Valorization of Sour Buttermilk (A Potential Waste Stream): Conversion to Powder Employing Reverse Osmosis and Spray Drying
Abstract
:1. Introduction
2. Materials and Methods
2.1. Procurement, Analysis, Pretreatments and Concentration of SBM
2.2. Spray Drying of CSBM
2.3. Analysis of Chemical Composition and Determination of Physical Properties of Different Buttermilk Samples and SBMP
2.4. Determination of Bulk and Flow Properties of SBMP
2.5. Determination of Reconstitution and Functional Properties of SBMP
2.6. Determination of Rheological Properties of SBM, DSBM, CSBM and Reconstituted SBMP Samples
2.7. Analysis of Particle Size Distribution of SBMP
2.8. Analysis of Antioxidant Properties of SBMP
2.9. Fatty Acids Profiling of SBMP
2.10. Amino Acids Profiling of SBMP
2.11. FTIR Spectra of SBMP
2.12. XRD Spectra of SBMP
2.13. Microstructure of SBMP
2.14. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition of Buttermilk Samples and Concentration of DSBM
3.2. Characterization of SBMP
3.2.1. Chemical Composition and Physical Properties of SBMP
3.2.2. Bulk and Flow Properties of SBMP
3.2.3. Reconstitution and Functional Properties of SBMP
3.2.4. Particle Size Distribution of SBMP
3.2.5. Antioxidant Properties of SBMP
3.2.6. Fatty Acid Composition of SBMP
3.2.7. Amino Acid Composition of SBMP
3.2.8. Fourier-Transform Infrared Spectroscopy (FTIR) Spectra of SBMP
3.2.9. XRD Spectra of SBMP
3.2.10. Particle Morphology of SBMP
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RO | reverse osmosis |
SBM | sour buttermilk |
TS | total solids |
SBMP | sour buttermilk powder |
SCBM | sweet cream buttermilk |
DSBM | defatted sour buttermilk |
CSBM | sour buttermilk concentrate |
VRR | volume reduction ratio |
CF | concentration factor |
FM | flux mean |
IF | initial flux |
FF | final flux |
IAC | interstitial air content |
OAC | occluded air content |
LBD | loose bulk density |
PBD | packed or tapped bulk density |
HR | Hausner ratio |
CI | Carr index |
SI | solubility index |
WBC | water binding capacity |
OBC | oil binding capacity |
ƞAppa | apparent viscosity |
SSA | specific surface area |
XRD | X-ray diffractometer |
SMP | skim milk powder |
WMP | whole milk powder |
HMF | hydroxymethylfurfural |
TBA | 2-thiobarbituric acid |
EC | emulsifying capability |
ES | emulsion stability |
References
- United Nations. Food Loss and Waste Reduction. United Nations. Available online: https://www.un.org/en/observances/end-food-waste-day (accessed on 1 August 2023).
- Mahboubi, A.; Ferreira, J.A.; Taherzadeh, M.J.; Lennartsson, P.R. Value-Added Products from Dairy Waste Using Edible Fungi. Waste Manag. 2017, 59, 518–525. [Google Scholar] [CrossRef] [PubMed]
- Usmani, Z.; Sharma, M.; Gaffey, J.; Sharma, M.; Dewhurst, R.J.; Moreau, B.; Newbold, J.; Clark, W.; Thakur, V.K.; Gupta, V.K. Valorization of dairy waste and by-products through microbial bioprocesses. Bioresour. Technol. 2022, 346, 126444. [Google Scholar] [CrossRef] [PubMed]
- Parashar, A.; Jin, Y.; Mason, B.; Chae, M.; Bressler, D.C. Incorporation of Whey Permeate, a Dairy Effluent, in Ethanol Fermentation to Provide a Zero Waste Solution for the Dairy Industry. J. Dairy Sci. 2016, 99, 1859–1867. [Google Scholar] [CrossRef] [PubMed]
- MOFPI. In Conversation Fermented Milk Special. PMFME E-Newsletter 2023. Available online: https://pmfme.mofpi.gov.in/pmfme/newsletters/enewsnovember1.html (accessed on 1 August 2023).
