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Abstract: In the field of liquid filtration, the realization of gas throughput-free cake filtration has been
investigated for a long time. Cake filtration without gas throughput would lead to energy savings in
general and would reduce the mechanically achievable residual moisture in filter cakes in particular.
The reason why gas throughput-free filtration could not be realized with fabrics so far is that the
achievable pore sizes are not small enough, and that the associated capillary pressure is too low for
gas throughput-free filtration. Microporous membranes can prevent gas flow through open pores
and cracks in the filter cake at a standard differential pressure for cake filtration of 0.8 bar due to their
smaller pore size. Since large-scale implementation with membranes was not yet successful due to
their inadequate mechanical strength, this work focuses on the development and testing of a novel
composite material. It combines the advantages of gas throughput-free filtration using membranes
with the mechanical stability of fabrics. For the production of the composites, a paste dot coating
with adhesive, which is a common method in the textile industry, was used. Based on filtration
experiments, delamination and tensile tests, as well as µCT analysis, it is shown that this method is
suitable for the production of composite filter materials for gas throughput-free cake filtration.

Keywords: cake filtration; cake deliquoring; membrane; composite; adhesive

1. Introduction

Cake filtration is a process to separate particles from liquid suspensions. The filtration
can be performed with filters such as rotary drum filters and is driven by a vacuum inside
the filter drum. The basic principle of the separation mechanism is that the filter drum
covered with a filter medium rotates in a stirred suspension, the particles are deposited
on the surface in the form of a filter cake and the filtrate is continuously discharged from
the filter drum. After particle separation, the filter cake is washed, if necessary, dewatered
and then ejected [1,2]. Filter cakes resulting from the filtration of concentrated suspensions
in continuously operating filters are often dried thermally afterwards to obtain the dry
product. This is the most expensive process step, because the remaining liquid has to
be evaporated by means of heat supply. Filter cake deliquoring, such as gas differential
pressure dewatering, can reduce the moisture in the filter cake and thus the energy required
for thermal drying [3,4]. That is why the wish for gas throughput-free deliquoring on
a large industrial scale has existed for decades. While the properties required for the filter
medium and the operating parameters for the filter apparatus are sufficiently well known,
the transition from a laboratory scale to larger industrially relevant scales has not been
achieved, even at the present time [5–7]. In gas differential pressure deliquoring, the liquid
present in the pore system of the filter cake is removed after overcoming the inlet capillary
pressure, but for fine-grained cohesive particle systems, emptied pores and cracks in the
filter cake occur and lead to an undesired gas throughput [8–10]. Figure 1 schematically
shows the difference between filter cake deliquoring with gas throughput using fabric
as a filter medium (Figure 1a) and filter cake deliquoring without gas throughput using
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a membrane–fabric composite (Figure 1b). Here,
.

VG describes the gas flow, and
.

VL describes
the liquid flow.
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Figure 1. Filter cake deliquoring with (a) and without (b) gas throughput.

The gas throughput has economic and technical disadvantages, as it must be com-
pensated by the vacuum pump. Hence, gas throughput-free filtration would reduce not
only the residual moisture in the filter cake, but also the necessary energy for thermal
drying and pump losses due to vacuum breakdown. It would even be possible to operate
the filtration completely without a vacuum pump and only by a hydrostatically induced
pressure difference [6]. It has been shown in the past that the consolidation of the filter
cake can lead to reduced cracking and also less residual moisture in the filter cake [11,12].
Consolidation results in a higher packing density of the particles, which makes it more
difficult for cracks to form in the filter cake and thus also reduces the pore space between
the particles in which water can accumulate. However, such technical adaptations of the
filter apparatus would not be necessary when realizing gas throughput-free filtration by
means of filter elements. Usually for the filtration of numerous particle systems, a wide
variety of filter media with different mesh and pore sizes are used, which can be subdivided
in general into woven fabrics, nonwovens and membranes [13,14]. While membranes are
used primarily for separating the finest particle sizes, woven fabrics are designed to have
long service lives and high filtrate throughputs. Due to their high mechanical strength,
they are common filter materials for drum filters. It has already been shown that besides
the separation of the finest particle fractions, microporous membranes based on polymers
or ceramics can ensure gas throughput-free cake filtration [15–18]. These microporous
properties are the basis of why the composite filter medium ensures filtration without
gas throughput (Figure 1b). The necessary capillary pressure, respectively the nominal
pore size of the membrane required for gas throughput-free filtration can be estimated
(Equation (1)).

