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Abstract: At present, the V-Ti-Co phase diagram is not established, which seriously hinders the
subsequent development of this potential hydrogen permeation alloy system. To this end, this
article constructed the first phase diagram of the V-Ti-Co system by using the CALculation of PHAse
Diagrams (CALPHAD) approach as well as relevant validation experiments. On this basis, hydrogen-
permeable VxTi50Co50−x (x = 17.5, 20.5, . . ., 32.5) alloys were designed, and their microstructure
characteristics and hydrogen transport behaviour were further studied by XRD, SEM, EDS, and so on.
It was found that six ternary invariant reactions are located in the liquidus projection, and the phase
diagram is divided into eight phase regions by their connecting lines. Among them, some alloys in
the TiCo phase region were proven to be promising candidate materials for hydrogen permeation.
Typically, VxTi50Co50−x (x = 17.5–23.5) alloys, which consist of the primary TiCo and the eutectic
{bcc-(V, Ti) and TiCo} structure, show a high hydrogen permeability without hydrogen embrittlement.
In particular, V23.5Ti50Co26.5 exhibit the highest permeability of 4.05 × 10−8 mol H2 m−1s−1Pa−0.5,
which is the highest value known heretofore in the V-Ti-Co system. The high permeability of these
alloys is due in large part to the simultaneous increment of hydrogen solubility and diffusivity, and
is closely related to the composition of hydrogen permeable alloys, especially the Ti content in the
(V, Ti) phase. The permeability of this alloy system is much higher than those of Nb-TiCo and/or
Nb-TiNi alloys.

Keywords: V-Ti-Co alloy; phase diagram; membranes; hydrogen permeation

1. Introduction

In recent years, extensive research was conducted on non-Pd hydrogen permeable
alloys due to the high price (~USD 90 per gram) and scarce resources of Pd-based alloys
(Pd-Ag [1], Pd-Au [2], etc.), one major aspect of this is group 5B metals, such as V, Nb, and
Ta [3]. To overcome the hydrogen embrittlement issue of these pure metals, it is usually
necessary to dope them with other late transition metals (Ni, Co, Mo, etc.) to form binary
or ternary alloys [4,5]. In the past decade, significant efforts were made in the experimental
study of multi-phase Nb- or V-based hydrogen permeable alloys by Dolan [4,6], Fleury [6],
Yukawa [7], Aoki [8], and Nishimura [9,10]. Of these alloys, Nb–TiCo duplex alloys,
e.g., Nb30Ti35Co35, were demonstrated to be promising candidates for new hydrogen
permeation membranes by Ishikawa et al. [11]. Additionally, they also found that these
alloys, which contain the B2–TiCo compound and the bcc-(Nb, Ti) solid solution, not only
have high permeability (using Pd as a reference) but also excellent resistance to hydrogen
embrittlement. Within the range of hydrogen permeation pressure of 0.1 to 0.5 MPa, the

Membranes 2023, 13, 790. https://doi.org/10.3390/membranes13090790 https://www.mdpi.com/journal/membranes

https://doi.org/10.3390/membranes13090790
https://doi.org/10.3390/membranes13090790
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/membranes
https://www.mdpi.com
https://orcid.org/0000-0002-9012-2639
https://orcid.org/0000-0003-3157-0957
https://orcid.org/0000-0003-2900-1325
https://orcid.org/0000-0003-4684-683X
https://doi.org/10.3390/membranes13090790
https://www.mdpi.com/journal/membranes
https://www.mdpi.com/article/10.3390/membranes13090790?type=check_update&version=1


Membranes 2023, 13, 790 2 of 20

hydrogen dissolution reaction into these Nb- or V-based ternary alloys [12] follows the
pseudo-Sieverts’ law, C = K·P1/2 + α. This is different from Pd-based alloy, which satisfies
the Sieverts’ law (C = K·P1/2). Generally, hydrogen dissolution or absorption is a dynamic
process that changes over time, and this complete process is difficult to dynamically track.
Therefore, using molecular dynamics simulations (MDS) [13] to carry out related research
is also one of the current research hotspots.

Recently, this system was further investigated by our research group, and the alloy
composition range suitable for hydrogen permeation was determined for the first time [14].
Afterwards, combined with a melt spinning technique, more promising Nb-Ti-Co amor-
phous membranes were successfully prepared. These membranes show a high H2 flux of
15.55 cc H2 cm−2 min−1 and can work continuously for up to 112 h (see Ref. [14]). Accord-
ing to the periodic table, both V and Nb metals belong to the 5B group and have similar
crystal structures and physical/chemical properties. Similar to the Nb-TiCo alloy system
studied earlier [11,14], it is strongly expected that there are also suitable alloy compositions
in the V-Ti-Co system, which has good performance with respect to hydrogen permeation.
However, due to the complex interactions of multi-components, little research was con-
ducted on the V-Ti-Co phase diagram, and currently, there are only reports on isothermal
sections at 800 ◦C, 1000 ◦C, 1100 ◦C, and 1200 ◦C in the literature [15]. Furthermore, it is
currently unclear whether there are dual-phase (bcc-V + TiCo) alloys used for hydrogen
permeation in this system.

Considering these aspects, the purpose and tasks of the present work are as follows:
(1) to establish the equilibrium phase diagram of the V-Ti-Co system using the CALPHAD
approach and obtain important solidification parameters, such as the types and quantities
of the invariant reaction, the number and boundaries of phase zones, phase equilibrium
reaction temperature, etc., (2) to evaluate the accuracy of the calculated V-Ti-Co phase
diagram by means of Thermo-calc software based on the solidification experimental data
of various alloys, and (3) to develop and explore alloys with excellent hydrogen transport
performance, especially high permeability, in the newly established V-Ti-Co system.

