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Abstract: The mechanical effects of membrane compositional inhomogeneities are analyzed in a
process analogous to neck formation in cellular membranes. We cast on the Canham–Helfrich
model of fluid membranes with both the spontaneous curvature and the surface tension being non-
homogeneous functions along the cell membrane. The inhomogeneous distribution of necking forces
is determined by the equilibrium mechanical equations and the boundary conditions as considered
in the axisymmetric setting compatible with the necking process. To establish the role played by
mechanical inhomogeneity, we focus on the catenoid, a surface of zero mean curvature. Analytic
solutions are shown to exist for the spontaneous curvature and the constrictive forces in terms of the
border radii. Our theoretical analysis shows that the inhomogeneous distribution of spontaneous
curvature in a mosaic-like neck constrictional forces potentially contributes to the membrane scission
under minimized work in living cells.

Keywords: inhomogeneous spontaneous curvature; catenoidal necks; stress on curved
fluid membranes

1. Introduction

Mitotic cell division, budding, endocytosis organelle fission and fusion, viral egress
and bacterial fission are metabolically forced biological processes that follow formation of
scissional necks connecting membrane splitting compartments [1–7]. These mechanical
cell shaping processes are concomitant with compositional remodeling under cytokinetic
action [8–13]. Despite the biological diversity beneath, functional conditions for fluid
mosaicity, lateral incompressibility and bending elasticity are shared by the supporting
lipid membrane [14–18]. Early evidence showed that membrane necking is tightly reg-
ulated under inhomogeneous traffic of lipids and proteins [1–3,19–25]. Critical phase
transitions have been also revealed to lead functional membrane mosaicity [1,19–25].
More specifically, compositional inhomogeneities facilitate membrane necking along
curvature pathways coordinated with the cellular membrane factories [20–23,26,27]. Fur-
ther evidence has shown scissional membrane necks adapting compositional critical-
ity under cytokinetic stresses [1,17–19,28,29]. Furthermore, membrane compositional
heterogeneities have been also shown to have a key regulatory role under curvature
generation [5,20,30]. Forced oscillations in necking asymmetry have also been observed
in artificial vesicle dumbbells to be driven by active proteins that are able to change
membrane curvatures [31,32]. Therefore, we theorize that constrictional necking is a
compositional inhomogeneous process of membrane remodeling along critical bending
pathways that are driven by highly directional tensions under subsidiary or negligible
influence of hydrostatic forces releasing volume [33–35]. We also theorize that material
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distributions considered to be inhomogeneous can make areas vary anisotropically [4,8].
Those theoretical provisions could reasonably capture the biological idea of homeostatic
fitness under mechanical equilibrium, i.e., they recapitulate Cannon’s concept of home-
ostasis as “physiological self-regulation able to maintain stability at each instantaneous
configuration while adjusting the system to changing external conditions” [36]. Albeit
that geometric and constitutional relationships between neck curvatures and membrane
stresses have been explored for mechanically homogeneous necks and aare considered
compositionally isotropic [5,6,37], a fundamental theory of inhomogeneous necking lead
by compositional asymmetries is still lacking.

In this work, we model scissional necks under locally inhomogeneous membrane
stresses at global dependence on two isotropic (fluidlike) elasticity parameters: (i) the
bending rigidity (κ), controlling the mean (extrinsic) curvature K = C1 + C2 (being Ci the
principal curvatures); and (ii) the saddle-splay modulus (κG), which couples the Gaussian
curvature KG = C1C2. We rely on the generalized version of the Canham–Helfrich (CH)
theory for the free energy of the membrane deformations [38,39]:

H =
κ

2

∫
dA(K− K0)

2 + κG

∫
dAKG + σ

∫
dA (1)

where necking activity is considered in a field of curvature elasticity under spontaneous
curvature (K0), which further relates to membrane tension (σ). In this homogeneous CH
functional, dA is the area element that describes an incompressible membrane.

Our necking model is assumed to resemble a deformable catenoid neck under anisotro-
pic stress distributions due to axisymmetric deformations along the relevant parallel and
meridian directions [40,41].

We have studied the effect of K0-inhomogeneities on the mechanical anisotropies of
catenoidal membranes. The curvature–covariant framework is exploited to analyze some
biological necking processes as depicted in Figure 1. We have obtained the interaction force
between the catenoid boundaries and then focussed on the mechanical balance along the
axial and radial directions. The presence of a constant external field of neck stretching
η = −Fz balances the axial force Fz, whilst the radial balance requires a constrictional
external field variable along the z-coordinate, γ = −Fρ. In a typical necking abscission
process like the one shown in Figure 1, there is a critical catenoid such that the axial force η
requests an abrupt change from being a positive tension to a negative one. This change
results in a compositional switching for the distribution of the spontaneous curvature, K0.
If the necking process is symmetric, as illustrated in column B, the radial force between
the borders has been shown to undergo either repulsive or attractive interactions akin to a
diatomic molecule. For small relative radii corresponding to incipient constriction (thick
catenoid), this interaction appears repulsive. In the region with relative large radii, the
radial force becomes attractive. Finally, for the larger radii corresponding to higher pinching
constrictions and for larger radii (thin catenoid), the borders have no interaction. Whereas
the critical catenoid and the catenoid of maximum area are the same geometric object
in symmetric necking (Figure 1B), smaller membrane area reorganizations are involved
in the asymmetric cases (see Figure 1C). As a further insight in the covariant mechanics
of abscissional membrane catenoids, we describe the geometric criticality behind such
inhomogeneous necking physics.
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A B
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Figure 1. Membrane neck dynamics under scissional forces. (A) A necking process describing the
membrane necks connecting scissional compartments. Two modes of membrane necking are possible.
(B) Symmetric mode: two spherical membranes compartments of equal radii joined by a catenoidal
neck in a symmetric process. (C) Asymmetric mode: membrane compartment of different radii joined
by an asymmetric catenoid.

2. Methods

To capture the functional principle of homeostatic fitness under instantaneously re-
versible mechanical equilibrium, our mean-field CH reductionism recapitulates particular
necking conditions of adaptative slowness (staticity) and absence of frictional dissipation
(fluidity), with both leading adiabatic (isoentropic) stability compatible with physiological
homeostasis [42]. Below, we implement an inhomogeneous CH model as being an opti-
maly homeostatic (conservative) expenditure of elastic free energy for membrane shape
remodeling under quasi-static necking. In general, the CH model does not explicitly take
possible chemical change requested under elastic deformation into account—neither does
it consider entropy creation related to material change [39,43]. However, we effectively
consider a heterogeneous class of chemical potential as embedded within the anisotropic
membrane tension inhomogeneity [5,6,44]. We also consider the spontaneous curvature
being laterally inhomogeneous, thus capturing the idea of optimized shape remodeling
under local curvature effection [6,36,45]. In biological terms, inhomogeneous sigma and
K0 imply introducing mesoscopic stressors of local flexibility effectively imparted under
lateral membrane mosaicity. The global neck rigidness is recapitulated under homoge-
neous rigidities for pure splay (κ) and saddle-splay (κG), with fluidlike properties naturally
deployed along the membrane shape. They constitute intensive densities of elastic resis-
tance isotropically fixed under rotational symmetry (mesoscopic flexible fluidness property
invoked by W. Helfrich in his foundational formulation of the model [39]. Indeed, κ and κG
both fix the global amount of energy adiabatically conserved by the CH system. Based on
the mesoscopically inhomogeneous CH mean-field of curvature elasticity, we will describe
the necking process as quasi-static sequences of equilibrium configurations considered
to be adiabatically stable (homeostatic) as being energetically optimal (no heat exchange
involved), i.e., not exhibiting dissipation in a near-reversible (frictionless) succession of
mechanically equilibrated fluid states [42].
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Inhomogeneous elastic energy. As defined upon the Canham–Helfrich functional describ-
ing mean-field curvature elasticity [38,39], for the inhomogeneous case, we have a state:

Hinhom =
κ

2

∫
dA(K− K0)

2 + κG

∫
dAKG +

∫
dA σ + P

∫
dV, (2)

where κ and κG represent the constant (globally averaged) values of the flexural rigidities
for, respectively, bending and saddle-splay modes. Here, dV is the differential volume
element (the integrated volume is enforced under hydrostatic pressure P). Both the sponta-
neous curvature (K0) and the surface tension (σ) are considered inhomogeneous functions
of the membrane coordinates, i.e., they are variable quantities that depend on the local
stresses. As a strong condition for membrane heterogeneity, the local surface tension σ
has been introduced as a coordinate-dependent Lagrange multiplier, which locally fixes
the surface area of each membrane element. Conceptually, σ is an inhomogeneous energy
density considered to be chemically open and encoding an anisotropic distribution of mem-
brane tensions (axial stretching η and radial constriction γ). This is different to the usually
isotropic membrane tension describing the close chemical equilibrium with a membrane
reservoir [5,46]. However, the Gaussian term determined by KG is always considered as a
conserved quantity involved until complete scission is explicitly considered (it remains con-
stant without topological change: Gauss–Bonnet theorem [47]). This topological invariant
becomes chiefly relevant into the boundary terms injecting curvature energy for necking.

Mean-field parameters: microphysical interpretation. The CH model is built by coarse-
graining the microscopic details on the interactions at the molecular level in the membrane.
Indeed, part of its success lies in the fact that it is a phenomenological model that de-
scribes many of the configurations and elastic forces observed in fluid membranes at the
mesoscopic level [43]. The descriptive mesoscopic scale of the CH model implies a two-
dimensional surface that does not take into account the membrane thickness nor their
internal complexities which are recapitulated in an effective flexible and globally fluid
surface sheet. The microscopic compacting interactions are globally averaged at the molec-
ular level; thus, they are effectively projected in the elastic parameters and considered to
be globally homogeneous as constant values κ and κG [44,48]. For instance, spontaneous
membrane bending can be locally induced either by intrinsic transverse asymmetry lead-
ing to curvature remodeling (e.g., by inserted proteins, curvature shaping lipids with a
molecular conical shape, asymmetric electrostatics, etc.) [20–24] or by extrinsic effectors of
lateral asymmetry (e.g., cortical flows) leading to preferred curvature that balances torques
due to differential stress and bending moments in each side of the membrane [45].

The microphysical origin of the local membrane asymmetries is recapitulated under
the pressure profiles along the internal coordinates (lateral and transverse) [36,49]. When a
transversely asymmetric membrane is curved, the normal unit vector can be nonuniform
in each leaflet, so that that the moments of the stress depend on the lateral coordinates.
Hence, it implies that the curvature effectors are non-homogeneous functions along the
membrane [45,50]. The lateral nonuniformness in the stress profile could introduce further
complexity and become intercoupled with the local torques [40]. In order to simplify the
mesoscopic analysis, our current work assumes that the local asymmetries in the curved
membrane are only manifested in the longitudinal coordinate through an inhomogeneous
spontaneous curvature K0(l) and anisotropic surface tension σ(l), considered as an inho-
mogeneous constraint to local area. Both inhomogeneous properties are expected to be
locally intercoupled [51], indicating locally compressed, curved regions in the floppy case
(if σ(l) < 0) and stretched, flatter regions in the tensioned case (if σ(l) > 0). Furthermore,
the effective in-plane membrane stresses can be seen as the longitudinal imbalance between
the two leaflets in such a way that the global stress results in some preferential curvature
in the membrane [45]. The thicker the membrane in relation to curvature, the higher the
induced torque necessary to cancel out the stress [52]. We later also included the hydro-
static pressure to recapitulate the isotropic stress of the bulk cytoplasm (P). It has been
considered as a Lagrange multiplier to enforce the volume constraint in the closed vesicle
configurations used to develop the surface covariant theory. In the particular case of an
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open surface, e.g., a membrane neck, then P = 0. All these microphysical complexities
have been epitomized under the systemic parameters of the inhomogeneous CH model
above described in Equation (2).

Surface geometry. A generic surface in R3, with cartesian coordinates x = (x1, x2, x3),
can be parametrized by the embedding function x = X(ua), where ua are local coordinates
on the surface (a = 1, 2). The infinitesimal 3D-Euclidean distance ds2 = dx · dx induces the
corresponding arc length distance on the surface ds2 = gabduadub; here, gab := ea · eb is the
induced metric, and ea := ∂aX are two local tangent vector fields. Correspondingly, the in-
duced metric defines a covariant derivative on the surface denoted by ∇a. The unit normal
to the surface is n = (εab/2)ea × eb, where εab = εab/

√
g with εab being the Levi–Civita al-

ternating symbol and g = det(gab). The Gauss equation establishes ∇aeb = −Kabn, which
describes the change of the tangent vector fields along the surface. The components of the
extrinsic curvature are defined as Kab := −∇aeb · n, which are related with the Gaussian
curvature KG through of the Gauss–Codazzi equation, Kc

aKcb = KKcb − gabKG, and its
contraction KabKab = K2 − 2KG [47]. The Codazzi–Mainardi equation ∇aKab = ∇bK, will
be also useful.

Stress tensor. Under an infinitesimal surface deformation, δX, the variation of the
energy, is written as δH =

∫
dA∇afa · δX, where fa is the stress tensor [40,41]:

fa = f abeb + f an, (3)

with tangential and normal components, respectively:

f ab = κ(K− K0)

[
Kab − 1

2
(K− K0)gab

]
− gabσ,

f a = −κ∇a(K− K0). (4)

For closed membranes (spherical topology), the hydrostatic pressure term −PV is
considered within the energy in Equation (2); the difference P = Pin − Pout is the pressure
jump that supports the membrane vesicle, and V is the enclosed volume. For closed
(topologically spherelike) cells in mechanical equilibrium, the surface divergence of the
stress tensor is hence found as

∇afa = P n. (5)

Therefore, substituting Equation (3) into Equation (5), the equilibrium conditions can
be reestablished in terms of the stresses in Equation (4) as

∇a f a − Kab f ab = P,

∇a f ab + f aKa
b = 0. (6)

These equilibrium equations define the generalized theoretical framework for cal-
culating constitutional relationships corresponding to the inhomogeneous mosaic-like
membrane. They determine the membrane shape in terms of locally inhomogeneous
elasticity (as given by variable elastic parameters).

Inhomogeneous CH membrane: local shape equations. Specifically, Equation (4) provides
analytic expressions for the local stresses compatible with the inhomogeneous CH mem-
brane, as considered at global mechanical equilibrium, i.e., under δHinhom = 0. By sub-
stituting particular expressions of Equation (4) in the generalized equilibrium equations
of Equation (6), one immediately obtains the inhomogeneous connections between local
elasticity and curvatures.

The first condition in (6) accounts for mechanical stability along the normal direction:

−κ∇2(K− K0)−
κ

2
(K− K0)

[
K(K + K0)− 4KG

]
+ σK = P, (7)
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which describes the connection between local shape and Laplace pressure at any point in
the membrane. In the homogeneous case (for constant σ and K0), Equation (7) reduces to
the well-known Helfrich’s shape equation [53,54].

The second condition in Equation (6) accounts for the lateral equilibrium relationship,
or equivalently stated, as an inhomogeneity connection between the spontaneous curvature
and the tensile stress in the tangent plane through of the geometric shape; that is,

∂aσ = κ(K− K0)∂aK0. (8)

This result is especially interesting as it connects the changes of constitutive properties
in a causal relationship modulated by the local value of mean curvature. Being completely
novel in the analytical form here presented, the concept is also quite intuitive in biological
terms. It is hence useful for interpreting the mechanical impact of compositional agents for
mosaic curvature making.

