthracyclines and Taxanes in Cancer: Intrinsic and Acquired. Semin. Oncol. 2008, 35, S1–S14. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, C.; Gao, X.; Yao, Q. Platinum-Based Drugs for Cancer Therapy and Anti-Tumor Strategies. Theranostics 2022, 12, 2115–2132. [Google Scholar] [CrossRef]
- Zhou, J.; Kang, Y.; Chen, L.; Wang, H.; Liu, J.; Zeng, S.; Yu, L. The Drug-Resistance Mechanisms of Five Platinum-Based Antitumor Agents. Front. Pharmacol. 2020, 11, 343. [Google Scholar] [CrossRef]
- Peng, W.-X.; Koirala, P.; Zhou, H.; Jiang, J.; Zhang, Z.; Yang, L.; Mo, Y.-Y. Lnc-DC Promotes Estrogen Independent Growth and Tamoxifen Resistance in Breast Cancer. Cell Death Dis. 2021, 12, 1000. [Google Scholar] [CrossRef]
- Ali, S.; Rasool, M.; Chaoudhry, H.; Pushparaj, P.N.; Jha, P. Molecular Mechanisms and Mode of Tamoxifen Resistance in Breast Cancer. Bioinformation 2016, 12, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Droog, M.; Beelen, K.; Linn, S.; Zwart, W. Tamoxifen Resistance: From Bench to Bedside. Eur. J. Pharmacol. 2013, 717, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Zhong, T.; Zhang, W.; Guo, H.; Pan, X.; Chen, X.; He, Q.; Yang, B.; Ding, L. The Regulatory and Modulatory Roles of TRP Family Channels in Malignant Tumors and Relevant Therapeutic Strategies. Acta Pharm. Sin. B 2022, 12, 1761–1780. [Google Scholar] [CrossRef]
- Cao, E. Structural Mechanisms of Transient Receptor Potential Ion Channels. J. Gen. Physiol. 2020, 152, e201811998. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; McVeigh, B.M.; Moiseenkova-Bell, V.Y. Structural Pharmacology of TRP Channels. J. Mol. Biol. 2021, 433, 166914. [Google Scholar] [CrossRef] [PubMed]
- Saul, S.; Stanisz, H.; Backes, C.S.; Schwarz, E.C.; Hoth, M. How ORAI and TRP Channels Interfere with Each Other: Interaction Models and Examples from the Immune System and the Skin. Eur. J. Pharmacol. 2014, 739, 49–59. [Google Scholar] [CrossRef]
- Huang, H.-K.; Lin, Y.-H.; Chang, H.-A.; Lai, Y.-S.; Chen, Y.-C.; Huang, S.-C.; Chou, C.-Y.; Chiu, W.-T. Chemoresistant Ovarian Cancer Enhances Its Migration Abilities by Increasing Store-Operated Ca2+ Entry-Mediated Turnover of Focal Adhesions. J Biomed. Sci. 2020, 27, 36. [Google Scholar] [CrossRef]
- Andersson, D.A.; Gentry, C.; Moss, S.; Bevan, S. Transient Receptor Potential A1 Is a Sensory Receptor for Multiple Products of Oxidative Stress. J. Neurosci. 2008, 28, 2485–2494. [Google Scholar] [CrossRef]
- Takahashi, N.; Mori, Y. TRP Channels as Sensors and Signal Integrators of Redox Status Changes. Front. Pharmacol. 2011, 2, 58. [Google Scholar] [CrossRef]
- De Logu, F.; Souza Monteiro De Araujo, D.; Ugolini, F.; Iannone, L.F.; Vannucchi, M.; Portelli, F.; Landini, L.; Titiz, M.; De Giorgi, V.; Geppetti, P.; et al. The TRPA1 Channel Amplifies the Oxidative Stress Signal in Melanoma. Cells 2021, 10, 3131. [Google Scholar] [CrossRef]
- Schieber, M.; Chandel, N.S. ROS Function in Redox Signaling and Oxidative Stress. Curr. Biol. 2014, 24, R453–R462. [Google Scholar] [CrossRef]
- Takahashi, N.; Chen, H.-Y.; Harris, I.S.; Stover, D.G.; Selfors, L.M.; Bronson, R.T.; Deraedt, T.; Cichowski, K.; Welm, A.L.; Mori, Y.; et al. Cancer Cells Co-Opt the Neuronal Redox-Sensing Channel TRPA1 to Promote Oxidative-Stress Tolerance. Cancer Cell 2018, 33, 985–1003. [Google Scholar] [CrossRef] [PubMed]
- Sawada, Y.; Hosokawa, H.; Matsumura, K.; Kobayashi, S. Activation of Transient Receptor Potential Ankyrin 1 by Hydrogen Peroxide. Eur. J. Neurosci. 2008, 27, 1131–1142. [Google Scholar] [CrossRef] [PubMed]