2. Experimental and Numerical Procedures
2.1. Materials and Methods

In this work, V-Ti-Co alloys for experimental research were fabricated through a
vacuum non-consumable arc melting method, and the purity of raw materials (Beijing
Dream Material Technology Co., Ltd., Beijing, China) was greater than 99.95%. The selection
of alloy composition is mainly based on two considerations. One is to verify the accuracy
of the calculated phase diagram, such as V35Ti32.5Co32.5, V50Ti25Co25, and V30Ti27Co43
alloys, while the other is used to explore new hydrogen permeation alloys. After weighing,
cleaning, and vacuum drying, button shape ingots were prepared, and they were remelted
five times to improve uniformity. Then, disc-shaped samples (Φ 16 × 0.7 mm) were cut
from the centre of the ingots by using electric spark wire cutting technology. After polishing,
the sample was kept in a vacuum state and a thin layer of pure Pd (purity = 99.99%) with a
thickness of approximately 200 nm was deposited on its surface using a DC magnetron
sputtering system at 573 K. Next, the sample is activated in an argon atmosphere for about
30 min. The chamber pressure was 5 × 10−1 Pa. The purpose of the Pd plating film
is to enhance the catalytic activity of the composite membrane. Thus, the Pd film was
involved in the hydrogen permeation experiment. The microstructure was characterized
by a scanning electron microscope (SEM, MAIA3) operated at 200 kV. Correspondingly, the
phase component was determined by energy-dispersive X-ray spectroscopy. The crystal
structure before and after hydrogenation was analysed by X-ray diffraction (XRD, Rigaku
D/MAX2550) with Cu-Kα radiation (λ = 1.5418 Å).

The hydrogen permeability of all the samples was measured using conventional gas
permeation techniques. The test parameters were as follows: the upstream pressure (Pu) of
the membrane was 0.1–0.5 MPa, while the downstream pressure (Pd) was maintained at
0.1 MPa. In other words, the value of Pu was increased to 0.5 MPa by 0.05 MPa intervals.
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The initial testing temperature was 523 K. Then, the measurements were repeated at
573 K, 623 K, and 673 K, respectively. The membrane thickness (L) and effective hydrogen
permeation area(s) were 0.68 mm and ~113 mm2, respectively. Finally, after measuring the
H2 flux (J), linear fitting was performed on (J × L) and (P0.5

u and P0.5
d ), and the slope is the

hydrogen permeability. The reason of multiplying flux (J) and thickness (L) is to eliminate
the influence of membrane thickness when calculating the hydrogen permeability.

J =
Φ∆P0.5

L
=

Φ(Pu
0.5 − Pd

0.5)

L
(1)

The meanings represented by unconventional symbols or abbreviations in all equations
in this work can be seen in the abbreviation list. For more detailed information, please refer
to our recent work in references [16–18].

2.2. Phase Diagram Calculation Model and Algorithm
2.2.1. Thermodynamic Model

Table 1 summarises the available parameters and relevant thermodynamic data of the
V-Ti-Co system. Overall, this alloy system contains three different types of phases, such as
unary phases, solution phases, and intermetallic compounds. Each type is different and
requires separate calculations. For pure elements in the V-Ti-Co system, their Gibbs energy
Gi(T) at 298.15 K and 100 kPa can be obtained by the following equation [19]:

Gi(T)−HSER
i = A + BT + CT ln T + DT2 + ET−1 + IT7 + JT−9 (2)

Table 1. The thermodynamic parameters used in the present work.

Parameters Values Ref.

Solidification shrinkage 0.035 [20]
The distance of secondary dendrite (µm) 0.1 Calculated

V–Ti–Co
DCo (mm2 s−1) 27 exp (−13,000/T) Present work
DTi (mm2 s−1) 22.3 exp (−11,000/T) Present work

Lbcc-V (J mol−1) −252,850 + 83T + (−8965 + 3.56T) × (xV − xTi) Present work
LCo2Ti (J mol−1) −34,618 + 14.6T + (4583 − 62.8T) × (xCo − xTi) Present work
LTiCo (J mol−1) 35,782 + 1.67T + 2678 × (xTi − xCo) Present work
LCoTi2 (J mol−1) 42,748 + 1.35T − 35.93 × (xTi − xCo) Present work
LCo3V (J mol−1) −11,876 + 2.49T + 2781 × (xCo − xV) Present work

Solidification/cooling rates Rf (s−1) 300 Calculated
Step length of α (∆f s) 0.0025 Initial value

Step length of binary eutectic ∆T (◦C) 0.25 Initial value
Specific heat (S and L) cPS, cPL (J kg−1K−1) 1068, 1241 [2,4,13]

Thermal conductivity (solid) λS (W m−1K−1) 256 [2,4,13]
Thermal conductivity (liquid) λL (W m−1K−1) 132 [2,4,13]

Liquidus temperature Tliq (◦C) Depends on composition By ThermoCalc

As for the solution phases (e.g., liquid, bcc-V, etc.), subregular solution models are
referenced, and thus their Gibbs free energies (GΦ

m) can be expressed by the following
mathematical equation [21]:

Gϕ
m − exG ϕ = ∑

i=V,Ti,Co
x0

i · G
ϕ
i + R · T ∑

i=V,Ti,Co
xi · ln xϕ

i +
1
T

[
∑

i
xiT

ϕ
i + xixj

n

∑
m=o

mT ϕ
ij(xi − xj)

m

]
(3)

In Equation (3), the second term (exG) at the left end is usually obtained through
Redlich Kister polynomials [22,23]. ∑

i=V,Ti,Co
x0

i · G
ϕ
i is the mechanical mixing of V, Ti, or Co.