- Halder, K.; Sahu, J.K.; Naik, S.N.; Mandal, S.; Bag, S.K. Improvements in Makkhan (traditional Indian cultured butter) production: A review. J. Food Sci. Technol. 2021, 58, 1640–1654. [Google Scholar] [CrossRef] [PubMed]
- Aneja, R.P.; Mathur, B.N.; Chandan, R.C.; Banerjee, A.K. Fat-rich Products. In Technology of Indian Milk Products: Handbook on Process Technology Modernization for Professionals, Entrepreneurs and Scientists; Dairy India Yearbook: New Delhi, India, 2002; p. 196. [Google Scholar]
- De, S. Indian Dairy Products. In Outlines of Dairy Technology; Oxford University Press: New Delhi, India, 2004; Volume 20, pp. 463–464. [Google Scholar]
- Padghan, P.V.; Mann, B.; Kumar, R.; Sharma, R.; Kumar, A. Studies on bio functional activity of traditional lassi. Indian J. Tradit. Knowl. 2015, 1, 124–131. [Google Scholar]
- Pal, D.; Rajorhia, G.S. Buttermilk Utilization in Dairy Industry. Indian Dairym. 1985, 9, 397–403. [Google Scholar]
- Meshram, B.D. Development of Long Life Soft Drink from Butter Milk. Master’s Thesis, National Dairy Research Institute (Deemed University), Karnal, Haryana, 1998. [Google Scholar]
- Cheryan, M. Ultrafiltration and Microfiltration Handbook, 2nd ed.; CRC Press: Boca Raton, NY, USA, 1998; pp. 1–25. [Google Scholar]
- Henning, D.R.; Baer, R.J.; Hassan, A.N.; Dave, R. Major Advances in Concentrated and Dry Milk Products, Cheese, and Milk Fat-Based Spreads. J. Dairy Sci. 2006, 89, 1179–1188. [Google Scholar] [CrossRef]
- Boer, R.D.; Nooy, P.F.C. Concentration of raw whole milk by reverse osmosis and its influence on fat globules. Desalination 1980, 35, 201–211. [Google Scholar] [CrossRef]
- Govindasamy-Lucey, S.; Lin, T.; Jaeggi, J.J.; Martinelli, C.J.; Johnson, M.E.; Lucey, J.A. Effect of Type of Concentrated Sweet Cream Buttermilk on the Manufacture, Yield, and Functionality of Pizza Cheese. J. Dairy Sci. 2007, 90, 2675–2688. [Google Scholar] [CrossRef]
- Westergaard, V. Milk Powder Technology: Evaporation and Spray Drying; NIRO A/S: Copenhagen, Denmark, 1994. [Google Scholar]
- Tamime, A.Y.; Robinson, R.K.; Michel, M. Microstructure of Concentrated and Dried Milk Products; Blackwell Publishing: Oxford, UK, 2007; pp. 104–133. [Google Scholar]
- St-Gelais, D.; Haché, S.; Gros-Louis, M. Combined Effects of Temperature, Acidification, and Diafiltration on Composition of Skim Milk Retentate and Permeate. J. Dairy Sci. 1992, 75, 1167–1172. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis of the AOAC International, 16th ed.; Horwitz, W., Ed.; Wilson Boulevard: Arlington, VA, USA, 1995; Volume 2. [Google Scholar]
- IS 4079 e 1967; Specification for Canned Rasogolla. Bureau of Indian Standards: New Delhi, India, 1967.
- Hall, C.W.; Hedrick, T.I. Drying of Milk and Milk Products, 2nd ed.; Avi Publishing: New York, NY, USA, 1972; p. 59. [Google Scholar]
- Keeney, M.; Bassette, R. Detection of Intermediate Compounds in the Early Stages of Browning Reaction in Milk Products. J. Dairy Sci. 1959, 42, 945–960. [Google Scholar] [CrossRef]
- Hegenauer, J.; Saltman, P.; Ludwig, D.; Ripley, L.; Bajo, P. Effects of Supplemental Iron and Copper on Lipid Oxidation in Milk. 1. Comparison of Metal Complexes in Emulsified & Homogenized Milk. J. Agric. Food Chem. 1979, 27, 860–867. [Google Scholar]
- IS:SP18.5403; Indian Standard Specification for Canned Rasogolla. Indian Standard Institution: New Delhi, India, 1981.
- Mahadev, G.M.; Meena, G.S. Milk Protein Concentrates 80: Does Composition of Buffalo Milk Matter for Its Poor Functionality? LWT 2020, 131, 109652. [Google Scholar] [CrossRef]
- Atomizer, N. Particle Density, Occluded Air and Interstitial Air (Petroleum Ether Method). In Analytical Methods for Dry Milk Products; Sorensen, H., Krag, I., Pisecky, J., Westergaard, J., Eds.; Niro Atomizer: Copenhagen, Denmark, 1978; pp. 48–51. [Google Scholar]
- Sjollema, A. Some Investigations on the Free-Flowing Properties and Porosity of Milk Powders. Neth. Milk Dairy J. 1963, 17, 245–259. [Google Scholar]
- Muers, M.M.; House, T.U. A simple method for comparing wettability of instant spray dried separated milk powder. In Proceedings of the Copenhagen, Denmark: XVI International Dairy Congress, Copenhagen, Denmark, 3–7 September 1962; Volume 8, p. 299. [Google Scholar]
- ADMI; Standards for Grade for Dry Milk Industry. Bull ADMI: Elmhurst, IL, USA, 1965; Volume 915, pp. 25–28.