- Mei, L.; Liu, Y.; Zhang, Q.; Gao, H.; Zhang, Z.; He, Q. Enhanced Antitumor and Anti-Metastasis Efficiency via Combined Treatment with CXCR4 Antagonist and Liposomal Doxorubicin. J. Control. Release 2014, 196, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yin, S.; Mei, L.; Yang, Y.; Xu, S.; He, X.; Wang, M.; Li, M.; Zhang, Z.; He, Q. A Dual Receptors-Targeting and Size-Switchable “Cluster Bomb” Co-Loading Chemotherapeutic and Transient Receptor Potential Ankyrin 1 (TRPA-1) Inhibitor for Treatment of Triple Negative Breast Cancer. J. Control. Release 2020, 321, 71–83. [Google Scholar] [CrossRef]
- Schnelzer, A.; Prechtel, D.; Knaus, U.; Dehne, K.; Gerhard, M.; Graeff, H.; Harbeck, N.; Schmitt, M.; Lengyel, E. Rac1 in Human Breast Cancer: Overexpression, Mutation Analysis, and Characterization of a New Isoform, Rac1b. Oncogene 2000, 19, 3013–3020. [Google Scholar] [CrossRef]
- Saldías, M.P.; Maureira, D.; Orellana-Serradell, O.; Silva, I.; Lavanderos, B.; Cruz, P.; Torres, C.; Cáceres, M.; Cerda, O. TRP Channels Interactome as a Novel Therapeutic Target in Breast Cancer. Front. Oncol. 2021, 11, 621614. [Google Scholar] [CrossRef]
- He, D.; Ma, X. Transient Receptor Potential Channel C5 in Cancer Chemoresistance. Acta Pharmacol. Sin. 2016, 37, 19–24. [Google Scholar] [CrossRef]
- Ma, X.; Cai, Y.; He, D.; Zou, C.; Zhang, P.; Lo, C.Y.; Xu, Z.; Chan, F.L.; Yu, S.; Chen, Y.; et al. Transient Receptor Potential Channel TRPC5 Is Essential for P-Glycoprotein Induction in Drug-Resistant Cancer Cells. Proc. Natl. Acad. Sci. USA 2012, 109, 16282–16287. [Google Scholar] [CrossRef]
- He, D.-X.; Gu, X.-T.; Jiang, L.; Jin, J.; Ma, X. A Methylation-Based Regulatory Network for MicroRNA 320a in Chemoresistant Breast Cancer. Mol. Pharmacol. 2014, 86, 536–547. [Google Scholar] [CrossRef]
- Chang, H.; Zou, Z. Targeting Autophagy to Overcome Drug Resistance: Further Developments. J. Hematol. Oncol. 2020, 13, 159. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, X.; Li, H.; Chen, Z.; Yao, X.; Jin, J.; Ma, X. TRPC5-Induced Autophagy Promotes Drug Resistance in Breast Carcinoma via CaMKKβ/AMPKα/MTOR Pathway. Sci. Rep. 2017, 7, 3158. [Google Scholar] [CrossRef]
- Ma, X.; Chen, Z.; Hua, D.; He, D.; Wang, L.; Zhang, P.; Wang, J.; Cai, Y.; Gao, C.; Zhang, X.; et al. Essential Role for TrpC5-Containing Extracellular Vesicles in Breast Cancer with Chemotherapeutic Resistance. Proc. Natl. Acad. Sci. USA 2014, 111, 6389–6394. [Google Scholar] [CrossRef]
- Ramsey, I.S.; Delling, M.; Clapham, D.E. AN INTRODUCTION TO TRP CHANNELS. Annu. Rev. Physiol. 2006, 68, 619–647. [Google Scholar] [CrossRef]
- Koşar, P.A.; Nazıroğlu, M.; Övey, İ.S.; Çiğ, B. Synergic Effects of Doxorubicin and Melatonin on Apoptosis and Mitochondrial Oxidative Stress in MCF-7 Breast Cancer Cells: Involvement of TRPV1 Channels. J. Membr. Biol. 2016, 249, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Bevan, S.; Hothi, S.; Hughes, G.; James, I.F.; Rang, H.P.; Shah, K.; Walpole, C.S.J.; Yeats, J.C. Capsazepine: A Competitive Antagonist of the Sensory Neurone Excitant Capsaicin. Br. J. Pharmacol. 1992, 107, 544–552. [Google Scholar] [CrossRef] [PubMed]
- Nur, G.; Nazıroğlu, M.; Deveci, H.A. Synergic Prooxidant, Apoptotic and TRPV1 Channel Activator Effects of Alpha-Lipoic Acid and Cisplatin in MCF-7 Breast Cancer Cells. J. Recept. Signal Transduct. 2017, 37, 569–577. [Google Scholar] [CrossRef]
- Weyer-Menkhoff, I.; Lötsch, J. Human Pharmacological Approaches to TRP-Ion-Channel-Based Analgesic Drug Development. Drug Discov. Today 2018, 23, 2003–2012. [Google Scholar] [CrossRef]
- Kojima, I.; Nagasawa, M. TRPV2. In Mammalian Transient Receptor Potential (TRP) Cation Channels; Nilius, B., Flockerzi, V., Eds.; Handbook of Experimental Pharmacology; Springer: Berlin/Heidelberg, Germany, 2014; Volume 222, pp. 247–272. ISBN 978-3-642-54214-5. [Google Scholar]