Additionally, the intermetallic compounds, such as TiCo and TiCo2, etc., used the model
reported by Wu et al. [24]. Due to the small composition range in the Ti-Co binary phase
diagram, Ti2Co is approximately represented as a stoichiometric compound.
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2.2.2. Calculation Algorithm

In the simulation calculation process of the solidification path of the alloys, it is
necessary to couple with our previously proposed unified micro-segregation model [25].
After inputting the initial parameters, each iteration calculation requires accessing the PKP
database in Thermo-Calc software (v2019a) to obtain the corresponding thermodynamic
data, which is then brought into the model for subsequent calculations (see Figure 1).
The initialization parameters, such as solidification/cooling rates, step length, and so
on, are shown in Table 1. Afterwards, the solidification type of the alloy is obtained by
comparing the number of phases. In single-phase or binary eutectic solidification, the phase
volume fraction (f s) is the control variable during the calculation process. In comparison,
the temperature, T, is selected as the control variable during the four-phase equilibrium
solidification, such as the ternary eutectic or quasi-peritectic transformation.
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Figure 1. The algorithm flow chart of the solidification path for V-Ti-Co alloys.

3. Results
3.1. Calculation of Phase Diagram and Experimental Verification
3.1.1. Calculation of Phase Diagram

Figure 2 shows the calculated Co-V, V-Ti, and Ti-Co phase diagrams as well as the
calculated liquidus projection of the V-Ti-Co system over the whole composition using
the presently obtained thermodynamic parameters in Table 1. Clearly, the Co-V binary
system contains three intermediate phases, i.e., Co3V, CoV3, and σ-Co2V3. The last two
phases are formed through the following reactions L + (V) → σ-Co2V3 (1695 K) and
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σ-Co2V3 + (V)→ CoV3 (1297 K). The bcc solid solution (βTi, V) phase changed to the
αTi phase at temperatures below 1073 K in the V-Ti binary system. Additionally, there
are five intermediate phases (CoTi2, CoTi, Co2Ti (c), Co2Ti (h), and Co3Ti) in the Ti-Co
binary system, which are formed through the following four reactions: (1) L → CoTi
(1773 K); (2) L + CoTi→ Co2Ti (c) (1509 K); (3) L + Co2Ti (c) → Co2Ti (h) (1475 K); and
(4) L + Co2Ti (h)→ Co3Ti (1459 K). All these thermodynamic data and equilibrium reac-
tions are consistent with the results previously calculated by Bratberg [26], Okamoto [27],
and Davydov [28].
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Figure 2. Calculated Co-V, V-Ti, and Ti-Co phase diagram and the calculated liquidus projection
of the V-Ti-Co system. A, B and C represent the composition of V35Ti32.5Co32.5, V50Ti25Co25 and
V30Ti27Co43, respectively.

The calculation of binary equilibrium is relatively simple. Nevertheless, the results of
ternary alloys are more complex. Firstly, six invariant points, i.e., U1, U2, U3, U4, P1, and E1,
exist in the V-Ti-Co liquidus curve, and details about these four-phase invariant reactions are
summarised in Table 2. The arrows at the univariant lines designate declining temperatures.
Secondly, due to the presence of univariant lines, the whole V-Ti-Co ternary phase diagram
was divided into six single-phase regions, which are bcc-(V, Ti), TiCo, Sigma (CoV), fcc,
TiCo2 (h), TiCo2 (c), TiCo3, and Ti2Co. Among them, the bcc-(V, Ti) and TiCo phase regions
are the largest, and the univariant line connecting these regions provides convenient
conditions for the subsequent development of dual-phase {bcc-(V, Ti) and TiCo} alloys.
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Table 2. Invariant reactions with liquid phases of V-Ti-Co system.

No. Invariant Reaction Reaction Type Temperature (K)
Composition of Liquid Phases (at.%)

x (V) x (Ti) x (Co)

U1 L + CoTi→ Co2Ti(c) + Co2Ti(h) II 1512 29.423 0.201 70.376
U2 L + CoV→ bcc (V) + CoTi II 1509 45.571 26.462 27.967
U3 L + CoTi→ Co2Ti(h) + CoV II 1508 22.363 21.605 56.032
U4 L + Co3Ti→ Co2Ti(h)+ fcc II 1424 18.318 9.266 72.416
P1 L + CoTi + bcc (V)→ CoTi2 II 1421 59.761 16.297 23.942
E1 L→ Co3Ti + Co2Ti(h) + CoV I 1394 16.203 15.563 68.234

Based on the results of the liquidus projection and invariant reactions mentioned
above, the reaction scheme for the V-Ti-Co system was constructed for the first time, as
shown in Figure 3.
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The alloy solidifies and crystallises from the liquid phase at 1768 K until the end of the
ternary eutectic reaction, L→ Co3Ti + Co2Ti + CoV. As the temperature decreases, the other
five isothermal equilibrium solidification reactions experienced in sequence are as follows:

U1: (L + TiCo→ TiCo2 (h) + TiCo2 (c)), 1512 K;
U2: (L + sigma (CoV)→ bcc − (V, Ti) + TiCo), 1509 K;
U3: (L + TiCo→ TiCo2 (h) + sigma (CoV)), 1508 K;
U4: (L + TiCo3 → TiCo2 (h) + fcc), 1421 K;
P1: (L + TiCo + bcc − (V, Ti)→ Ti2Co), 1394 K.

At these stages, the temperature remains constant, and three different solid phases
will participate in the solidification and crystallization process, except for liquid alloys
according to the phase diagram theory F = P + C + 2 (or 1 if P constant). In the isothermal
sections of this system previously reported by Ruan et al. [15], Co3Ti was generated at
800 ◦C, while on the contrary, this phase was not found at 1000 ◦C. Additionally, there is
very little remaining liquid phase on the isothermal sections at 1200 ◦C. These findings
can be further explained through the phase diagram constructed in this work. The quasi-
peritectic transformation of U1 and U4 consumes a large amount of the liquid phase and is
accompanied by the formation of TiCo3, as shown in Figure 3. In brief, the above calculation
results provide a better understanding of the solidification sequence and liquidus surface
in the V-Ti-Co system.