- Schuck, P.; Dolivet, D.; Jeantet, R. Analytical Methods for Food and Dairy Powder; John Wiley & Sons, Ltd.: West Sussex, UK, 2012. [Google Scholar]
- Shilpashree, B.G.; Arora, S.; Chawla, P.; Vakkalagadda, R.; Sharma, A. Succinylation of Sodium Caseinate and Its Effect on Physicochemical and Functional Properties of Protein. LWT 2015, 64, 1270–1277. [Google Scholar] [CrossRef]
- Mann, B.; Malik, R.C. Studies on Some Functional Characteristics of Whey Protein-Polysaccharide Complex. J. Food Sci. Technol. 1996, 33, 202–206. [Google Scholar]
- Patil, A.T.; Meena, G.S.; Upadhyay, N.; Khetra, Y.; Borad, S.G.; Singh, A.K. Effect of Change in PH, Heat Treatment and Diafiltration on Properties of Medium Protein Buffalo Milk Protein Concentrate. J. Food Sci. Technol. 2019, 56, 1462–1472. [Google Scholar] [CrossRef]
- Salami, M.; Moosavi-Movahedi, A.A.; Moosavi-Movahedi, F.; Ehsani, M.R.; Yousefi, R.; Farhadi, M.; Niasari-Naslaji, A.; Saboury, A.A.; Chobert, J.-M.; Haertlé, T. Biological Activity of Camel Milk Casein Following Enzymatic Digestion. J. Dairy Res. 2011, 78, 471–478. [Google Scholar] [CrossRef]
- Zhang, D.; Hamauzu, Y. Phenolics, ascorbic acid, carotenoids and antioxidant activity of broccoli and their changes during conventional and microwave cooking. Food Chem. 2004, 88, 503–509. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Sharma, H.; Singh, A.K.; Borad, S.; Deshwal, G.K. Processing Stability and Debittering of Tinospora cordifolia (Giloy) Juice Using Ultrasonication for Potential Application in Foods. LWT 2021, 139, 110584. [Google Scholar] [CrossRef]
- ISO 15885/IDF184:2002; Milk Fat-Determination of Fatty Acid Composition by Gas-Liquid Chromatography. International Organization for Standardization: Geneva, Switzerland, 2002.
- Patil, A.T.; Meena, G.S.; Upadhyay, N.; Khetra, Y.; Borad, S.; Singh, A.K. Production and Characterization of Milk Protein Concentrates 60 (MPC60) from Buffalo Milk. LWT 2018, 91, 368–374. [Google Scholar] [CrossRef]
- Upadhyay, N.; Jaiswal, P.; Jha, S.N. Application of Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR–FTIR) in MIR Range Coupled with Chemometrics for Detection of Pig Body Fat in Pure Ghee (Heat Clarified Milk Fat). J. Mol. Struct. 2018, 1153, 275–281. [Google Scholar] [CrossRef]
- Li, Y.; Shahbazi, A.; Williams, K.; Wan, C. Separate and Concentrate Lactic Acid Using Combination of Nanofiltration and Reverse Osmosis Membranes. Appl. Biochem. Biotechnol. 2008, 147, 1–9. [Google Scholar] [CrossRef]
- Rawat, K.; Kumari, A.; Kumar, R.; Ahlawat, P.; Sindhu, S.C. Spray-Dried Lassi Powder: Process Optimisation Using RSM and Physicochemical Properties during Storage at Room and Refrigerated Temperature. Int. Dairy J. 2022, 131, 105374. [Google Scholar] [CrossRef]
- Kumar, P.; Mishra, H.N. Yoghurt Powder—A Review of Process Technology, Storage and Utilization. Food Bioprod. Process. 2004, 82, e133–e142. [Google Scholar] [CrossRef]
- Non-Fat Dry Milk & Skim Milk Powder. Thinkusadairy.Org. Available online: https://www.thinkusadairy.org/products/milk-powders/milk-powder-categories/non-fat-dry-milk-and-skim-milk-powder (accessed on 1 August 2023).
- Dry Whole Milk & Whole Milk Powder. Thinkusadairy.Org. Available online: https://www.thinkusadairy.org/products/milk-powders/milk-powder-categories/dry-whole-milk-and-whole-milk-powder (accessed on 1 August 2023).
- Dry Buttermilk & Buttermilk Powder. Thinkusadairy.Org. Available online: https://www.thinkusadairy.org/products/milk-powders/milk-powder-categories/dry-buttermilk-and-buttermilk-powder (accessed on 1 August 2023).
- Fournaise, T.; Burgain, J.; Perroud, C.; Scher, J.; Gaiani, C.; Petit, J. Impact of Formulation on Reconstitution and Flowability of Spray-Dried Milk Powders. Powder Technol. 2020, 372, 107–116. [Google Scholar] [CrossRef]
- Campbell, L.B.; Pavlasek, S.J. Dairy Products as Ingredients in Chocolate and Confections. Food Technol. 1987, 41, 78–85. [Google Scholar]