Closed vesicles: directional stresses. After integrating Equation (5) in a closed geometry,
by taking advantage of the divergence theorem, we obtain:∮

C

ds fala = P
∫
M

dA n, (9)

where C represents the boundary for an arbitrary contour for membrane patchM. The
left hand side of Equation (9) represents the elastic force which the membrane domain
M exerts onto the rest of the closed vesicleM′. Nevertheless, this force is manifested on
the membrane boundary C, independently of its particular shape and/or size changing
under deformation. The right hand side states that, at equilibrium, this deformation work
is equalized to the normal pressure flux across its membrane area. The integral is then
calculated along the loop C with tangent T = Taea, and conormal l = laea is as defined in
the Darboux frame adapted to the curve C.

In the Darboux basis, the force term in the left hand side of Equation (9) is

fala = FTT +Fll +Fnn, (10)

with separated elastic force, per unit length, along each relevant membrane degree of
freedom; these are, respectively, tangential, normal and lateral, directions

FT ≡ κ(K− K0)Kτ , (11)

Fn ≡ −κ∇l(K− K0), (12)

Fl ≡ −σ +
κ

2

[
K2

l − (KT − K0)
2
]
. (13)

Here, the curvature gradients are expressed as Kl ≡ Kablalb, KT ≡ KabTaTb, Kτ ≡ KablaTb

and ∇lK ≡ la∇aK.
Similarly, in order to calculate the force that a meridian region does exert on the

adjacent side, we project the stress tensor on the meridian loop, i.e., faTa. Then,

faTa = Fm
T T +Fm

l l +Fm
n n, (14)

where the projections are

Fm
T ≡ −σ− κ

K2
0

2
+

κ

2

(
K2

T − K2
l + 2K0Kl

)
, (15)

Fm
n ≡ −κ∇T(K− K0), (16)

Fm
l ≡ κ(K− K0)Kτ , (17)

for the directional derivative along the tangent, ∇T ≡ Ta∇a.
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Open membranes: boundary conditions. For open membranes considered hydrostatically
depressurized with respect to surrounding ambiance (P = 0), the boundary conditions are
given by [55]

κ(K− K0) = −κGkn, (18)
κ

2
(K− K0)

2 + σ = −κGKG + σbkG (19)

κ∇lK = κGK̇τ . (20)

The first condition in Equation (18) implies that, on the boundary edge, the torque
is proportional to the projection of the extrinsic curvature, Kab, on the tangent vector,
kn ≡ KabTaTb (the normal curvature of the boundary curve); being the constant of pro-
portionality, the relative Gaussian stiffness is referred to the bending modulus, λ ≡ κ/κG.
The second boundary condition, Equation (19), identifies the local density of membrane
energy on the border edge with the Gaussian curvature therein and involves the geodesic
curvature of the border, kG. Finally, the dot on Kτ in Equation (20) represents the derivative
respect to the arc length of the boundary edge.

Axial symmetry: surface membranes of revolution. Axial membrane with cylindrical
symmetry is described in Figure 2 and is parametrized in terms of the inclination an-
gle (Ψ) and the radial coordinate (ρ). In these axisymmetric coordinates, the projection
of the extrinsic curvature onto the conormal vector field l is given by the projection
Kl ≡ Kablalb = Ψ′ (where the symbol ′ means the derivative respect to the arc length l).
On the unit tangent along the parallels to the equatorial plane, we have the condition
KT ≡ KabTaTb = (sin Ψ)/ρ, which indicates their flexural curvature. We have also the
rotational projection normal to the revolution z-axis, i.e., Kτ ≡ KablaTb = 0, which indicates
that no change is needed for extrinsic rotational strain to generate the axially symmetric
revolution surface. The Gaussian curvature is given byKG ≡ −ρ′′/ρ = Ψ′(sin Ψ)/ρ, which
is the canonical parametrization for the intrinsic curvature (Gauss’ Theorem Egregium).
This definition as the relative curvature of the parametric curve depends only on the in-
trinsic distances measured on the surface but not on how it is extrinsically embedded in
Euclidean space. In terms of the tangential inclination angle Ψ, the (twice) mean curvature
is given by K = Ψ′ + (sin Ψ)/ρ. Therefore, the projections of the force in the Darboux
frame, Equations (11), (12) and (13) are, respectively, given as

FT ≡ 0, (21)

Fn ≡ −κ

(
Ψ′ +

sin Ψ
ρ
− K0

)′
, (22)

Fl ≡ −σ +
κ

2

[
Ψ′2 −

(
sin Ψ

ρ
− K0

)2
]

. (23)

Similarly, in Equations (15), (16) and (17), the meridian projections can be identified as

Fm
T ≡ −σ +

κ

2

[
sin2 Ψ

ρ2 −
(
Ψ′ − K0

)2
]

, (24)

Fm
n ≡ 0, (25)

Fm
l ≡ 0. (26)

Axial and radial forces acting through parallels. By taking advantage of the axial symmetry,
we project the stress tensor along the meridian generatrix l (see Figure 2). Consequently,
the forces per unit length decomposed on the axial and the radial directions are

Fz ≡ fala · k = cos ΨFn − sin ΨFl , (27)

Fρ ≡ fala · ρ = sin ΨFn + cos ΨFl , (28)
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where Fn and Fl are given by Equations (22) and (23), respectively. Further, multiplying
by the factor 2πρ, the corresponding necking forces are obtained (see below).

Figure 2. A generic closed surface of revolution. In cylindrical coordinates {ρ, φ, z}, it is described
with the embedding function: X(l, φ) = ρ(l)ρ + z(l)k in the cylindrical basis ρ = (cos φ, sin φ, 0),
k = (0, 0, 1) and φ = (− sin φ, cos φ, 0). The generating curve is parametrized with arc length l,
so that ρ′2 + z′2 = 1, while ρ′ = cos Ψ and z′ = − sin Ψ, where Ψ is the tangential angle of the
generating curve, and the derivative with respect to l is denoted as a ′. The unit normal can be written
as n = sin Ψρ + cos Ψk. The unit tangent vector, adapted to parallels on axially symmetric surfaces,
is given by T = φ, while the unit conormal is l = cos Ψρ− sin Ψk. The orthonormal set {T, l, n}
constitutes the Darboux basis adapted to the parallel loop.

A further integration of Equation (5) within the axial open neck symmetry yields
the mechanical balance equations on parallels and meridians. They are equivalent to the
equilibrium equations obtained from the variational Lagrangian analysis in cylindrical
coordinates [56].

3. Julicher–Seifert Variational Approach

As devoid of the conserved Gaussian term, the functionalH in (2), can be rewritten in
cylindrical coordinates as an action integrated over the generatrix parameter (l); for the
considered axial symmetry, this corresponds to the arc length coordinate defined along the
meridian. Consequently, the inhomogeneous action is given by [56]

Hinhom =
∫ l2

l1
dlLinhom, (29)

where the Lagrangian function is given by

Linhom = πρκ

(
Ψ′ +

sin Ψ
ρ
− K0

)2
+ 2πσρ + γ(ρ′ − cos Ψ)

+ η(z′ + sin Ψ), (30)

and the Lagrange multipliers γ and η have been added, so that the Euler–Lagrange equation
with respect to radial constriction (γ) and axial stretching (η) holds, respectively, gaining
values of ρ′ = cos Ψ and z′ = − sin Ψ. Further:

(i) Euler–Lagrange equation respect to the inclination angle Ψ, gives

2πρFn + (γ sin Ψ + η cos Ψ) = 0, (31)

where we have considered Equation (22). Hence, Equation (31) corresponds to
the mechanical balance along the unit normal to the surface; note that the term
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between parentheses actually corresponds to the projection of the constrictive
force, λ = γρ + ηk, along the unit normal, i.e., Equation (31) may be rewritten as
2πρFn + λ · n = 0, which indicates the mechanical balance between normal stress
and necking constriction.