3.1.2. Experimental Verification

To verify the accuracy of the calculation results, three as-cast alloys with different
compositions (see the marked positions A, B, and C in Figure 2) were prepared, and their
microstructural characteristics are shown in Figure 4. According to the calculated phase
diagram, the component of alloy A is located in the eutectic univariant line. Therefore, it
can be inferred that eutectic reactions occur preferentially during its solidification process,
generating eutectic structures. After observing and analysing the microstructure of alloy
A, it is clear that it is mostly composed of homogeneous and fine eutectic {(V, Co) + (V, Ti)}
structures (Figure 4a). At its edges, a small amount of coarse {(V, Ti) + TiCo} eutectic
exists, see Figure 4b, which can be attributed to the quasi-peritectic equilibrium reaction
of U2, L + sigma (CoV)→ bcc-(V, Ti) + TiCo. For alloys B and C, due to their component
being located in different phase regions, i.e., (V, Ti) and (V, Co), different primary phases
will be generated during the solidification process. This assumption is confirmed by the
results of Figure 4c,d, as the primary (V, Ti) and (V, Co) phases are clearly observed in
their structure. The consistency between the calculated results and the experimental results
further demonstrates the accuracy of the phase diagram calculation in the present work.

3.2. Solidification of VxTi50Co50−x Alloy

In our previously reported Nb-Ti-Co or Nb-Ti-Ni system [29–31], the duplex alloys
composed of bcc-Nb solid solution and the B2-TiCo (or TiNi) compound were generally
located on the Nb-TiCo and Nb-TiNi pseudo-binary isopleth, and these components are
more suitable candidates for hydrogen permeable alloys. However, this pattern is not
applicable in the V-Ti-Co system. For example, in addition to (V, Ti) and the TiCo phases,
other phases, such as (V, Co) and Ti2Co additionally appear in as-cast V35Ti32.5Co32.5 (A) and
V50Ti25Co25 (B) alloys, although these two alloys are both located in V-TiCo pseudo-binary
system. Therefore, alloys in the quasi-binary isopleth are no longer considered. According
to the calculated V-Ti-Co phase diagram in Figure 2, it is possible to obtain a bcc-(Nb, Ti)
and TiCo dual-phase alloy at the lower right corner of the phase diagram, i.e., at a higher
Ti content. So, a series of alloys with the formula V23.5+xTi50Co26.5−x (x = −6, −3, 0, 3, 6, 9)
was devised and prepared, as shown in Figure 5a. The reason why Ti content remains at
50 at.% in the alloys is that the composition of this alloy series is close to the eutectic valley,
avoiding the formation of impurity phases. Here, for the convenience of further discussion,
these six alloys are named 1# to 6# in sequence, see Table 3 and Figure 5.
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Figure 5. Calculated solidification paths of VxTi50Co50−x (x = 17.5, 20.5, . . ., 32.5) alloys: (a) the local
liquid surface projection with the representative alloys 2#, 3#, and 4#; and (b) fs vs. T for the selected
alloys 1#. . .6#.

Before conducting the experiment, simulation calculations were first conducted on
the solidification paths of alloys 1#–6#. Clearly, the solidification path for alloys 1# and 2#
mainly includes the following two reactions: primary TiCo phase solidification (L→TiCo)
and binary eutectic solidification [L→bcc-(V, Ti) + TiCo] (Figure 5b). Unlike the above
alloys, primary bcc-(V, Ti) phases are formed by solidification before binary eutectic (bcc-
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(V, Ti) + TiCo) crystallization for alloys 4#, 5#, and 6#. Alloy 3# (V23.5Ti50Co26.5), as an
exception, only undergoes the latter eutectic transformation with the formation of a eutectic
microstructure. The above results indicate that ideal dual-phase structures can be obtained
in these alloys. Nevertheless, the large temperature gradient in alloys 4#, 5#, and 6#
suggests that the liquid phase surface of bcc-(V, Ti) is steeper and accompanied by residual
stress and defect generation during its solidification process. In this case, cracks are easily
formed inside the alloy, causing membrane separation failure.

Table 3. The compositions, constituting phases, and the hydrogen permeability (Φ) of VxTi50Co50−x

alloy samples (1#. . .6#).

No. Samples Constituting Phases
Chemical Composition

of Primary bcc-(V,Ti) Values of Φ,
(mol H2 m−1s−1Pa−0.5)

V Ti Co

1# V17.5Ti50Co32.5 TiCo, eutectic {bcc-(V,Ti) + TiCo} — — — 1.66 × 10−8

2# V20.5Ti50Co29.5 TiCo, eutectic {bcc-(V,Ti) + TiCo} — — — 3.24 × 10−8

3# V23.5Ti50Co26.5 Eutectic {bcc-(V,Ti) + TiCo} — — — 4.05 × 10−8

4# V26.5Ti50Co23.5 bcc-(V,Ti), eutectic {bcc-(V,Ti) + TiCo} 39.26 42.42 18.32 no permeation
5# V29.5Ti50Co20.5 bcc-(V,Ti), eutectic {bcc-(V,Ti) + TiCo} 41.83 44.32 13.58 no permeation
6# V32.5Ti50Co17.5 bcc-(V,Ti), eutectic {bcc-(V,Ti) + TiCo} 42.38 45.92 11.7 no permeation

3.3. Microstructure of VxTi50Co50−x Alloys

Figure 6 shows the XRD spectrum of VxTi50Co50−x alloys (1#...6#). Through careful
comparison, it can be found that these alloys are all composed of bcc-(V, Ti) and TiCo
phases, except for a very small amount of undefined impurity phases. With an increase
in the V element, the main diffraction peak intensity of the bcc-(V, Ti) phase increases,
indicating that the volume fraction of this phase gradually increases. Furthermore, the
position of this diffraction peak shifted to the left by varying degrees (see Figure 6b). Based
on Vegard’s law and the Rietveld method, their crystal lattice parameters were calculated,
and the relevant results are shown in Table 4. Obviously, the lattice parameters increase
with the increase in V content, and 6# (V23.5Ti50Co26.5) has the largest lattice parameter
of 3.791 Å. This may be related to the solid solution of Ti atoms in V. As the V content
increases, more Ti atoms dissolve inside the lattice. Since the atomic radius of Ti (0.146 nm)
is larger than that of V (0.132 nm), it causes V lattice expansion.
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Table 4. Crystal parameters of bcc-(V, Ti) phase in V-Ti-Co alloys.