- Koc, A.B.; Heinemann, P.H.; Ziegler, G.R. A Process for Increasing the Free Fat Content of Spray-Dried Whole Milk Powder. J. Food Sci. 2003, 68, 210–216. [Google Scholar] [CrossRef]
- Aalaei, K.; Rayner, M.; Sjöholm, I. Chemical Methods and Techniques to Monitor Early Maillard Reaction in Milk Products; A Review. Crit. Rev. Food Sci. Nutr. 2019, 59, 1829–1839. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Andrade, C.; Seiquer, I.; Haro, A.; Castellano, R.; Navarro, M.P. Development of the Maillard Reaction in Foods Cooked by Different Techniques. Intake of Maillard-Derived Compounds. Food Chem. 2010, 122, 145–153. [Google Scholar] [CrossRef]
- Le, T.T.; Bhandari, B.; Holland, J.W.; Deeth, H.C. Maillard Reaction and Protein Cross-Linking in Relation to the Solubility of Milk Powders. J. Agric. Food Chem. 2011, 59, 12473–12479. [Google Scholar] [CrossRef]
- Baldwin, A.J.; Ackland, J.D. Effect of Preheat Treatment and Storage on the Properties of Whole Milk Powder-Changes in Physical and Chemical Properties. Neth. Milk Dairy J. 1991, 45, 169–181. [Google Scholar]
- Sert, D.; Mercan, E.; Aydemir, S.; Civelek, M. Effects of Milk Somatic Cell Counts on Some Physicochemical and Functional Characteristics of Skim and Whole Milk Powders. J. Dairy Sci. 2016, 99, 5254–5264. [Google Scholar] [CrossRef] [PubMed]
- Stapelfeldt, H.; Bjørn, H.; Skovgaard, I.M.; Skibsted, L.H.; Bertelsen, G. Warmed-over Flavour in Cooked Sliced Beef Chemical Analysis in Relation to Sensory Evaluation. Z. Lebensm. Unters Forch. 1992, 195, 203–208. [Google Scholar] [CrossRef]
- Wade, T.; Beattie, J.K.; Rowlands, W.N.; Augustin, M.-A. Electroacoustic Determination of Size and Zeta Potential of Casein Micelles in Skim Milk. J. Dairy Res. 1996, 63, 387–404. [Google Scholar] [CrossRef]
- Koc, B.; Yilmazer, M.S.; Balkır, P.; Ertekin, F.K. Spray Drying of Yogurt: Optimization of Process Conditions for Improving Viability and Other Quality Attributes. Dry. Technol. 2010, 28, 495–507. [Google Scholar] [CrossRef]
- Szulc, K.; Lenart, A. Effect of Composition on Physical Properties of Food Powders. Int. Agrophys. 2016, 30, 237–243. [Google Scholar] [CrossRef]
- Pugliese, A.; Cabassi, G.; Chiavaro, E.; Paciulli, M.; Carini, E.; Mucchetti, G. Physical Characterization of Whole and Skim Dried Milk Powders. J. Food Sci. Technol. 2017, 54, 3433–3442. [Google Scholar] [CrossRef]
- Kothakota, A.; Kumar, A.; Kumar, M.; Juvvi, P.; Rao, S.; Kautkar, S. Characteristics of Spray Dried Dahi Powder with Maltodextrin as an Adjunct. Int. J. Agric. Environ. Biotechnol. 2014, 7, 849. [Google Scholar] [CrossRef]
- Walstra, P.; Wouters, J.T.M.; Geurts, T.J. Milk Components. Dairy Science and Technology; Taylor and Francis Group/CRC Press: Boca Raton, FL, USA, 2006; pp. 17–108. [Google Scholar]
- Schuck, P. Dehydrated Dairy Products | Milk Powder: Physical and Functional Properties of Milk Powders. In Encyclopedia of Dairy Sciences, 2nd ed.; Fuquay, J.W., Ed.; Academic Press: San Diego, CA, USA, 2011; pp. 117–124. [Google Scholar]
- Zhang, Z.; Goff, H.D. Protein Distribution at Air Interfaces in Dairy Foams and Ice Cream as Affected by Casein Dissociation and Emulsifiers. Int. Dairy J. 2004, 14, 647–657. [Google Scholar] [CrossRef]
- Barbosa-Cánovas, G.V.; Ortega-Rivas, E.; Juliano, P.; Yan, H. Food Powders: Physical Properties, Processing, and Functionality; Kluwer Academic/Plenum Publishers: New York, NY, USA, 2005; Volume 86, pp. 71–75. [Google Scholar]
- Koç, B.; Sakin-Yılmazer, M.; Kaymak-Ertekin, F.; Balkır, P. Physical Properties of Yoghurt Powder Produced by Spray Drying. J. Food Sci. Technol. 2014, 51, 1377–1383. [Google Scholar] [CrossRef]
- Carr, R.L. Evaluating Flow Properties of Solids. Chem. Eng. 1965, 18, 163–168. [Google Scholar]
- Fang, Y.; Selomulya, C.; Chen, X.D. On Measurement of Food Powder Reconstitution Properties. Dry. Technol. 2007, 26, 3–14. [Google Scholar] [CrossRef]