- So, C.L.; Milevskiy, M.J.G.; Monteith, G.R. Transient Receptor Potential Cation Channel Subfamily V and Breast Cancer. Lab. Investig. 2020, 100, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Gambade, A.; Zreika, S.; Guéguinou, M.; Chourpa, I.; Fromont, G.; Bouchet, A.M.; Burlaud-Gaillard, J.; Potier-Cartereau, M.; Roger, S.; Aucagne, V.; et al. Activation of TRPV2 and BKCa Channels by the LL-37 Enantiomers Stimulates Calcium Entry and Migration of Cancer Cells. Oncotarget 2016, 7, 23785–23800. [Google Scholar] [CrossRef]
- Elbaz, M.; Ahirwar, D.; Xiaoli, Z.; Zhou, X.; Lustberg, M.; Nasser, M.W.; Shilo, K.; Ganju, R.K. TRPV2 Is a Novel Biomarker and Therapeutic Target in Triple Negative Breast Cancer. Oncotarget 2018, 9, 33459–33470. [Google Scholar] [CrossRef] [PubMed]
- Blenn, C.; Wyrsch, P.; Bader, J.; Bollhalder, M.; Althaus, F.R. Poly(ADP-Ribose)Glycohydrolase Is an Upstream Regulator of Ca2+ Fluxes in Oxidative Cell Death. Cell. Mol. Life Sci. 2011, 68, 1455–1466. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, M.M.; Feng, X.; Liu, M.; Parker, L.P.; Koh, D.W. Inhibition of the Transient Receptor Potential Melastatin-2 Channel Causes Increased DNA Damage and Decreased Proliferation in Breast Adenocarcinoma Cells. Int. J. Oncol. 2015, 46, 2267–2276. [Google Scholar] [CrossRef]
- Koh, D.W.; Powell, D.P.; Blake, S.D.; Hoffman, J.L.; Hopkins, M.M.; Feng, X. Enhanced Cytotoxicity in Triple-Negative and Estrogen Receptor-Positive Breast Adenocarcinoma Cells Due to Inhibition of the Transient Receptor Potential Melastatin-2 Channel. Oncol. Rep. 2015, 34, 1589–1598. [Google Scholar] [CrossRef] [PubMed]
- Miller, B.A. TRPM2 in Cancer. Cell Calcium 2019, 80, 8–17. [Google Scholar] [CrossRef]
Channel | Breast Cancer Subtype | Effect | Signaling Pathway |
---|---|---|---|
TRPA1 | PR-/ER-/HER2- | TRPA1 inhibition decreases tumor growth and increases sensitivity to carboplatin in vivo [40] | RAS-ERK/AKT/mTOR |
PR-/ER-/HER2- | The inhibition of TRPA1 increases sensitivity to doxorubicin [46] | - | |
TRPC5 | PR+/ER+/HER2+/- | The inhibition of TRPC5 decreases doxorubicin and paclitaxel resistance in vitro and in vivo and changes drug distribution leading to the accumulation of doxorubicin in the nucleus [50] | CaMKKβ/AMPKα/mTOR |
TRPV1 | PR+/ER+/HER2+/- | TRPV1 activation in combination with doxorubicin increases apoptosis [56] | Intrinsic apoptotic signaling pathways |
TRPV2 | PR-/ER-/HER2- | TRPV2 activation via cannabidiol increases the cellular uptake of doxorubicin, which enhances apoptosis [63] | Intrinsic apoptotic signaling pathways |
TRPM2 | PR-/ER-/HER2- | TRPM2 inhibition increases cell death after treatment with doxorubicin and tamoxifen [66] | - |
PR+/ER+/HER2+/- | TRPM2 inhibition increases in cell death after treatment with tamoxifen and enhances the levels of DNA damage when combined with doxorubicin treatment [66] | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soussi, M.; Hasselsweiller, A.; Gkika, D. TRP Channels: The Neglected Culprits in Breast Cancer Chemotherapy Resistance? Membranes 2023, 13, 788. https://doi.org/10.3390/membranes13090788
Soussi M, Hasselsweiller A, Gkika D. TRP Channels: The Neglected Culprits in Breast Cancer Chemotherapy Resistance? Membranes. 2023; 13(9):788. https://doi.org/10.3390/membranes13090788
Chicago/Turabian StyleSoussi, Mayar, Alice Hasselsweiller, and Dimitra Gkika. 2023. "TRP Channels: The Neglected Culprits in Breast Cancer Chemotherapy Resistance?" Membranes 13, no. 9: 788. https://doi.org/10.3390/membranes13090788
APA StyleSoussi, M., Hasselsweiller, A., & Gkika, D. (2023). TRP Channels: The Neglected Culprits in Breast Cancer Chemotherapy Resistance? Membranes, 13(9), 788. https://doi.org/10.3390/membranes13090788