No. Samples Lattice Parameters (Å) Cell Volume (Å3)

1# V17.5Ti50Co32.5 3.781 54.053
2# V20.5Ti50Co29.5 3.784 54.187
3# V23.5Ti50Co26.5 3.786 54.267
4# V26.5Ti50Co23.5 3.788 54.354
5# V29.5Ti50Co20.5 3.789 54.396
6# V32.5Ti50Co17.5 3.791 54.483

These alloys were further analysed by EDS and SEM, and the EDS result of the rep-
resentative 3# alloy is shown in Figure 7. Clearly, it is mainly composed of two phases.
The ratio of Ti/Co for the grey phase is approximately 1:1, and thus it is inferred as
TiCo (Figure 7b). Using similar compositional analysis methods, the black phase is iden-
tified as bcc-(V, Ti), and up to 40 at.% of the Ti atoms are solidly dissolved in the V
matrix (Figure 7c). The combination of the above two phases together forms a eutectic
{bcc-(V, Ti) + TiCo} microstructure, with a composition of V26.72Ti47.39Co25.89, similar to that
of alloy 3# (V23.5Ti50Co26.5) (see Figure 7d). In addition, as the V content increases, the
content of solid solution Ti elements in the primary bcc-(V, Ti) phase of the alloy gradually
increases (see Table 3).
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(a) SEM micrograph; (b–d) represent the chemical compositions of TiCo, bcc-(V, Ti), and eutectic
phases, respectively.

The microstructures of all the alloys are shown in Figure 8. As expected, alloys 1# and
2# are composed of a primary TiCo phase and a eutectic {bcc-(V, Ti) + TiCo} microstruc-
ture (Figure 8a,b). On the contrary, the primary phase in the alloys 5#–6# is bcc-(V, Ti)
(Figure 8d–f). An almost fully eutectic structure is observed in 3#, and the rod-shaped
morphology gradually coarsens from the centre to the surrounding area (Figure 8c). These
results suggest that as the V content increases, the TiCo phase gradually decreases, fol-
lowed by the formation of a fully eutectic structure in the alloy. As the V content further
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increases, the bcc-(V, Ti) phase solidifies and increases. The main reason for these structural
changes is that the studied alloy composition gradually crosses the univariant lines, U2P1,
as illustrated in Section 3.1.1. Furthermore, Table 3 summarises the constituting phases of
these alloys. By comparing with the calculated results, all experimental data are basically
consistent with the calculation results, further demonstrating the accuracy and reliability
of the calculation in this work. Overall, we successfully obtained a V-Ti-Co alloy with a
dual-phase structure through a combination of simulation and experimental methods. Next,
the hydrogen transport performance of these alloys is further analysed and characterised.

Membranes 2023, 13, x FOR PEER REVIEW 11 of 20 
 

 

 
Figure 8. SEM images of the as-cast VxTi50Co50-x alloy samples (1#…6#): (a) V17.5Ti50Co32.5 (1#), (b) 
V20.5Ti50Co29.5 (2#), (c) V23.5Ti50Co26.5 (3#), (d) V26.5Ti50Co23.5 (4#), (e) V29.5Ti50Co20.5 (5#), and (f) 
V32.5Ti50Co17.5 (6#). 

3.4. Hydrogen Transport Performance of VxTi50Co50-x Alloys 
Figure 9 shows the hydrogen permeability of the VxTi50Co50-x (1#…6#) alloys. To en-

sure the reproducibility of the results, each sample was measured at least twice during the 
hydrogen permeation experiment. When the error between two H2 flux values is less than 
1%, their average value is calculated and substituted into Equation (1) to obtain the hy-
drogen permeability, wherein a good linear relationship between (J × L) and ΔP0.5 can be 
observed for the as-cast V23.5Ti50Co26.5 (3#) alloy (see Figure 9a). Similar relationships also 
exist for other alloys [11,32]. This suggests that the hydrogen permeation process through 
the membrane follows Equation (1) within the temperature range of 523–673 K, and this 
process is controlled by the bulk diffusion process rather than the membrane surface re-
action. After linear fitting of each curve, the hydrogen permeability of each alloy at differ-
ent temperatures was obtained, as shown in Figure 9b. Clearly, as the V content increases, 
the TiCo phase gradually decreases, but the hydrogen permeation performance increases. 
Interestingly, when the V content exceeds 23.5 at.%, the membrane experiences severe 
hydrogen embrittlement, and its hydrogen permeation performance cannot be measured. 
In this case, eutectic V23.5Ti50Co26.5 (3#) processes the highest hydrogen permeability among 
all studied alloys. Its maximum value is 4.05 × 10−8 mol H2 m−1 s−1 Pa−0.5 673 K, which is 1.5 
(2.5) times that of Nb30Ti35Co35 [11] (pure Pd [32]) and is also the highest value known 
heretofore in a V-Ti-Co system.  

Figure 8. SEM images of the as-cast VxTi50Co50−x alloy samples (1#. . .6#): (a) V17.5Ti50Co32.5 (1#),
(b) V20.5Ti50Co29.5 (2#), (c) V23.5Ti50Co26.5 (3#), (d) V26.5Ti50Co23.5 (4#), (e) V29.5Ti50Co20.5 (5#), and
(f) V32.5Ti50Co17.5 (6#).