- Kelly, A.L.; O’connell, J.E.; Fox, P.F. Manufacture and Properties of Milk Powder. In Advanced Dairy Chemistry-1: Proteins; Kluwer Acad/Plenum: New York, NY, USA, 2003; pp. 1027–1054. [Google Scholar]
- Pimentel, L.; Gomes, A.; Pintado, M.; Rodríguez-Alcalá, L.M. Isolation and Analysis of Phospholipids in Dairy Foods. J. Anal. Methods Chem. 2016, 2016, 9827369. [Google Scholar] [CrossRef]
- Tamime, A.Y. Dairy Fats and Related Products; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Ji, J.; Fitzpatrick, J.; Cronin, K.; Crean, A.; Miao, S. Assessment of Measurement Characteristics for Rehydration of Milk Protein Based Powders. Food Hydrocoll. 2016, 54, 151–161. [Google Scholar] [CrossRef]
- Schokker, E.P.; Church, J.S.; Mata, J.P.; Gilbert, E.P.; Puvanenthiran, A.; Udabage, P. Reconstitution Properties of Micellar Casein Powder: Effects of Composition and Storage. Int. Dairy J. 2011, 21, 877–886. [Google Scholar] [CrossRef]
- Singh, H.; Newstead, D. Aspects of Proteins in Milk Powder Manufacture. In Advanced Dairy Chemistry-1: Proteins; Fox, P.F., Ed.; Elsevier Science Publishers Ltd.: London, UK, 1992; pp. 735–765. [Google Scholar]
- Zayas, J.F. Water Holding Capacity of Proteins. In Functionality of Proteins in Food; Springer: Berlin, Germany, 1997; pp. 76–127. [Google Scholar]
- Knightbridge, J.P.; Goldman, A. Water Absorptive Capacity of Dried Milk products. N. Z. J. Dairy Sci. Technol. 1975, 10, 152. [Google Scholar]
- Wagner, I.; Anon, M.C. Influence of Denaturation, Hydrophobicity and Sulfhydryl Content on Solubility and Water Absorbing Capacity of Soy Protein Isolates, I.I. Food Sci. 1990, 55, 765. [Google Scholar] [CrossRef]
- Zayas, J.F. Oil and Fat Binding Properties of Proteins. In Functionality of Proteins in Food; Springer: Berlin, Germany, 1997; pp. 228–259. [Google Scholar]
- Ho, T.M.; Bhandari, B.R.; Bansal, N. Functionality of Bovine Milk Proteins and Other Factors in Foaming Properties of Milk: A Review. Crit. Rev. Food Sci. Nutr. 2022, 62, 4800–4820. [Google Scholar] [CrossRef]
- Singh, H. Functional Properties of Milk Proteins. In Encyclopedia of Dairy Sciences, 2nd ed.; John, W., Fuquay, J.W., Fox, P.F., McSweeney, P.L.H., Eds.; Academic Press: Cambridge, MA, USA, 2011; pp. 887–893. [Google Scholar]
- Singh, H.; Ye, A. Interactions and Functionality of Milk Proteins in Food Emulsions. In Milk Proteins; Academic Press: Cambridge, MA, USA, 2020; pp. 467–497. [Google Scholar]
- Zayas, J.F. Emulsifying Properties of Proteins. In Functionality of Proteins in Food; Springer: Berlin, Germany, 1997; pp. 134–215. [Google Scholar]
- Meena, G.S.; Singh, A.K.; Arora, S.; Borad, S.; Sharma, R.; Gupta, V.K. Physico-Chemical, Functional and Rheological Properties of Milk Protein Concentrate 60 as Affected by Disodium Phosphate Addition, Diafiltration and Homogenization. J. Food Sci. Technol. 2017, 54, 1678–1688. [Google Scholar] [CrossRef] [PubMed]
- Wong, P.Y.Y.; Kitts, D.D. A Comparison of the Buttermilk Solids Functional Properties to Nonfat Dried Milk, Soy Protein Isolate, Dried Egg White, and Egg Yolk Powders. J. Dairy Sci. 2003, 86, 746–754. [Google Scholar] [CrossRef]
- Sakin-Yilmazer, M.; Koç, B.; Balkir, P.; Kaymak-Ertekin, F. Rheological Behavior of Reconstituted Yoghurt Powder—An Optimization Study. Powder Technol. 2014, 266, 433–439. [Google Scholar] [CrossRef]
- Seth, D.; Mishra, H.N.; Deka, S.C. Functional and Reconstitution Properties of Spray-Dried Sweetened Yogurt Powder as Influenced by Processing Conditions. Int. J. Food Prop. 2017, 20, 1603–1611. [Google Scholar] [CrossRef]
- Salaün, F.; Mietton, B.; Gaucheron, F. Buffering Capacity of Dairy Products. Int. Dairy J. 2005, 15, 95–109. [Google Scholar] [CrossRef]
- Ha, G.E.; Chang, O.K.; Han, G.S.; Ham, J.S.; Park, B.-Y.; Jeong, S.-G. Comparison of Antioxidant Activities of Hydrolysates of Domestic and Imported Skim Milk Powders Treated with Papain. Korean J. Food Sci. Anim. Resour. 2015, 35, 360–369. [Google Scholar] [CrossRef] [PubMed]