(ii) Euler–Lagrange equation with respect to ρ obtains

γ′ = πκ

[
(Ψ′ − K0)

2 − sin2 Ψ
ρ2

]
+ 2πσ,

= −2πFm
T , (32)

where we have substituted Equation (24) in order to obtain the final form in the
second line. This equation corresponds to the balance of forces, per unit length, that
acts through meridians along the tangential direction.

(iii) Euler–Lagrange with respect to z is given by η′ = 0 so that η is a constant. This
result is a consequence of the Lagrangian symmetry on translations along the axial
direction. This is the analogue of Equation (32) on the axial direction,

η′ = −2πFm
l ,

= 0, (33)

where we used Equation (26).
(iv) Since the parameter l does not appear explicitly in the Lagrangian, L, the Hamil-

tonian function is H ≡ −Linhom + Ψ′∂L/∂Ψ′ + ρ′∂L/∂ρ′ + z′∂L/∂z′ = 0 along the
membrane [56]. As a consequence,

2πρFl + (γ cos Ψ− η sin Ψ) = 0, (34)

where we have used Equation (23). This equation represents the balance of forces
along the lateral direction. The term in parentheses is the projections of the constric-
tive force, λ = γρ + ηk, as calculated along the unit conormal l, i.e., Equation (34)
can be expressed as 2πρFl + λ · l = 0.

Finally, in cylindrical coordinates, Equation (8) is restated as

σ′ = κ

(
Ψ′ +

sin Ψ
ρ
− K0

)
K′0. (35)

Thus, the relationship between the balance equations and the Euler–Lagrange equa-
tions has been clarified in the natural coordinates for describing the necking process and
further generalized to the inhomogeneous case. As a relevant example in the focus of this
paper, let us analyze the necking case of the catenoid, which is a minimal surface that
implies analytical solutions for the spontaneous curvature.

4. Results: Catenoidal Necks

Equilibrium necking equations. Figure 3 depicts a generalized axial neck symmetry,
implying that the systemic equations do not depend on the azimuthal angle around the
parallels but on the arc length parameter (l as describing neck latitudes in the generat-
ing meridian); this generatrix is mechanically inhomogeneous with origin at the neck
equator (l = 0; see caption for details). The catenoid is a minimal surface, such that the
mean curvature is zero elsewhere (K = 0). Therefore, the analytic integration of the co-
variant differential equation that connects membrane tension and spontaneous curvature,
Equation (35), gives the conservation equation

σ̄(l̄) + K̄2
0(l̄)/2 = C0, (36)
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where σ̄ ≡ σR2
0/κ, K̄0 ≡ R0K0 and l̄ ≡ l/R0, with C0 being a constant of integra-

tion. This can be determined by the boundary condition, Equation (19), as C0 =
−(κG/κ)K̄G(l̄A) = (κG/κ)R̄−4

A , where l̄A denotes the most northern latitude at the
upper boundary (see Figure 3).

Therefore, the energy density is determined by the Gaussian curvature, KG, at the
boundary. In dimensionless variables, the mechanical balance along the axial and radial
directions is obtained by using Equations (28), (31) and (34); the corresponding equilibrium
equations are given, respectively, by

ρ̄ cos ΨK̄′0 + ρ̄ sin Ψ Ψ′K0 + C0ρ̄ sin Ψ = −η̄, (37)

ρ̄ sin ΨK̄′0 − ρ̄ cos Ψ Ψ′K̄0 − C0ρ̄ cos Ψ = −γ̄, (38)

where ρ̄ ≡ ρ/R0, η̄ ≡ ηR0/(2πκ), and γ̄ ≡ γR0/(2πκ).

Figure 3. Definition of the catenoid in terms of the equatorial radii (R) and axial length (L); ρ̄ ≡ ρ/R0,
z̄ ≡ z/R0. The equation of the meridian catenary generator with fixed neck radii R0 is given by
ρ̄ = cosh z̄. The catenoid can thus be re-parametrized in terms of the reduced arc length l̄ ≡ l/R0,

through the functions ρ̄ =
√

1 + l̄2 and z̄ = −arcsinh l̄; in the upper border l̄A = −
√

R̄2
A − 1, on the

equatorial site, l̄ = 0, and in the lower border l̄B =
√

R̄2
B − 1. The relationship with the tangential

angle of the generating curve: sin Ψ = 1/
√

1 + l̄2, and cos Ψ = l̄/
√

1 + l̄2. The derivative respect to l̄
is given by Ψ̄′ = −1/(1 + l̄2). The area of each hemisphere is rescaled in terms of its corresponding
border; thus, the rescaled surface area Āi ≡ Ai/(2πR2

i ) in the upper hemisphere, e.g., is given by

2Āi(R̄i) =
√

R̄2
i − 1/R̄i + R̄−2

i arctanh(
√

R̄2
i − 1/R̄2

i ), where R̄i = {R̄A, R̄B}. Similarly, the height is

h̄ = R̄−1
A arcsinh(

√
R̄2

A − 1) + R̄−1
B arcsinh(

√
R̄2

B − 1).

By using the parametric equation of the catenoid (see the caption in Figure 3), the axial
and radial mechanical balance on any parallel curve of the catenoid (see Figure 3) holds,
respectively:

Fz ≡ l̄K̄′0(l̄)−
K̄0(l̄)
1 + l̄2 +

1
λ

1
R̄4

A
= −η̄, (39)

Fρ ≡ K̄′0(l̄) +
l̄

1 + l̄2 K̄0(l̄)−
1
λ

l̄
R̄4

A
= −γ̄(l̄). (40)

where the scaled elastic forces are along the axial and the radial direction as the relevant
necking forces under the membrane tension; these are η̄ = −Fz for the dimensionless
stretching tension (considered constant and homogeneous in order to preserve the axial
symmetry under translations) and γ̄(l̄) = −Fρ for the radial constrictive tension (considered
essentially inhomogeneous).
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By opposition to the homogeneous case (when K̄0 is constant), the meridian gradient
of spontaneous curvature is herein identified to be a normal force that a region bounded by
a parallel exerts on an adjacent region. Thus, in both Equations (39) and (40), the first term
in the left hand side is the contribution of the normal force, whereas the next two terms
are the lateral forces acting through the parallel of coordinate l̄. Evaluating Equation (40)
at the equatorial loop, l̄ = 0, gives the constrictive necking force as the local change of
spontaneous curvature, i.e., C ≡ K̄′0(0); thus, in the case of a symmetric distribution of K̄0(l̄)
along the membrane, the force C = 0. According to Equation (40), in the symmetric case, the
scaled radial force,−γ̄(l̄), is an odd function of the arc length parameter l̄, and Equation (39)
holds the relationship between the axial force and the spontaneous curvature at the waist
of the catenoid; this is −η̄ = −K̄0(0) + C0. Although in the symmetric case, the constrictive
force vanishes, i.e., C = 0, the scaled local torque has the maximum intensity at the waist of
the neck; this particular property happens because the torque, m̄(l̄) ≡ mR0/κ (associated
with local flexures around the loop) involves the spontaneous curvature itself [40]

m̄(l̄) =
(

K̄0(l̄)−
1

λ(1 + l̄2)

)
T. (41)

In general, the inhomogeneous spontaneous curvature does appear to be a contribution
to the net torque arising for flexural neck shaping, whereas its local change as a normal
force (due to inhomogeneity) determines the constrictional stresses emerging from the
equilibrated equator, i.e., C(0) ≡ K′0(0). As an original result of this work, below, we obtain
the necking solutions for inhomogeneous catenoids.