3.4. Hydrogen Transport Performance of VxTi50Co50−x Alloys

Figure 9 shows the hydrogen permeability of the VxTi50Co50−x (1#. . .6#) alloys. To
ensure the reproducibility of the results, each sample was measured at least twice during
the hydrogen permeation experiment. When the error between two H2 flux values is less
than 1%, their average value is calculated and substituted into Equation (1) to obtain the
hydrogen permeability, wherein a good linear relationship between (J × L) and ∆P0.5 can
be observed for the as-cast V23.5Ti50Co26.5 (3#) alloy (see Figure 9a). Similar relationships
also exist for other alloys [11,32]. This suggests that the hydrogen permeation process
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through the membrane follows Equation (1) within the temperature range of 523–673 K,
and this process is controlled by the bulk diffusion process rather than the membrane
surface reaction. After linear fitting of each curve, the hydrogen permeability of each alloy
at different temperatures was obtained, as shown in Figure 9b. Clearly, as the V content
increases, the TiCo phase gradually decreases, but the hydrogen permeation performance
increases. Interestingly, when the V content exceeds 23.5 at.%, the membrane experiences
severe hydrogen embrittlement, and its hydrogen permeation performance cannot be mea-
sured. In this case, eutectic V23.5Ti50Co26.5 (3#) processes the highest hydrogen permeability
among all studied alloys. Its maximum value is 4.05 × 10−8 mol H2 m−1 s−1 Pa−0.5 673 K,
which is 1.5 (2.5) times that of Nb30Ti35Co35 [11] (pure Pd [32]) and is also the highest value
known heretofore in a V-Ti-Co system.
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From the slope of the Arrhenius equation (Figure 9b), the activation energy for hy-
drogen permeation through V-Ti-Co membranes was calculated, ranging from 23.39 to
23.57 kJ mol−1. Generally, the temperature and/or intermetallic diffusion has a signifi-
cant impact on the formation of hydride phases in Nb- or V-based alloys. For example,
as reported by Belyakova et al. [33], the critical temperature for β-hydride formation in
Nb-Ti-Ni ternary alloys is 673 K. With the decrease in Ni and Ti contents in Nb and V,
the critical formation temperature gradually decreases. Furthermore, it was found in
Nb15.6Hf42.2Ni42.2 alloy [34] that the temperature for the formation of alloy hydride phase
was lower, approximately 523 K. The increase in temperature promotes the formation
of alloy hydrides. Similarly, the diffusion of solute atoms increases with the increase in
temperature, which is also prone to the formation of hydride phases. Due to the integrity
of the membrane (Figure 9) throughout the entire testing period, it can be inferred that
the formation temperature of alloy hydride phase in V-Ti-Co alloys is higher than 673 K.
These results also confirm, for the first time, that the V-Ti-Co alloys can be used as potential
candidates for hydrogen separation and purification.

By using the time lag method [35,36], the hydrogen diffusivity, D, values were calcu-
lated for hydrogen permeable alloys 1#–3#. Correspondingly, their hydrogen solubility, K,
was also obtained through the formula Φ = D × K, as shown in Table 5 and Figure 10. On
one hand, both D and K values increase with the increase in V content, indicating that the
simultaneous increase in these two parameters leads to an increase in hydrogen perme-
ability, as illustrated in Figure 9. One of the reasons for the gradual increase in hydrogen
solubility is the increase in lattice parameters of the solid solution (V, Ti) phase, as shown
in Table 4 above, because an increased octahedral or tetrahedral gap will provide more
positions for hydrogen atoms [37]. On the other hand, compared to hydrogen diffusivity,
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hydrogen solubility has a higher rate of increase, and the above trend is more obvious
when the V content is greater than 20 at.%. Furthermore, eutectic V23.5Ti50Co26.5 (3#) with
lower V content has higher K and D values than eutectic Nb30Ti35Co35 with higher Nb
content, indicating that the main element (i.e., 5B group element) is not the only element
determining the permeability. Furthermore, the activation energy of hydrogen diffusion
in 5B group alloys increases with the increase in hydrogen concentration [38]. Therefore,
under the hydrogen permeation conditions in this work, a higher activation energy results
in a decrease in the hydrogen diffusion coefficient of the studied alloys, which is lower than
that of pure Pd. To a large extent, the microstructure, phase morphology, and solid solution
elements all have important effects on the hydrogen permeation performance, which will
be discussed in Section 4.

Table 5. The values of hydrogen permeability, hydrogen solubility and hydrogen diffusivity for the
VxTi50Co50−x alloy samples (1#. . .3#).

No. Samples Hydrogen Permeability Hydrogen Solubility Hydrogen Diffusivity
[mol H2 m−1 s−1 Pa−0.5] [mol H2 m−3 Pa−0.5] [10−9m2 s−1]

1# V17.5Ti50Co32.5 1.66 × 10−8 8.91 1.87
2# V20.5Ti50Co29.5 3.24 × 10−8 14.3 2.27
3# V23.5Ti50Co26.5 4.05 × 10−8 16.5 2.45
— Nb30Ti35Co35 [11] 2.53 × 10−8 13.2 1.93
— Nb30Ti35Ni35 [8] 1.55 × 10−8 32.55 0.48
— Pd [5,32] 1.6 × 10−8 4.19 38.18
— Pd75Ag25 [1] 3.21 × 10−8 — —
— Pd60Cu40 [2] 1.49× 10−8 — —
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In addition, two different mechanical failure modes were found in VxTi50Co50−x
(1#. . .6#) alloys, which are the intergranular crack failure mode and the intragranular crack
failure mode (see Figure 11). The first mode is applicable for the alloys with a primary TiCo
phase, whilst the latter is suitable for the alloys with a primary bcc-(V, Ti) phase. When the
alloy is composed of a primary TiCo phase and a eutectic structure, such as alloy 1#, as
shown in Figure 11a,b, the bcc phase in the eutectic provides a hydrogen atom diffusion
channel, and cracks first appear in the eutectic structure, especially the bcc-(V, Ti) phase
(Figure 11e). In this case, the bcc phase in the eutectic serves as the source of cracks and
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prioritises the initiation of cracks. On the contrary, for alloys containing a primary bcc-(V,
Ti) phase, hydrogen atoms mainly penetrate or diffuse through this phase (path II), and the
eutectic around this phase mainly plays a role in resisting hydrogen embrittlement. Thus,
cracks are more likely to appear in the primary bcc-(V, Ti) phase (Figure 11c,d). In this
situation, the presence of the eutectic effectively prevents intragranular cracking, as shown
in Figure 11f. Overall, this study demonstrates that the fracture mode is closely related
to the composition, an aspect not widely explored in 5B group alloys. Alloys with high
V content (larger than 23.5 at.%) are affected by intergranular cracks, while intergranular
cracks are more likely to form in samples with low Nb content (lower than 23.5 at.%) [40,41].
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Figure 11. Hydrogen embrittlement fracture characteristics of VxTi50Co50−x alloys (1#. . .6#): (a,c) are
the appearance of the feed-side of V17.5Ti50Co32.5 (1#) and V29.5Ti50Co20.5 (5#) membranes after
permeation testing; (b,d) are the SEM images of cracked samples 1# and 5#; and (e,f) represent the
schematic diagrams of hydrogen transport in alloys with different primary TiCo or bcc-(V, Ti) phases.