pk = (4·γ·cos δ)·d−1 (1)

Here, γ is the surface tension, δ is the wetting angle, d is the pore diameter, and
pk is the capillary pressure [19]. If the membrane capillary pressure is higher than usual
differential pressures for filter cake dewatering (0.8 bar), the liquid can be removed from
the filter cake but not from the membrane pores. Therefore, the result is gas throughput-free
cake filtration [5,7,18]. However, the disadvantage is that microporous membranes do not
have sufficient mechanical strength to be used on large industrial drum filters, contrary to
fabrics. On the other hand, it is not possible to produce fabrics or nonwoven materials with
the pore sizes required for gas throughput-free cake filtration as these are limited due to the
production process and especially the fiber thicknesses used. In this work, a filter medium
made of a woven filter cloth and a microporous membrane is presented that can avoid
gas throughput and has the potential to quickly go beyond the laboratory scale through
the use of point-bonded lamination processes [20]. On the basis of filtration experiments,
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delamination tests, tensile tests and µCT analysis, it has been shown that this method is
generally suitable for the production of composite filter materials for gas throughput-free
cake filtration. With its microporous properties, the membrane is responsible for preventing
gas throughput and will also predominantly define the filtration properties in general. The
supporting fabric underneath stabilizes the membrane and thus should finally enable its
implementation on large-scale apparatuses.

2. Materials and Methods
2.1. Filter Media

For the membrane–fabric composite filter media, two different fabrics (SEFAR TETEX
MULTI 05-4-660 K PHARMA and SEFAR TETEX MULTI 05-130-200 W) and a microporous
membrane (3M MicroPES 12F) were used. The composite based on the first aforementioned
fabric was primarily used to gain experience and to be able to test the handling of the
experiments beforehand. The second was used for the final composite prototype. The
fabrics are multifilaments made of polypropylene (PP) and differ in their thickness, area
weight and permeability. The membrane is made of polyether sulfone (PES). With a bubble
point of 1.05 bar in water, the membrane is suitable for ensuring gas throughput-free
filtration and deliquoring at a standard differential pressure of 0.8 bar. Due to its small
thickness, the membrane provides simultaneous high throughputs for its nominal pore size
of approx. 1 µm [21]. The properties of the fabrics and the membrane are summarized in
Tables 1 and 2. The values listed there were taken from the data sheets of the respective
manufacturers.

Table 1. Properties of the fabrics.

Product Name Material Thickness/µm Area Weight/g·m−2 Permeability/
(L/m2)/s at 200 Pa

05-4-660 K PHARMA PP 1060 660 4

05-130-200 W PP 450 200 167

Table 2. Properties of the membrane.

Product Name Material Thickness/µm Bubble Point (in Water)/bar Transmembrane Flow/
mL/(min cm2 bar)

MicroPES 12F PES 110 ± 10 1.05 ± 0.25 260

In Figure 2, microscope images of the cross-sectional area of the fabric 05-4-660 K
PHARMA (Figure 2a) and of the fabric 05-130-200 W (Figure 2b) are shown. In Figure 3,
an SEM image of the surface of the membrane MicroPES 12F is shown.
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2.2. Paste Dot Coating with Adhesive

In general, paste dot coating with adhesive or point-bonding is a manufacturing
process that is well known in the textile industry and is already being applicable on a large
industrial scale [22–26]. This process is used to join two or more layers of textile materials
together by applying adhesive dots. The adhesive dots are applied on one side of the
textile by means of a rotating screen, while the textile layer to be joined is added and
pressed on afterward [27]. The amount of adhesive can be adjusted by the hole size of
the screen, the squeeze pressure, the rotation speed of the screen and the viscosity of the
adhesive [23]. Paste dot coating is particular used for manufacturing breathable textiles
and sportswear because the advantage of point-bonding is that the quantity of adhesive
application simultaneously influences the ratio of joint strength to free area [28]. This
correlation is also investigated in the production of the membrane–fabric composites
for gas throughput-free cake filtration. In addition to the adhesion properties between
membrane and fabric, the flow resistance in particular is decisive when used for filtration
applications. Since the flow resistance should be directly related to the free area and the
amount of adhesive blocking the membrane and fabric pores, the best possible balance
must be found between these parameters. A schematic of the membrane–fabric composites
produced is shown in Figure 4. For the bonding, a polyurethane hotmelt adhesive was used.
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Figure 4. Schematic structure of the membrane–fabric composite produced by paste dot coating
with adhesive.