4.1. Inhomogeneous Solutions: Necking Forces

Once the balance equations have been established into the relevant directions, we
obtain solutions for the inhomogeneous spontaneous curvature K̄0. These are

λK̄0(l̄) =

(
λη̄ +

1
R̄4

A

)
S(l̄) + λC l̄√

1 + l̄2
, (42)

as written in terms of the even function S(l̄) ≡ 1−
(

l̄/
√

1 + l̄2
)

arctanh
(

l̄/
√

1 + l̄2
)

. The
constrictive force C appears here naturally as an integration constant for the spontaneous
curvature force. On the border of the catenoid, we may write the function S(R̄i) =

1 −
(√

R̄2
i − 1/R̄i

)
arctanh

(√
R̄2

i − 1/R̄i

)
, where i = {A, B} (see Figure 3). Solutions

in Equation (42) are modulated by constitutive forces referred to the relative elasticity
parameter λ ≡ κ/κG, defined as a control parameter for retaining further bending on
the natural saddle-splay of the catenoid neck; these solutions are (i) the bending-rescaled
axial tension (λη̄); and (ii) the border spontaneous curvature stress as recapitulated by C.
The boundary conditions K̄0(l̄i) = λ−1R̄−2

i [55] yield the bounding values of spontaneous
curvature from which the constitutive parameters λC and λη̄ can be found as

λC(R̄A, R̄B) =
R̄2

AS(R̄A)− R̄2
BS(R̄B)

R̄AR̄B I(R̄A, R̄B)
, (43)

λη̄(R̄A, R̄B) = − 1
R̄4

A
+

R̄A

√
R̄2

A − 1 + R̄B

√
R̄2

B − 1

R̄AR̄B I(R̄A, R̄B)
, (44)

where the function I(R̄A, R̄B) ≡ R̄A

√
R̄2

B − 1S(R̄A) + R̄B

√
R̄2

A − 1S(R̄B). Substituting
Equations (43) and (44) into Equation (42) obtains the distribution of the spontaneous
curvature along the catenoid as the domain-renormalized function λK̄0(l̄; R̄A, R̄B), defined

in the interval l̄ ∈
[
−
√

R̄2
A − 1,

√
R̄2

B − 1
]
.
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Equations (43) and (44), respectively, provide the constrictive radial force at the neck
equator (necking waist constriction) and the axial force (a constant stretching), both in
terms of the upper radii R̄A and the lower radii R̄B of the catenoid. Nevertheless, using
Equation (40), it is possible to obtain an analytical expression for the radial force at any
parallel in terms of the border radii and the arc length of the meridian generatrix. The
constrictive force along the catenoid is given by

λFρ(l̄; R̄A, R̄B) = −
l̄

R̄4
A
+

λC(R̄A, R̄B)√
1 + l̄2

− D(R̄A, R̄B)√
1 + l̄2

arctanh
(

l̄√
1 + l̄2

)
, (45)

where λC is given by Equation (43) and

D(R̄A, R̄B) ≡
R̄A

√
R̄2

B − 1 + R̄B

√
R̄2

A − 1

R̄AR̄B I(R̄A, R̄B)
. (46)

By evaluating Equation (45) at l̄ = 0, we reproduce the necking force Fρ(0, R̄A, R̄B) =
C(R̄A, R̄B).

4.1.1. Symmetric Solutions

On a symmetric catenoid (defined as R̄A = R̄B = R̄), the necking force naturally
equals zero, i.e., C = 0, whereas the scaled axial force is λη̄(R̄) = −1/R̄4 + 1/[R̄2 S(R̄)];
hence, in the symmetric neck, the scaled spontaneous curvature simplifies to λK̄0(l̄; R̄) =
S(l̄)/[R̄2S(R̄)]. Because the function S(R̄) is either positive (or negative) for R̄ < R̄†

(or R̄ > R̄†), we identify two different constrictional domains separated by a critical
point (at R̄ = R̄† ≈ 1.81), which also describes the maximal area (Āmax ≈ 1.19). In
the subcritical regime (R̄ < R̄†), the function S(R̄) decreases monotonically from unity
down to zero (at R̄ = R̄†). This necking mode makes the scaled spontaneous curvature
inhomogeneously positive (λK̄0 > 0) [4], which corresponds to an initially elongating
neck appearing at predominantly cylindrical a surface (low constriction, leading neck
stretching). At the critical point (R̄ = R̄†), the symmetric critical catenoid exactly fulfills
the geometric condition S(R̄†) = 0 (also of maximal area). Although the constricted shape
of the critical catenoid does not display any particular geometric feature, there are not
analytic solutions for K̄0 and the other related properties in such a maximal area catenoid,
i.e., there is a singularity in these inhomogeneous functions. In the supercritical regime
(R̄ > R̄†), however, the function S(R̄) shifts to negative, hence making the inhomogeneous
spontaneous curvature become negative (λK̄0 < 0) in a predominantly concave neck
geometry (high constriction, leading scissional pinching). In this regime, as R̄ >> R̄†, the
spontaneous curvature is distributed almost homogeneously, making it zero asymptotically.
Consequently, the axial force is positive in the subcritical regime (λη̄ > 0, if R̄ < R̄†) and
negative in the supercritical regime (λη̄ < 0, if R̄ > R̄†). In both off-critical regimes, the
boundary edge relationships are satisfied (Equation (18)), whereas at the critical point,
these may be verified using L’Hopital’s rule. Note that at the catenoid waist, the scaled
spontaneous curvature is given by λK̄0(0; R̄) = 1/[R̄2S(R̄)], which takes large positive
values if R̄ approaches the critical point from the left (R̄ → −R̄†), whereas it takes large
negative values approaching from the right (R̄→ +R̄†). If the symmetric function K̄0(l̄) is
substituted in Equation (40), we find that the radial force, −γ̄(l̄), is an odd function of the
arc length l̄, so that it vanishes at the waist of the neck and attains its maximal intensities
at the border. In Figure 4, some stages of the necking pathway have been depicted for a
particular case compatible with experimental rigidities (λ = 1/(−0.7)). Notice the abrupt
change in the inhomogeneous distribution of λK̄0 as it passes through R̄†. Analogously,
we can see the behavior of the local torque m̄ (see Equation (41)) being negative in the
subcritical region and positive in the supercritical region. That is, for catenoids in the
subcritical region, the left side is pushing (and curving) the region to its right, while in the
supercritical region, the right region is being pulled. As we can see, it is the waist of the
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catenoid where the most intense torque acts. In the quasi-cylindrical regime (very thick
waist), the torque is practically zero since the contribution of the spontaneous curvature
is cancelled out by the geometric contribution (i.e., m̄ = K̄0 − 1/(λρ̄2) ≈ 0). In contrast,
in the thin catenoid regime, the spontaneous curvature is zero so that the torque is given
by m̄ ≈ −1/(λρ̄2). Of course, at the border of the catenoid, the torque is zero due to the
boundary conditions (see Figure 4).
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Figure 4. Some stages along the transition of the symmetric catenoidal shape. In the upper panel, the
stages (a–c), are in the subcritical regime R̄ < R̄† ≈ 1.81, while the stages in the bottom panel (d–f),
are in the supercritical regime R̄ > R̄†. The corresponding behavior of the spontaneous curvature,
K̄(l̄), and the local torque m̄(l̄), is shown as a function of the arc length l̄. Note the flip-flop behavior
of these functions as passing the critical value R̄†.