3.5. The Compositional Window Suitable for Hydrogen Permeation

To explore alloys with higher permeability, further research was conducted on 26 different
alloys within the phase diagram, as shown in Figure 12. For ease of comparison, the param-
eters in these permeation experiments were consistent with those previously discussed in
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Section 3.4. After the series of tests and characterisations, these alloys can be divided into
four categories based on their different hydrogen transport characteristics: low-temperature
brittle alloys (N), hydrogen brittle alloys (�), high-performance hydrogen permeable alloys
(#), and alloys (•) with hydrogen permeability below 1 × 10−8 mol H2 m−1s−1Pa−0.5.
The mechanical properties of the first two types of alloys are poor and cannot meet the
requirements for membrane use. In the last category, their hydrogen permeability is too
small to meet the requirements for hydrogen separation. Therefore, the range of compo-
nents available for hydrogen permeation alloy design in the V-Ti-Co system is relatively
narrow, only located near the lower left part of the univariant lines U2P1 (see the red ellipse
in Figure 12). Of these alloys, the hydrogen permeability increases with an increase in
the V content and Ti/Co ratio; eutectic V23.5Ti50Co26.5 (3#) possess the maximum value,
4.05 × 10−8 mol H2 m−1s−1Pa−0.5 at 673 K. Furthermore, this window is not located in or
near the pseudo-binary V-TiCo isopleth, which is significantly different from Nb-Ti-Co or
Nb Ti-Ni systems [42–44]. This finding breaks through the traditional limitations in the
composition design of 5B group hydrogen permeable alloys, which requires the selection
of composition at the position of the pseudo-binary isopleth.
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Figure 12. Hydrogen transport performance of the alloys investigated in this work plotted on the V-
Ti-Co phase diagram. The solid triangles and squares represent brittle alloys, which exhibit hydrogen
embrittlement fractures at room temperature and during the hydrogen permeation process. The
circles indicate the alloys that can be used for the hydrogen permeation test, and the marked numbers
are their Φ values at 673 K in the unit of 10−8 mol H2 m−1s−1Pa−0.5. The solid circles without marked
values represent that their H2 flux is too low to measure by the mass flow meter.

4. Discussion

In a hydrogen-containing environment, almost all metal membranes face the problem
of hydrogen embrittlement, including Pd-based membranes. This problem is exacerbated
during the hydrogen atmosphere thermal cycle process. Doped alloy elements are an
effective means of minimising the impact of embrittlement and helping to extend the
membrane lifetimes. Common elements mainly involve Ti, Ni, Co, Hf, W, Mo, Cu, or a
combination of them [39,45–47]. In this case, the key is to understand the phase diagram
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information of the multi-element alloy formed after doping elements and design reasonable
components to avoid the generation of hydrogen-absorbing phases and hydride phase
transition. So far, the challenge remains to construct a complete phase diagram of these
alloy (quaternary or above) systems and obtain relevant thermodynamic information.

Alloys in the V-Ti-Co series are contradictory in terms of simultaneously increasing
hydrogen embrittlement resistance and improving permeability. The reason for the above
phenomenon is closely related to the composition of hydrogen permeable alloys, especially
the Ti content in the (V, Ti) phase. As illustrated in Section 3.3, an increment in V content
will cause more Ti atoms to solidly dissolve in the bcc-(V, Ti) phase. As reported by
Ishikawa et al. [48], the diffusion coefficient of hydrogen in bcc-Ti (~1 × 10−3 cm2/s at
1173 K) is about one order of magnitude larger than that of bcc-V (~1.8 × 10−4 cm2/s
at 1173 K). Therefore, increasing the solid solution of Ti atoms in the (V, Ti) phase is
beneficial for increasing the hydrogen diffusion coefficient, thereby improving hydrogen
permeability. For example, V23.5Ti50Co26.5 (3#), with higher solid solution Ti content, has
higher permeability than V17.5Ti50Co32.5 (1#), as shown in Figure 9.

Nevertheless, excessive Ti atoms will cause a higher hydrogen concentration in the
membrane, posing a risk of hydrogen embrittlement. Ti is known to have a lower enthalpy
of hydride formation compared to V, which makes the (V, Ti) phase, with more solid solu-
tion Ti atoms, more prone to form hydrides. Hydrides cause lattice expansion, resulting in
membrane rupture. This phenomenon was also observed in V-Ti-Ni, Nb-TiCo and Pd-Ag
alloys [49,50]. Therefore, controlling the Ti content in the alloy to be less than 50 at.%
is crucial for preventing hydrogen embrittlement in a V-Ti-Co alloy system. Otherwise,
hydrogen embrittlement will inevitably occur. In addition, the severe hydrogen embrittle-
ment observed with V > 26.5 at.% alloys confirms that microstructural effects outweigh the
effects of the Ti content in bcc-(V, Ti). The TiCo compounds, as well as eutectic structures,
have a good role in resisting hydrogen embrittlement. Combined, these factors together
co-determine the hydrogen transport properties of the bulk alloy. Furthermore, in our
previous work about Nb-Ti-Co alloys [14], it was found that the impurities such as CO and
CO2 significantly reduce the H2 flux at temperatures lower than 300 ◦C, while this situation
improved at higher temperatures. Compared with inhibitor gases (CO, CO2), H2S showed
greater effect on the permeability. This gas not only blocks H2 dissociation sites on the Pd
surface, but also reacts with Pd to form brittle phases of Pd4S, causing membrane fracture.
Similar situations may occur in V-TiCo membranes and further research is needed.