- Rajapakse, N.; Mendis, E.; Jung, W.-K.; Je, J.-Y.; Kim, S.-K. Purification of a Radical Scavenging Peptide from Fermented Mussel Sauce and Its Antioxidant Properties. Food Res. Int. 2005, 38, 175–182. [Google Scholar] [CrossRef]
- Scheidegger, D.; Radici, P.M.; Vergara-Roig, V.A.; Bosio, N.S.; Pesce, S.F.; Pecora, R.P.; Romano, J.C.P.; Kivatinitz, S.C. Evaluation of Milk Powder Quality by Protein Oxidative Modifications. J. Dairy Sci. 2013, 96, 3414–3423. [Google Scholar] [CrossRef]
- Bansal, V.; Premi, M.; Sharma, H.K.; Nanda, V. Compositional, Physical, Functional Attributes and Flow Characterization of Spray-Dried Skim Milk Powder Enriched with Honey. J. Food Meas. Charact. 2017, 11, 1474–1485. [Google Scholar] [CrossRef]
- Zivkovic, J.; Mujic, I.; Zekovic, Z.; Vidovic, S.; Mujic, A.; Jokic, S. Radical Scavenging, Antimicrobial Activity and Phenolic Content of Castanea Sativa Extracts/Uklanjanje Radikala, Antimikrobna Aktivnost i Sadrzaj Fenolnih Materija Castanea Sativa Ekstrakata. J. Cent. Eur. Agric. 2009, 10, 175–182. [Google Scholar]
- Taylor, M.J.; Richardson, T. Antioxiodant Activity of Skim Milk: Effect of Heat and Resultant Sulfhydryl Groups. J. Dairy Sci. 1980, 63, 1783–1795. [Google Scholar] [CrossRef]
- Tong, L.M.; Sasaki, S.; McClements, D.J.; Decker, E.A. Mechanisms of the Antioxidant Activity of a High Molecular Weight Fraction of Whey. J. Agric. Food Chem. 2000, 48, 1473–1478. [Google Scholar] [CrossRef] [PubMed]
- Sarmadi, B.H.; Ismail, A. Antioxidative peptides from food proteins: A review. Peptides 2010, 31, 1949–1956. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Kumari, P.; Nayan, V.; Sonali, T.; Legha, R.A.; Gautam, U.; Pal, Y.; Tripathi, H.; Tripathi, B.N. Estimation of Antioxidant Potential of Indigenous Halari and French Poitu Donkey Milk by Using the Total Antioxidant Capacity and Ferric Reducing Antioxidant Power Essay. J. Dairy. Foods Home Sci. 2019, 38, 307–310. [Google Scholar] [CrossRef]
- Milinčić, D.D.; Kostić, A. Ž.; Gašić, U.M.; Lević, S.; Stanojević, S.P.; Barać, M.B.; Tešić, Ž.L.; Nedović, V.; Pešić, M.B. Skimmed Goat’s Milk Powder Enriched with Grape Pomace Seed Extract: Phenolics and Protein Characterization and Antioxidant Properties. Biomolecules 2021, 11, 965. [Google Scholar] [CrossRef]
- Oconnell, J.E.; Fox, P.F. Significance and applications of phenolic compounds in the production and quality of milk and dairy products: A review. Int. Dairy J. 2001, 11, 103–120. [Google Scholar] [CrossRef]
- Olagaray, K.E.; Brouk, M.J.; Mamedova, L.K.; Sivinski, S.E.; Liu, H.; Robert, F.; Dupuis, E.; Zachut, M.; Bradford, B.J. Dietary Supplementation of Scutellaria Baicalensis Extract during Early Lactation Decreases Milk Somatic Cells and Increases Whole Lactation Milk Yield in Dairy Cattle. PLoS ONE 2019, 14, e0210744. [Google Scholar] [CrossRef]
- Aguiar, S.C.; Cottica, S.M.; Boeing, J.S.; Samensari, R.B.; Santos, G.T.; Visentainer, J.V.; Zeoula, L.M. Effect of Feeding Phenolic Compounds from Propolis Extracts to Dairy Cows on Milk Production, Milk Fatty Acid Composition, and the Antioxidant Capacity of Milk. Anim. Feed Sci. Technol. 2014, 193, 148–154. [Google Scholar] [CrossRef]
- Tilahun, M.; Zhao, L.; Sun, L.; Shen, Y.; Ma, L.; Callaway, T.R.; Xu, J.; Bu, D. Fresh Phyllanthus Emblica (Amla) Fruit Supplementation Enhances Milk Fatty Acid Profiles and the Antioxidant Capacities of Milk and Blood in Dairy Cows. Antioxidants 2022, 11, 485. [Google Scholar] [CrossRef]
- Marconi, E.; Panfili, G. Chemical Composition and Nutritional Properties of Commercial Products of Mare Milk Powder. J. Food Compost. Anal. 1998, 11, 178–187. [Google Scholar] [CrossRef]
- Health & Nutrition. Thinkusadairy.Org. Available online: https://www.thinkusadairy.org/products/milk-powders/health-and-nutrition (accessed on 1 August 2023).