By particularizing Equation (45) to the symmetric case (R̄A = R̄B = R̄), the scaled
radial force Fsym

ρ (l̄) ≡ Fρ(l̄; R, R) is given by the odd function

λFsym
ρ (l̄) = − l̄

R̄4 −
1

R̄2S(R̄)
1√

1 + l̄2
arctanh

(
l̄√

1 + l̄2

)
. (47)

Further evaluation of this force on the lower border, l̄ =
√

R̄2 − 1, leads to the constric-
tional force in terms of the edge radii:

λFsym
ρ (R̄) = −

√
R̄2 − 1
R̄4 +

1

R̄2
√

R̄2 − 1

(
1− 1
S(R̄)

)
. (48)

An isolated singularity appears at the critical point R̄ = R̄† ≈ 1.81. If R̄ >> 1
(high constriction), we have λFsym

ρ ∝ −1/[R̄3(−1 + log(2R̄))], and thus, the radial force
is attractive for large radii if λ > 0; instead, if R̄ ≈ 1 (low constriction), then λFsym

ρ ∝
−
√

2(R̄− 1)1/2, so that in this regime, the radial force is repulsive if λ < 0.
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More detailed information about the strength of the interaction can be obtained by
numerically integrating the radial force. Particularly, the work W performed by the radial
force Fρ(R̄B; R̄A, R̄B) to evolve the lower border (from R̄B = 1 to R̄B > 1) obtains the
associated energy, U (R̄A, R̄B), through

W1→R̄B
=
∫ R̄B

1
Fρ(R̄′; R̄A, R̄′) dR̄′ ≡ −U (R̄A, R̄B). (49)

An interesting behavior emerges from the singularity in the radial force. Close the
singular point R̄†, the function form vanishes linearly as S(R̄) ≈ −0.79(R̄− R̄†), so that
the corresponding singularities in W are cancelled out.

By attending to this necking work as a change of potential energy in the symmetric
case here considered, the borders of the catenoid have no interaction for large radii (i.e., for
R̄ >> 1). The numerical result is the energy function, U , as shown in Figure 5A as black
triangles (we have taken λ = −1/0.7). Let us notice the presence of a global minimum
at the critical point R̄†. With regards to the corresponding forces, in the subcritical sector
R̄ < R̄† ≈ 1.81, the radial force on the border R̄B, is repulsive from the axial axis, whereas
the axial force is attractive in this sector, i.e., Fz < 0 (see Figure 5C, pathway points a and
b). In approaching the critical point (R̄→ R̄†), both the area, Ā, and the height, h̄, increase
until reaching the size of the maximum catenoid such that Ā† ≈ 1.19 and h̄† ≈ 1.32; both
the radial and the axial force diverge at this point (see Figure 5B,C). In the supercritical
regime (R̄† < R̄), the radial force is attractive, and the lower border is repelled out with
an axial force that tends to zero very quickly (see Figure 5C). Finally, a relaxation regime
appears at large constrictions leading to final pinching scission; in this sector, the radial
force is repulsive and decreasing with R̄, tending to zero for a very thin catenoid, i.e., such
that R̄ >> 1. Thus, in this abscissional limit, the boundaries do not interact each other,
although the separation decreases strongly (h̄→ 0) and the area Ā→ 1 (see Figure 5B,C,
pathway points c and d).

4.1.2. Asymmetric Solutions

Let us now analyze the general asymmetric case such that the upper border is fixed to
R̄A > 1 and R̄A 6= R̄B. The axial force is still given by Equation (44), so that if the lower
border R̄B >> 1, then the axial force Fz ≡ −η̄ ∝ 1/(λR̄4

A). Hence, if λ < 0, the lower edge
is repelled out from the upper one; in contrast, if λ > 0, the lower border is conversely
attracted thereby. Further, the radial force on the lower border is given by Equation (45); if

substituting l̄ = l̄B =
√

R̄2
B − 1, we found:

λFρ(R̄B; R̄A, R̄B) = −

√
R̄2

B − 1

R̄4
A

+
λC(R̄A, R̄B)

R̄B
− D(R̄A, R̄B)√

R̄2
B − 1

(1− S(R̄B)). (50)

In the regime of high constriction (R̄B >> 1), then Fρ(R̄B) ∝ −R̄B/(λR̄4
A), so that

the radial force on the lower border is repulsive from the axial axis if λ < 0. Despite the
absence of mirror symmetry in this case, the radial force (50) also presents a singularity at
the point R̄B = R̄∗B, determined by the condition I(R̄A, R̄∗B) = 0. For the reference result (at
λ = −1/0.7), the behavior of the spontaneous curvature close to the critical point has been
depicted in Figure 6, in the case of fixed R̄B = 2 and critical point R̄∗B ≈ 1.65.

In the subcritical regime (see Figure 6a,b), both K̄0(l̄) and m̄(l̄) are negative functions;
in the supercritical regime, they are positive. The torque vanishes on the boundaries but is
not a symmetric function. Thus, in the subcritical regime, the left side of the catenoid is
pushing the right side and curving it more intensely at the waist (i.e., l̄ = 0), while in the
supercritical regime, the right side is pulled (see Figure 6c,d).
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Figure 5. (A): The energy of the radial interaction U (R̄) (black triangles) between the boundaries
of a symmetric catenoid (we have taken the experimental reference λ = −1/0.7). Some catenoidal
points of reference along the path: a (R̄ = 1.2), b (R̄ = 1.7), c (R̄ = 1.9), and d (R̄ = 3). The first two
points belong to the subcritical regime, and the last two points are in the supercritical sector. The
critical point is at R̄∗ ≈ 1.81. (B): The radial force Fρ, on the lower border (right), as a function of h̄
(the separation distance between the borders). The inset panel outline the radial force as a function of
the area of the catenoid. (C): The axial force Fz ≡ −η̄ as a function of h̄ (the distance of separation
between the borders). The inset panel shows the axial force as a function of the area Ā.
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Figure 6. Some stages along an asymmetric transition, such that the upper (left) radii is fixed to be
R̄A = 2. The critical point occurs at R̄∗ ≈ 1.65, so that the first two stages (a,b), are in the subcritical
regime while the last two (c,d), belong to the supercritical regime. Note that both functions, K̄0(l̄)
and m̄(l̄), are asymmetric functions along the corresponding catenoid.

4.1.3. The fixed Radii, R̄A = 1.

If the upper border is fixed to be R̄A = 1, then we have that S(R̄ = 1) = 1, so that the

necking force λC(1, R̄B) = [1− R̄2
BS(R̄B)]/

[
R̄B

√
1− R̄2

B

]
and D(1, R̄B) = 1/R̄B. Thus, the

axial force η̄ = 0 and the spontaneous curvature are given by

λK0(l̄; 1, R̄B) = S(l̄) +
(1− R̄2

BS(R̄B))

R̄B

√
R̄2

B − 1

l̄√
1 + l̄2

, (51)

where l̄ ∈ [0,
√

R̄2
B − 1]. As a function of R̄B, Equation (51) does not show any singularity.

On the lower boundary, the radial force is given by

λFρ(R̄B; 1, R̄B) = −
√

R̄2
B − 1− R̄B − 1

R̄B

√
R̄2

B − 1

(
1

R̄B
+ S(R̄B)

)
. (52)

This force does not present any singularity either; it vanishes if R̄B = 1. For R̄B ≈ 1,
we have Fρ(R̄B) ∝ −(2

√
2/λ)

√
R̄B − 1, and Fρ(R̄B) ∝ −R̄B/λ, if R̄B >> 1. Thus, the

radial force is attractive if λ > 0 and repulsive if λ < 0. The local torque (41) can be written
as λm̄(l̄) = λK̄0(l̄)− 1/(1 + l̄2). On the boundary, the torque vanishes as a consequence of
the boundary condition Equation (18).