Although the high Ti content poses a risk of hydrogen embrittlement to the V-Ti-Co
alloy membrane, the V23.5Ti50Co26.5 (3#) composed of a eutectic structure still exhibits high
hydrogen permeation performance, far greater than the previously reported Nb-Ti-Co or
Nb-Ti-Ni system. According to Ishikawa et al. [51], due to the position of the hydrogen
permeable alloys in the pseudo-binary isopleth, the Ti content in the eutectic alloy of the
Nb-Ti-Co (or Ni) system is relatively low, resulting in relatively low permeability. For
example, the composition of the (Nb,Ti) phase in eutectic Nb19Ti40Ni41 is Nb85Ti13Ni2,
and the ratio of Ti/Nb is merely 0.15. Correspondingly, its hydrogen permeability is
only 0.8 × 10−8 mol H2 m−1s−1Pa−0.5 at 673 K. Similar cases can be found in eutectic
Nb30Ti35Co35 alloys (Ti/Nb = 0.23). On the contrary, in the V-Ti-Co system, hydrogen-
permeable alloys deviate from the position of the quasi-binary phase diagram near the
Ti-rich angle region, as shown in Figure 12. This unique position endows the (V, Ti) phase
in eutectic V23.5Ti50Co26.5 (3#) with a high Ti content, ~40 at.% (Ti/V = 1.14) (Figure 7). In
comparison, dual-phase Nb-TiNi and Nb-TiCo alloys with the same high Ti content will
inevitably precipitate primary bcc-Nb phases, further exacerbating the risk of hydrogen
embrittlement in the membrane. In addition, due to the better ductility of eutectic alloy,
the newly developed V-TiCo eutectic, i.e., V23.5Ti50Co26.5 (3#), in this work has great
development value. If ultra-thin membranes are prepared by rolling or melt spinning, their
H2 flux will be significantly increased. The relevant work is currently underway in our
research group, which will be reported in the near future.
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In addition, this article summarizes the advantages and disadvantages of V-Ti-Co
alloys with other Pd-based ternary alloys used for hydrogen separation and purifica-
tion. Compared with the Pd membrane, the newly developed V-Ti-Co alloys not only
have the price advantage, but also exhibit higher hydrogen permeability. The price
of a 25 µm-thick Pd is about USD 5000 per m2, while that of V-Ti-Co membrane costs
merely ~ USD 200 per m2. Additionally, these alloy membranes can avoid hydride phase
transition such as α→β in pure Pd, thus preventing the occurrence of hydrogen embrittle-
ment. After surface coated with Pd, these dense membranes also exhibit good selectivity.
However, it is undeniable that Pd-based alloy membranes still have unique advantages,
i.e., excellent catalytic activity to dissociate hydrogen molecules into atoms. Although,
an amorphous Zr36Ni64 membrane [52], not including noble Pd metals, can be used by
itself for hydrogen permeation. However, the results about the permeation rate are not
satisfactory. Furthermore, Pd-based membranes also have advantages in chemical tolerance
in the presence of gaseous impurities (e.g., H2S) in the feedstock. For example, T.A. Peters
and Way et al. investigated a variety of Pd-alloy membranes in the H2/H2S mixtures, and
observed that Pd85Au15 foils show declines less in permeance compared with Pd70Cu30 or
Pd alloys at 450 ◦C in 100 ppm H2S. Other Pd-based ternary alloys with excellent resistance
to sulfur poisoning were reported by Haiyuan Jia [53], Fernando Braun [54], and Ana M.
Tarditi [55]. If the above-mentioned Pd-based multi-element film is used instead of the
original Pd film on the surface of Nb- or V-based alloy membrane, it is possible to improve
the anti-sulfide poisoning phenomenon. However, further experiments are needed to
confirm this.

In short, on one hand, this article constructs the equilibrium phase diagram of the
V-Ti-Co system, providing guidance for subsequent experimental work using this phase
diagram. On the other hand, some novel hydrogen permeation alloys, i.e., VxTi50Co50−x
(x = 17.5–23.5), were explored, providing a reference for material selection in the field of
membrane separation in the future.

5. Conclusions

In the present work, the equilibria phase diagram of the V-Ti-Co system was con-
structed by combining experimental and computational methods. Six ternary invariant
reactions were confirmed to be located in the liquidus projection, and the phase diagram
was divided into eight phase regions by their connecting lines. During solidification,
three solid solution phases and five binary compound phases exist in this system. On the
contrary, no ternary compound was found. In addition, some alloys, e.g., VxTi50Co50−x
(x = 17.5–23.5), in the TiCo phase region, exhibit a high hydrogen permeability without
hydrogen embrittlement. In particular, V23.5Ti50Co26.5 exhibits the highest permeability of
4.05 × 10−8 mol H2 m−1s−1Pa−0.5 at 673 K, which is the highest value known heretofore in
a V-Ti-Co system. This higher permeability can be attributed to the simultaneous increment
of hydrogen solubility and diffusivity, which is closely related to the high Ti and V content.
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Nomenclature

J hydrogen permeation flux [mol H2 m−1s−1]
Φ hydrogen permeability [mol H2 m−1s−1Pa−0.5]
L membrane thickness [m]
Pu/Pd pressure difference of the upstream/downstream sides [Pa]
Gi Gibbs energy [kJ/mol]
HSER

i enthalpy of i under standard pressure [kJ/mol]
A–J calculated constants.
R gas constant
x0

i mole fractions of the pure element
Tφ

ij the ith Redlich-Kister parameter

Tφ
i the ith Curie temperature
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