The actual production of the composite materials was carried out by the company
Trans-Textil GmbH, Freilassing, Germany, which uses this process for the production of
textiles and clothes. The sample material was made from DIN A4-sized pieces of the fabrics
05-4-660 K PHARMA and 05-130-200 W and the membrane MicroPES 12F.

2.3. Determination of the Filter Medium Resistance

The challenge in manufacturing the composites is that the adhesive dots should not
significantly increase the filter medium resistance RM by blocking individual pores to
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ensure maximum possible filtrate flow. Compared to woven filter elements, membranes
already have a lower maximum possible flow rate due to their smaller pore sizes, which
should not be further minimized. Otherwise, the lack of throughput alone would make
large-scale implementation unprofitable. In order to determine the influence of the surface
coverage, as well as the associated pore blockage caused by the adhesive dots on the filter
medium resistance, flow-through tests were carried out with the pressurized filter cell
according to VDI 2762 with 250 mL demineralized (DI) water at a differential pressure
of 0.8 bar [29]. To ensure an accurate determination, the improved experimental setup
with respect to the measurement resolution developed at the institute was used [30]. The
schematic structure of the improved pressurized filter cell is shown in Figure 5.
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Compared to the standard measuring setup, solenoid valves are used here to enable
precise pressure application and thus a precise start of the actual filtration. The balance
(WIPOTEC EC3000) also offers an increased resolution of 0.02 g at time intervals of 10 ms.
The effects of the resolution improvement on the filtration results, as well as a detailed
description of the measurement setup can be taken from the published paper [30]. During
the measurement the filtrate mass is recorded, converted into volume V over time t, and
plotted in a t/V-V diagram. From the slope and the y-axis intercept of the resulting straight
line, the filter medium resistance RM is determined using Equation (2) from the VDI
2762 [29]. Here, η is the dynamic viscosity of water, k is the concentration parameter, ∆p is
the set differential pressure, A is the filter area in the pressurized filter cell, and αH is the
filter cake resistance, which can only be determined for particle filtrations.

t
V

=
k·η·αH

2·A2·∆p
V +

η·RM
A·∆p

(2)

2.4. Micro-Computed Tomography Imaging/Operating Principle and Image Creation

Micro-computed tomography (µCT) images were made to localize the exact position
of the adhesive dots in the composite material. In general, computed tomography is used to
examine objects to obtain information about their composition and internal structure [31].
Computed tomography works with X-rays that irradiate the object. The X-rays interact
with the materials of the sample and a detector measures the transmission of the X-ray
beams [32]. In contrast to radiography, the sample in µCT scans is positioned on a ro-
tary table, which rotates the sample 360◦ in small steps during the measurement. This
creates a large number of radiographic images in small angular steps. These projection
images are three-dimensionally reconstructed so that a volumetric image of the sample is
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calculated [33,34]. The evaluation of the raw data of the measurement is carried out using
sectional images of the reconstructed volume, which show pixels with gray values. The
brightness of the gray values correlates with the attenuation of the X-rays measured at
the detector and caused by interaction with the sample material. This correlation can be
described via the Beer–Lambert law. It describes the attenuation of the radiation intensity
I(x) from the initial intensity I0 by an exponential decrease with the thickness of the sample
x and the attenuation coefficient µ [32,35].