Some numerical results have been displayed in Figure 7 (we have taken 1/λ = − 0.7).
In contrast with the symmetric case, the energy U is a decreasing smooth function of the
radii R̄B, so that the radial force on the lower border (the right border in the Figure 7A) is
also increasing. Both the spontaneous curvature and the local torque are negative functions
along the catenoid. It is the torque that causes the curvature of the catenoid; since it is
negative, the left sector pushes the right one (see the inset catenoids in Figure 7A). Further,
for small values of R̄B, the area, Ā, increases until it reaches its maximum value at the point
R̄† ≈ 1.81; then, it begins to decrease such that if R̄B >> 1, the area Ā → 1/2; similarly,
the separation between the borders, h̄, reaches its maximum value at R̄†; then, it decreases
further. finally, in the asymptotic limit, h̄→ 0 (see Figure 7B).
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Figure 7. Numerical results in the case of fixed radii R̄A = 1 and 1/λ = −0.7. (A): The energy of
interaction U (black triangles) between the borders as a function of the radii R̄B. As reference, some
catenoidal points have been identified along the way: a(R̄B = 1.5), b(R̄B = 5), and c(R̄B = 10). The
distribution of the curvature K̄0 and the torque m̄ have been depicted at the corresponding inset panel.
(B): The radial force Fρ, on the lower border as a function of h̄, the distance of separation between the
borders. The inset panel shown the radial force as a function of the area Ā. The catenoid of maximal
size reaches at R̄†

B ≈ 1.81. Note that asymptotically, the area Ā→ 1/2.

5. Discussion

In our quasi-static approach to the neck shaping process, we have implemented
sequences of static curvature configurations for a CH inhomogeneous fluid membrane con-
sidering a flexible sheet in two dimensions with no dissipation explicitly considered [39].
Our inhomogeneous CH model recapitulates membrane complexities under the meso-
scopic concept that we refer to as “fluid mosaicity”—with reference to the widely accepted
fluid mosaic model of biological membranes [14]. It is worthy remember that any shape
deformation process within the CH field is essentially adiabatic (thus subsidiarily inviscid)
as it only involves elastic free energy but no heat exchange (as reviewed in ref. [43]). Hence,
the necking sequences considered stationary here describe an ideal (frictionless) class of
static deformations expending free energy at an internal mechanical equilibrium with the
CH field of curvature elasticity. Indeed, the mechanical work involved in the CH shape
changes has been ideally considered under reversible adaptation at equilibrium (conser-
vative), but not as a transient process working out-of-equilibrium (dissipative). However,
explicit entropy exchanges due to chemical reorganizations have not been considered
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either to describe possible molecular heterogeneity (as seminally described by Markin [57];
later, developed in a physicochemical basis by Szleifer et al. [48]; and further reviewed
by Safran [44]). In a real biological necking process, the dynamic membrane architecture
is based on an elastic transformation and lateral redistribution of components into the
curvature shapes as primarily driven by chemical, physical and geometric gradients [19].
Such complexities are usually approached from a thermodynamic equilibrium standpoint
as a composition–curvature coupling in which each particular membrane configuration
is assumed to be in reversible equilibrium with a heterogeneous lipid reservoir, both con-
sidered to be chemically closed (recently reviewed by Bashkirov et al. [5]). Despite the
powerfulness of the equilibrium thermodynamics tool, realistic descriptions of biochemical
heterogeneity within a dynamical necking scenario, in practice, are quite impracticable, as
it requests in considering a fairly big changing number of lipids and proteins (chemically
opened). Instead, we have considered a more simplistic approach in which the dynamic
heterogeneity of biological necking is effectively captured under “fluid mosaicity” condi-
tions by potential deformation effectors as being locally inhomogeneous, i.e., we allow the
spontaneous curvature and the components of an anisotropic membrane tension to vary
spatially to minimize the deformation work under thermodynamically effective adiabatic
and isochemical conditions actually “hidden” in the CH field of curvature elasticity. Our
mesoscopic 2D-continuous analytics has been performed in a similar way as the elasticity
theory of thin plates, but considering rotational symmetry as a sine qua non condition
requested by macroscopic fluidity [39]. Of course, no explicit account of the internal mi-
crostructure is considered by our CH approach, which considers laterally inhomogeneous
conditions. In a molecular context, Safran, Szleifer and coworkers have considered the
mesoscopic inhomogeneities being recapitulated under lateral dependencies of internal
pressure profiles along the membrane thickness [44,48]. The thermostatistical integrals
for the CH parameters manifest essential mosaic inhomogeneity due to microstructural
forces beneath the lipid bilayer [49]. Specifically, an inhomogeneous spontaneous curvature
occurs due to transverse bilayer asymmetries, e.g., compositional, geometric, electrostatic,
leaflet thickness, etc. [43,45]. These microphysical complexities have been coarse-grained
in our CH approach under spatial inhomogeneities of the local mechanical effectors of
curvature: specifically, the local values of spontaneous curvature (K0) and the requested
anisotropic values of the necking tensions (η, γ), respectively, for axial stretching and radial
constriction. We expect the locally inhomogeneous values of spontaneous curvature and
constriction tension to represent anisotropic (mosaic) remodeling forces, i.e., they represent
membrane mosaicities naturally imparting necking order in the mesoscale.

In the first part of this work, based on the inhomogenous Canham–Helfrich model
settled for a laterally modulable distribution of mechanical effectors (specifically, variable
K0 and γ, and constant η), we have established the equilibrium shape equation as being
an Euler–Lagrange minimizer with the addition that the spontaneous curvature and the
constrictional tension are inhomogeneous functions along the axial membrane coordi-
nate. The constant bending rigidities for pure splay (κ) and saddle-splay (κG) represent
isotropically fluid forces homogeneously deployed along the membrane necking shape as
far they determine the macroscopic scale of bending energy imposed by the global neck
topology (κ determines the global neck rigidness, and κG determines the total strength of
the cortical forces injected in the neck waist from the border). In more technical words,
they constitute the intensive densities of elastic resistance (flexibility) isotropically fixed
under mesoscopic fluidity. This is the flexible fluidness property invoked by W. Helfrich
in his foundational formulation of the model [39]. In this mesoscopic perspective, we
consider the ideal (adiabatic) case so that any entropic interaction has been neglected:
the local value of spontaneous curvature is the essential factor that determines the ener-
getically optimal necking configuration. The inhomogeneous values of the spontaneous
curvature should reflect possible microscopic asymmetries in the lipid bilayer [39]; these
can occur through different mechanisms of curvature remodeling, for instance, molecular
shape effectors [20–26] and compositional differences [5,30,45,48], among others. These
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local curvature effectors request each leaflet to adjust its area so that the bilayer bends at
each site in some preferential side. Thus, the local torque involved in the bending emerges
from the localized spontaneous curvature that depends on the mosaic distribution of the
membrane components. Of course, if the membrane components differently concentrate
in one of the sides with respect to the other, e.g., driven under differential cortical flows
(nonlubricated), then, the membrane bends again to reach a relaxed configuration due to
the difference in the accumulated area in each side [45]. Although the inhomogenous CH
model captures these local asymmetries in a spatial variable K0, we have demonstrated
the necessity to consider additional energetic necking terms associated with local con-
striction under global stretching. Hence, we have obtained the mechanical information
emerging from inhomogeneities in K0 and related γ, which is discussed below in terms
of mesoscopic interactions and criticality. However, how these results are related to the
corresponding microscopic (molecular) interactions remains to be investigated.