- Germani, A.; Luneia, R.; Nigro, F.; Vitiello, V.; Donini, L.M.; del Balzo, V. The Yogurt Amino Acid Profile’s Variation during the Shelf-Life. Ann. Ig. 2014, 26, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Faix, O. Fourier Transform Infrared Spectroscopy. In Methods in Lignin Chemistry; Springer: Berlin/Heidelberg, Germany, 1992; pp. 83–109. [Google Scholar]
- Song, K. Micro-and Nano-Fillers Used in the Rubber Industry. In Progress in Rubber Nanocomposites; Woodhead Publishing: Sawston, UK, 2017; pp. 41–80. [Google Scholar]
- Lei, Y.; Zhou, Q.; Zhang, Y.-L.; Chen, J.-B.; Sun, S.-Q.; Noda, I. Analysis of Crystallized Lactose in Milk Powder by Fourier-Transform Infrared Spectroscopy Combined with Two-Dimensional Correlation Infrared Spectroscopy. J. Mol. Struct. 2010, 974, 88–93. [Google Scholar] [CrossRef]
- Bunaciu, A.A.; Udriştioiu, E.G.; Aboul-Enein, H.Y. X-Ray Diffraction: Instrumentation and Applications. Crit. Rev. Anal. Chem. 2015, 45, 289–299. [Google Scholar] [CrossRef]
- Jouppila, K.; Kansikas, J.; Roos, Y.H. Glass Transition, Water Plasticization, and Lactose Crystallization in Skim Milk Powder. J. Dairy Sci. 1997, 80, 3152–3160. [Google Scholar] [CrossRef]
- Nijdam, J.; Ibach, A.; Eichhorn, K.; Kind, M. An X-ray Diffraction Analysis of Crystallised Whey and Whey-Permeate Powders. Carbohydr. Res. 2007, 342, 2354–2364. [Google Scholar] [CrossRef] [PubMed]
- Fries, D.C.; Rao, S.T.; Sundaralingam, M. Structural Chemistry of Carbohydrates. III. Crystal and Molecular Structure of 4-O-β-D-Galactopyranosyl-α-D-Glucopyranose Monohydrate (α-Lactose Monohydrate). Acta Crystallogr. B 1971, 27, 994–1005. [Google Scholar] [CrossRef]
- Buma, T.J.; Wiegers, G.A. X-Ray Powder Patterns of Lactose and Unit Cell Dimensions of Beta-Lactose. Neth. Milk Dairy J. 1967, 21, 208–210. [Google Scholar]
- Simpson, T.D.; Parrish, F.W.; Nelson, M.L. Crystalline Forms of Lactose Produced in Acidic Alcoholic Media. J. Food Sci. 1982, 47, 1948–1951. [Google Scholar] [CrossRef]
Parameters | Sour Buttermilk (SBM) | Defatted Sour Buttermilk (DSBM) | Concentrated Sour Buttermilk (CSBM) | |
---|---|---|---|---|
TS (%) | 4.13 ± 0.14 b | 3.55 ± 0.12 c | 12.86 ± 0.31 a | |
Fat (%) | 0.72 ± 0.29 a | 0.18 ± 0.17 b | 0.67 ± 0.28 a | |
Protein (%) | 1.88 ± 0.19 b | 1.91 ± 0.10 b | 6.93 ± 0.39 a | |
Lactose (%) | 1.09 ± 0.33 b | 1.15 ± 0.24 b | 4.08 ± 0.30 a | |
Ash (%) | 0.23 ± 0.12 b | 0.28 ± 0.13 b | 0.98 ± 0.09 a | |
Acidity (% LA) | 0.70 ± 0.08 b | 0.70 ± 0.06 b | 2.44 ± 0.15 a | |
pH, 20 °C | 3.95 ± 0.07 a | 3.95 ± 0.07 a | 3.28 ± 0.09 b | |
ζ-potential (mV) (100× dilution), 25 °C | 11.20 ± 6.15 a | 13.85 ± 1.14 a | 8.88 ± 2.14 b | |
Color values | L* | 76.38 ± 0.20 c | 76.93 ± 0.22 b | 80.39 ± 0.44 a |
a* | −1.96 ± 0.04 b | −2.18 ± 0.15 c | 0.12 ± 0.85 a | |
b* | 8.37 ± 0.50 b | 8.19 ± 0.45 c | 14.12 ± 0.06 a | |
Apparent viscosity (ƞAppa.), 100 s−1 (mPa s), at 20 °C | 14.10 ± 1.22 b | 8.47 ± 0.32 c | 90.66 ± 2.08 a |
Parameters | SBMP | ||
---|---|---|---|
Chemical composition and physical properties | TS (%) | 97.82 ± 0.18 | |
Fat (%) | 5.04 ± 0.23 | ||
Protein (%) | 53.64 ± 0.31 | ||
Lactose (%) | 31.34 ± 0.60 | ||
Ash (%) | 7.48 ± 0.12 | ||
Free fat (% of total fat) | 1.23 ± 0.13 | ||
Hydroxymethylfurfural (µmol/kg of powder) | 1085.17 ± 1.61 | ||
2-thiobarbituric acid, TBA (µg/mL) | 0.12 ± 0.03 | ||
Acidity (% LA) | 1.80 ± 0.12 | ||
pH (10% w/v solution), at 20 °C | 4.22 ± 0.10 | ||
ζ-potential (mV) (1000× dilution) | −0.18 ± 0.17 | ||
Water activity (aw) | 0.25 ± 0.04 | ||
Color values | L* | 74.69 ± 0.27 | |
a* | 1.65 ± 0.15 | ||
b* | 26.62 ± 0.14 | ||
Bulk and flow properties | Interstitial air content (cm3 100 g−1 powder) | 74.62 ± 3.68 | |
Occluded air content (cm3 100 g−1 powder) | 8.41 ± 0.57 | ||
Loose bulk density (g cm−3) | 0.53 ± 0.10 | ||
Packed bulk density (g cm−3) | 0.66 ± 0.14 | ||
Particle density (g cm−3) | 1.30 ± 0.16 | ||
Porosity (%) | 59.36 ± 0.31 | ||