I(x) = I0e−µx

The µCT sectional images consist of gray values that represent the respective locally
prevailing attenuation coefficient µ. The dependence of the attenuation coefficient and the
direct proportionality to the material density is used in the subsequent evaluation of the
sectional images for segmentation. The µCT images from the composite filter media were
taken using a TomoScope® L 300 (Werth Messtechnik GmbH, Giessen, Germany) with
a transmission X-ray tube and a 4K detector with 100 µm pixels. The µCT measurements
were made at X-ray tube parameters of 90 kV and 40 W. The integration time was 134 ms.
Three measurements were repeated per rotation step to average the signal. The scanned
volume was 1971 × 1971 × 1282 voxels with a voxel size of 12.32 µm. The specimens had
dimensions of 50 × 70 mm, which is the maximum sample size for that kind of material
that can still be measured well in the µCT used without the loss of resolution. The largest
measuring area possible is necessary to guarantee a statistically reliable statement about the
distribution of the adhesive dots. To verify the set voxel size of 12.32 µm for a sample size
of 50 × 70 mm, µCT images of a small sample were made once with a voxel size of 2.45 µm
and once with a voxel size of 12.32 µm. Both resolutions and the resulting sectional images
were then compared with regard to the total solid area fractions calculated using MATLAB.
An SEM image of a single adhesive dot was also taken and compared to the projection area
of the same adhesive dot from the µCT images to verify the set voxel size again.

2.5. Delamination and Tensile Tests

In order to determine the bond strength between the membrane and the fabric, de-
lamination tests were carried out using a Texture Analyzer TA.XTplus from Stable Micro
Systems, Godalming, UK. The experimental setup for the delamination tests with the
composites is shown in Figure 6a, where F is the applied force.
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Figure 6. Test setup for the delamination (a) and tensile (b) tests, where the applied force F is marked
with a red arrow.

During the testing, the membrane side was attached to the upper clamping jaw, and
the fabric side was attached to the lower clamping jaw, which is statically connected to
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the bottom of the testing machine. Then, the mounted specimen was stretched under
a small load. Using a camera, the detachment of the two layers at the breakage surface was
recorded in parallel with the force and displacement measurement. The obtained breakage
force of the composite was also compared with the breakage force of the membrane, which
was determined via a uniaxial tensile test (Figure 6b). The reason for this is to determine
whether delamination forces in the range of the maximum tensile force of the membrane can
be achieved. This is the limiting factor for testing and real application, as the bond strength
can only be determined if it is below the tensile strengths of the two materials bonded
together. Although a joint strength above the maximum tensile strength of the membrane
would be theoretically possible, it would not play a decisive role for real application cases,
since the membrane itself would fail beforehand and gas throughput would not be reliably
prevented by a damaged membrane layer. All tests were performed at an experimental
speed of 0.1 mm/s. The Texture Analyzer TA.XTplus has a displacement resolution of
1 µm and a force resolution of 1 mN. The specimens were cut out of the bonded composites
at different locations in order to obtain representative samples for the entire lamination
process. The specimens had dimensions of 10 × 50 mm. Delamination tests were performed
for both versions of the point bonded membrane–fabric composites. The sample wide for
the tensile tests was also 10 mm with a free clamping length of 20 mm.

3. Results
3.1. Filter Medium Resistances

The measured filter medium resistances are shown in Figure 7. Here, the abbreviation
“Fabric” stands for the fabric 05-130-200 W; “Fabric + Membrane”, for the fabric 05-130-200
W with the non-bonded membrane (MicroPES 12F) on top; “Membrane”, for the membrane
MicroPES 12F; and “Composite”, for the spot-bonded composite filter media made out of
the fabric 05-130-200 W and the membrane MicroPES 12F.
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Figure 7. Comparison of the filter medium resistances.

As can be seen from the measurement results, the filter medium resistance of the
membrane that is point-bonded to the support fabric is only slightly higher compared to
the filter medium resistance of the membrane lying on the support fabric. Since identical
production batches were used in the selection of the test materials and the flow-through
tests were carried out under identical laboratory conditions, the differences between these
two measuring values can be attributed exclusively to the point-bonding. It can therefore
be stated that the point-bonding has a negligibly influence on the filter medium resistance
overall. The explanation for this could be that during the production of the composite
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material, the adhesive dots were applied in areas that are not relevant to the flow. Thus, the
adhesive dots were most likely placed predominantly on the top of the fibers. Even if the
fabric is a multifilament in which the fabric fibers themselves consist of individual fibers, it
can be assumed that the multifilament fiber itself is not flowed through or, similarly, the
flow rate through the fiber is negligible compared to the flow rate around the fiber. So as
long as the adhesive dots do not block the flow areas between the individual multifilament
fibers, a significant increase in the filter medium resistance is not expected. Since the
membrane used is a microporous membrane in which flow is not limited to the main flow
direction, the adhesive dots can also be flowed around inside the membrane. This could be
another explanation why the flow resistance is not significantly increased.