In the second part of our work, we capture the effects of those mechanical necking
inhomogeneities superposed to the catenoid membrane shape, a minimal surface with an
average zero value of mean curvature which recapitulates “homeostatic” conditions (being
adiabatically stable and energetically minimal). Thus, we have analyzed the boundary
conditions imposing anisotropic necking tensions, the distribution of K̄0 and the torque
itself, as well as the elastic forces such that the membrane necking shape is adapted to a
mechanically mosaic (inhomogeneous) catenoid. Except the case with fixed R̄A = 1, the
catenoidal solutions belong to two possible branches separated by the critical catenoid,
which is reached for some value R̄B = R̄∗B; it is identified as a critical point in the sense
that it signals an abrupt change in the behavior of the spontaneous curvature. In the
symmetric case, such that the two radii borders are equal, say R̄, the critical catenoid and
the catenoid of maximum size are the same, reached for R̄∗ ≈ 1.81. In addition, if we
assume the experimental result κG/κ = −0.7, widely admitted for the configurations of
fluid biological membranes and vesicle models [43], the energy of interaction between
the borders attains its global minimum at the critical point R̄∗. Thus, the radial force is
repulsive between the borders for thick catenoidal shapes, attractive in the regime of thin
catenoids, and, for large radii, the borders do not interact each other. We envisage this
critically inhomogeneous interaction setting to theoretically capture much of the most
essential features of biological necking. In particular, the distribution of the spontaneous
curvature K̄0 and the torque m̄ has been depicted in Figures 4 and 6 in the symmetric case
and the asymmetric one (for fixed R̄A = 2), respectively. The curved shape of the catenoid
is the effect of the torque m̄. In the quasi-cylindrical region, it is practically zero, although its
negativity implies that the region to the left pushes the opposite region to its right. Near the
critical point, in the subcritical region, the torque remains negative and is very intense at the
waist of the catenoid and abruptly jumps to be positive when it passes to the supercritical
region (see Figures 4 and 6). In the very thin catenoidal regime, where K̄0 vanishes, the
normal curvature of the waist is the only contribution to the local torque. Such a sequence
of static necking configurations seems to essentially recapitulate the different steps of
furrow constriction and scissional pinching observed to be driven by the mitotic spindle in
eukaryote cytokinesis [1–3]. Also, the necking criticality assumed to be inhomogeneous
in our work could be assimilated to explore the complex dynamics driven by dynamin
proteins in biological organelles [7,58]. Previously, the presence of bistable criticality in
organelle necks has been modeled as composite homogeneous solutions joining a scissional
tube to two half-catenoid hemispheres [6].

Despite our reductionist idealizations of the necking process as a minimally functional
adiabatic process, however, biological necking proceeds out-of-equilibrium, i.e., budding,
cell division, fission, etc., which are naturally irreversible processes. The chemical potentials
(and the total entropy) can vary by exchanging some heat and materials between the mem-
brane neck and its biochemical surroundings. Of course, our adiabatic/isochemical necking
CH model resolved under minimal catenoid solution does not constitute an exact nor de-
tailed description of the real biological processes; however, it could reasonably capture
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the biological idea of homeostatic fitness under instantaneous mechanical equilibrium [36].
Hence, our reductionism recapitulates some realistic conditions of the biological system,
in particular, adaptative slowness (staticity) and practical absence of frictional dissipation
(fluidity), both leading to physical “adiabatic stability” compatible with physiological
homeostasis [42]. Indeed, our inhomogeneous CH model implements effective adiabatic
conditions as an optimal (conservative) expenditure of elastic free energy for neck shape
reorganization. The CH model does not make explicit biochemical changes requested under
fluid deformation. It also does not have entropy creation related to chemical change [39,43].
However, heterogeneous chemical contributions appear to effectively embedded within
the membrane tension anisotropy, as far the inhomogeneous function sigma recapitulates a
spatially inhomogeneous density of membrane energy [5,44,48,57]. Therefore, the resulting
quasi-static sequences of necking CH shapes obtained under catenoid-like constriction in
the different scenarios are expected to be “homeostatic” [36]; in other words, “adiabatically
stable” is regarded as energetically optimal (no heat exchange involved), i.e., not exhibiting
dissipation in a near-reversible (frictionless) succession of mechanically equilibrated fluid
states [42]. More realistic necking descriptions would implement irreversibility within
viscous friction terms, making an explicit generation of dissipative entropy under finite
necking rate (as in, e.g., [59,60]). However, these dynamic complexities go against the
“conservatively homeostatic” definition of fluid reversibility inherent to the considered
reductionism under a mechanical Canham–Helfrich necking equilibrium.

A thermodynamically and kinetically more complete description of homeostatic ir-
reversibility should eventually go beyond the conservative CH field here exploited for
the quasi-static description of the membrane necking configurations. Newer theoretical
and computational approaches to necking kinetics could be implemented around the
concept of CH gradient flow (first introduced in [61]). Such further extensions would
include dissipative friction accounting for the possible entropy generations characteris-
tic of the real necking system. The results presented in this work focus on catenoidal
necking shapes as mostly observed in cellular processes of eukaryote cytokinetic scission
such as cell division [1–3] and endo/exocytosis [10–13]. However, previous studies on
organelle dynamics suggest extending the analysis beyond catenoidal shapes to other
complex structures as in the intracellular transport through membrane tubules [6,7] or to
take into account the dynamically asymmetric stresses transmitted by dynamin proteins
which play a relevant role in the organelle fission [58].

6. Summary and Conclusions

By generalizing the CH energy to the case with inhomogeneous spontaneous curvature
(K̄0) and surface tension (σ̄), in this theoretical work, we have found:

1. Local inhomogeineity (mechanical mosaicity). In addition to the inhomogeneous
membrane shape equation, the geometric connection Equation (8) must be also satis-
fied. They locally relate the inhomogeneities in σ and K̄0 and constitute the conditions
of mechanical equilibrium that determine the constrictive and stretching forces re-
quested for a given necking configuration under optimizing inhomogeneity.

2. Modulo boundary conditions: the shape membrane is a catenoid under necking, if and
only if the spontaneous curvature is given by the analytical formula given by Equa-
tion (42). This constitutive equation represents a strict necking condition established
between the constrictive and stretching forces requesting a lateral distribution of K0
for given boundary conditions (fixing dimensionless constriction as a border-to-waist
relative radius). This contributes to fixing the local torque as given by Equation (41).

3. The equilibrium catenoidal configurations belong to two branches separated by a
critical catenoid. In the symmetrical case, the critical catenoid corresponds to the one
of maximum size (the same found from the soap film analysis). In the subcritical
regime, both the torque and K̄0 are negative functions (leading predominant thick
catenoid representing initial constriction), while they become positive functions in
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the supercritical regime, leading to predominant concavity (representing the final
pinching regime). K̄0 is practically zero in the very thin catenoidal regime.

4. Analytical formulas corresponding to the axial stretching elastic force and the constric-
tive force are given by Equations (44) and (45), respectively. These are general results,
whether the catenoid is symmetric or asymmetric. These results show that in the thick
catenoid sector, the radial interaction between the boundaries is repulsive, whereas
it is attractive in the regime of thin catenoids; in the sector of very thin catenoidal
shapes, the interaction vanishes.
We summarize our conclusions from a biological perspective:

5. The inhomogeneous CH model here described implements effective adiabatic condi-
tions as an optimal (conservative) expenditure of elastic free energy for neck shape
reorganization. Although our CH model neither makes explicit biochemical change re-
quested under fluid deformation nor entropy creation related to chemical change, the
heterogeneous chemical potentials involved in biological necking are effectively em-
bedded within anisotropic membrane tension inhomogeneities as far they recapitulate
the spatially variable density of membrane energy.

6. The resulting sequences of inhomogeneous necking CH configurations are implicitly
“homeostatic” in the sense of being adiabatically stable and energetically optimal (no
heat exchange involved).

7. More realistic necking descriptions would implement irreversibility within frictional
terms, making an explicit generation of dissipative entropy under finite necking rate.
However, these dynamic complexities would be formulated at compatibility with the
biological principle of ”conservative homeostasis”, which is currently captured (in
maximalism) by the considered reductionism under mechanical Canham–Helfrich
necking equilibrium.
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