Flowability (angle of repose, θ°) | 28.36 ± 0.48 | ||
Hausner ratio (HR) | 1.23 ± 0.01 | ||
Compressibility index (CI) | 18.83 ± 0.60 | ||
Reconstitution and functional properties | Wettability (s) | 03.00 ± 0.00 | |
Dispersibility (%) | 73.74 ± 0.70 | ||
Solubility index (mL per 100 mL reconstituted) | 71.50 ± 0.20 | ||
Water binding capacity (g per g of protein) | 4.34 ± 0.63 | ||
Oil binding capacity (g per g of protein) | 2.77 ± 0.46 | ||
Foaming capacity (%) | 22.18 ± 2.82 | ||
Foam stability (%) | 14.32 ± 0.90 | ||
Emulsion capacity (%) | 32.05 ± 0.24 | ||
Emulsion stability (%) | 80.70 ± 0.79 | ||
ƞAppa.(mPa s), at 100 s−1 and 20 °C | 4.09 ± 0.74 | ||
Particle size distribution | d10 | 33.43 ± 0.11 | |
d50 | 69.17 ± 0.32 | ||
d90 | 130.33 ± 2.89 | ||
D3,2 | 91.23 ± 3.38 | ||
D4,3 | 4.26 ± 0.01 | ||
Span (%, dispersion index) | 1.06 ± 0.01 | ||
SSA (m2 kg−1) | 65.83 ± 2.47 | ||
Antioxidant properties | ABTS (% RSA) | 50.65 ± 0.47 | |
DPPH (%) | 120.19 ± 0.42 | ||
FRAP (µM/mL) | 110.13 ± 0.64 | ||
Total phenolic content (µg/mL) | 1699 ± 6.08 | ||
Flavonoids (µg/mL) | 0.85 ± 0.12 |
Types | Fatty Acids | % Total Fatty Acids |
---|---|---|
Short-chain fatty acids | Butyric acid (C4:0) | 4.58 |
Caproic acid (C6:0) | 3.28 | |
Caprylic acid (C8:0) | 1.42 | |
Capric acid (C10:0) | 2.90 | |
Medium-chain fatty acids | Lauric acid (C12:0) | 3.57 |
Myristic acid (C14:0) | 15.88 | |
Myristoleic acid (C14:1) # | 0.87 | |
Long-chain fatty acids | Pentadecylic acid (C15:0) * | 1.45 |
Palmitic acid (C16:0) * | 46.89 | |
Hexadecenoic acid (C16:1) | 2.33 | |
Margaric acid (C17:0) * | 0.68 | |
Stearic acid (C18:0) * | 13.47 | |
Oleic acid (C18:1) # | 0.434 | |
Linoleic acid (C18:2) # | 1.32 | |
Linolenic acid(C18:3) # | 0.47 | |
Arachidic acid (C20:0) * | 0.46 |
Name | Peak Area mAU * min | Area Ratio (Std/IS) | Mg per g of Powder | mg per g of Protein |
---|---|---|---|---|
Argenine | 2.2171 | 0.122 | 2.12 | 3.95 |
Serine | 0.0127 | 0.274 | 2.68 | 4.99 |
Aspartic acid | 0.008 | 0.361 | 5.41 | 10.08 |
Glutamic acid | 3.4555 | 0.190 | 2.97 | 5.54 |
Threonine * | 0.0002 | 0.153 | 2.07 | 3.85 |
Glycine | 3.0864 | 0.169 | 1.24 | 2.31 |
Alanine | 51.474 | 2.824 | 27.17 | 50.65 |
Proline | 0.733 | 0.040 | 0.45 | 0.84 |
Methionine * | 0.4738 | 0.026 | 0.40 | 0.75 |
Valine * | 3.1443 | 0.172 | 1.97 | 3.68 |
Phenylalanine * | 118.2526 | 6.487 | 120.18 | 224.04 |
Iso-Leucine * | 30.1234 | 1.652 | 23.74 | 44.26 |
Leucine * | 2.0047 | 0.110 | 1.50 | 2.80 |
Cystine | 1.9833 | 0.109 | 16.04 | 29.91 |
Histidine * | 5.677 | 0.311 | 2.62 | 4.88 |
Lysine * | 0.3186 | 0.017 | 0.13 | 0.24 |
Nor-Leucine (IS) | 18.23 | 1.000 | 131.74 | 245.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manik, S.; Meena, G.S.; Singh, A.K.; Khetra, Y.; Singh, R.; Arora, S.; Vishweswaraiah, R.H. Valorization of Sour Buttermilk (A Potential Waste Stream): Conversion to Powder Employing Reverse Osmosis and Spray Drying. Membranes 2023, 13, 799. https://doi.org/10.3390/membranes13090799
Manik S, Meena GS, Singh AK, Khetra Y, Singh R, Arora S, Vishweswaraiah RH. Valorization of Sour Buttermilk (A Potential Waste Stream): Conversion to Powder Employing Reverse Osmosis and Spray Drying. Membranes. 2023; 13(9):799. https://doi.org/10.3390/membranes13090799
Chicago/Turabian StyleManik, Subhadip, Ganga Sahay Meena, Ashish Kumar Singh, Yogesh Khetra, Richa Singh, Sumit Arora, and Raghu H. Vishweswaraiah. 2023. "Valorization of Sour Buttermilk (A Potential Waste Stream): Conversion to Powder Employing Reverse Osmosis and Spray Drying" Membranes 13, no. 9: 799. https://doi.org/10.3390/membranes13090799
APA StyleManik, S., Meena, G. S., Singh, A. K., Khetra, Y., Singh, R., Arora, S., & Vishweswaraiah, R. H. (2023). Valorization of Sour Buttermilk (A Potential Waste Stream): Conversion to Powder Employing Reverse Osmosis and Spray Drying. Membranes, 13(9), 799. https://doi.org/10.3390/membranes13090799