3.2. Micro-Computed Tomography Analysis
3.2.1. Verification of the Measurement Resolution

To investigate the microstructure of the produced membrane–fabric composite, µCT
measurements were applied, whereby the influence of the used voxel size on the accu-
racy of the microstructure data was first evaluated. To achieve this, a sample of the
membrane with the adhesive dots on the surface, which originated from a previously
performed delamination test according to Section 2.5, was measured with two different
voxel resolutions (2.45 µm and 12.32 µm). In Figure 8 the cross-sectional images of the µCT
measurements are shown with the corresponding solid sample area marked in white. Here,
the Figure 8(1a) shows the cross-sectional image of the sample taken with a voxel size of
2.45 µm, Figure 8(1b) shows the associated marked solid area fraction, Figure 8(2a) shows
the same sample measured with a voxel size of 12.32 µm, and Figure 8(2b) again shows the
associated marked solid area fraction.
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Figure 8. Sectional images of the membrane with adhesive dots on the surface taken at different
resolutions ((1a)—voxel size: 2.45 µm; (2a)—voxel size: 12.32 µm) with the marked solid area fractions
by means of threshold values (1b,2b).

It became clear according to Figure 8 that a smaller voxel size can achieve a higher level
of detail. On the basis of the white marked solid area fractions in Figure 8, the total area
was calculated for comparability purposes. For a set voxel size of 2.45 µm (Figure 8(1b)),
the area is 0.5870 mm2 and 0.6031 mm2 for a set voxel size of 12.32 µm (Figure 8(2b)).
This results in a deviation of 2.67%. In addition, the length of a single adhesive dot was
compared by means of an SEM image with the µCT images taken beforehand. The SEM
image of an adhesive dot is shown in Figure 9.

The surface of the membrane with the adhesive dots on top reconstructed from the
µCT images is shown in Figure 10.

The ImageJ freeware software (version 1.53t) was used to determine the length of the
adhesive dots in each figure (red arrows). On the basis of the measurement results, the
length of the adhesive dot recorded with SEM is 0.707 mm based on the reconstruction of
the µCT 0.661 mm for a voxel size of 12.32 µm and 0.709 mm for a voxel size of 2.45 µm. It
becomes clear that with a smaller voxel size, the length can be determined almost similarly
compared to SEM. In contrast, the length deviation of the same adhesive dot determined
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between the µCT measurements is 6.77%. However, in order to obtain a reliable statement
about the adhesive dot distribution, the largest sample possible should be measured in
the µCT, which is only possible for a specimen size of 50 × 70 mm with a set voxel
size of 12.32 µm. Therefore, the error caused by the reduced resolution can be accepted
in favor of a higher statistical significance. In general, it must be considered that the
deviation between measurements can also be explained by the evaluation method, in
which the boundary between the adhesive and membrane is determined. A generally valid
definition of gray values for the adhesive and membrane is not possible due to the different
measurement principles and interferences in optical measurement methods. However, for
the prevailing adhesive dot sizes in the range of 500–1500 µm, the resulting error arising
from the lower resolution is considered negligible since the statistical resilience of the
adhesive dot distribution is of primary importance.

Membranes 2023, 13, x FOR PEER REVIEW 9 of 17 
 

 

 
Figure 9. Single adhesive dot on the membrane surface recorded with SEM, (red arrow: length of 
the adhesive dot). 

The surface of the membrane with the adhesive dots on top reconstructed from the 
µCT images is shown in Figure 10. 

 
Figure 10. Surface of the membrane with the adhesive dots measured with a voxel size of 12.32 µm 
(a) and with a voxel size of 2.45 µm (b), (red arrow: length of the adhesive dot). 

The ImageJ freeware software (version 1.53t) was used to determine the length of the 
adhesive dots in each figure (red arrows). On the basis of the measurement results, the 
length of the adhesive dot recorded with SEM is 0.707 mm based on the reconstruction of 
the µCT 0.661 mm for a voxel size of 12.32 µm and 0.709 mm for a voxel size of 2.45 µm. 
It becomes clear that with a smaller voxel size, the length can be determined almost simi-
larly compared to SEM. In contrast, the length deviation of the same adhesive dot deter-
mined between the µCT measurements is 6.77%. However, in order to obtain a reliable 
statement about the adhesive dot distribution, the largest sample possible should be meas-
ured in the µCT, which is only possible for a specimen size of 50 × 70 mm with a set voxel 
size of 12.32 µm. Therefore, the error caused by the reduced resolution can be accepted in 
favor of a higher statistical significance. In general, it must be considered that the devia-
tion between measurements can also be explained by the evaluation method, in which the 
boundary between the adhesive and membrane is determined. A generally valid defini-
tion of gray values for the adhesive and membrane is not possible due to the different 
measurement principles and interferences in optical measurement methods. However, for 
the prevailing adhesive dot sizes in the range of 500–1500 µm, the resulting error arising 
from the lower resolution is considered negligible since the statistical resilience of the ad-
hesive dot distribution is of primary importance. 

3.2.2. Determination of the Adhesive Dot Distribution 
To confirm the assumption that the adhesive dots are predominantly located on the 

upstanding fabric fibers, the µCT images of the produced material were evaluated. A 

Figure 9. Single adhesive dot on the membrane surface recorded with SEM, (red arrow: length of the
adhesive dot).

Membranes 2023, 13, x FOR PEER REVIEW 9 of 17 
 

 

 
Figure 9. Single adhesive dot on the membrane surface recorded with SEM, (red arrow: length of 
the adhesive dot). 

The surface of the membrane with the adhesive dots on top reconstructed from the 
µCT images is shown in Figure 10. 

 
Figure 10. Surface of the membrane with the adhesive dots measured with a voxel size of 12.32 µm 
(a) and with a voxel size of 2.45 µm (b), (red arrow: length of the adhesive dot). 

The ImageJ freeware software (version 1.53t) was used to determine the length of the 
adhesive dots in each figure (red arrows). On the basis of the measurement results, the 
length of the adhesive dot recorded with SEM is 0.707 mm based on the reconstruction of 
the µCT 0.661 mm for a voxel size of 12.32 µm and 0.709 mm for a voxel size of 2.45 µm. 
It becomes clear that with a smaller voxel size, the length can be determined almost simi-
larly compared to SEM. In contrast, the length deviation of the same adhesive dot deter-
mined between the µCT measurements is 6.77%. However, in order to obtain a reliable 
statement about the adhesive dot distribution, the largest sample possible should be meas-
ured in the µCT, which is only possible for a specimen size of 50 × 70 mm with a set voxel 
size of 12.32 µm. Therefore, the error caused by the reduced resolution can be accepted in 
favor of a higher statistical significance. In general, it must be considered that the devia-
tion between measurements can also be explained by the evaluation method, in which the 
boundary between the adhesive and membrane is determined. A generally valid defini-
tion of gray values for the adhesive and membrane is not possible due to the different 
measurement principles and interferences in optical measurement methods. However, for 
the prevailing adhesive dot sizes in the range of 500–1500 µm, the resulting error arising 
from the lower resolution is considered negligible since the statistical resilience of the ad-
hesive dot distribution is of primary importance. 

3.2.2. Determination of the Adhesive Dot Distribution 
To confirm the assumption that the adhesive dots are predominantly located on the 

upstanding fabric fibers, the µCT images of the produced material were evaluated. A 

Figure 10. Surface of the membrane with the adhesive dots measured with a voxel size of 12.32 µm (a)
and with a voxel size of 2.45 µm (b), (red arrow: length of the adhesive dot).

3.2.2. Determination of the Adhesive Dot Distribution

To confirm the assumption that the adhesive dots are predominantly located on
the upstanding fabric fibers, the µCT images of the produced material were evaluated.
A sectional image of the membrane–fabric composite with the fabric 05-4-660 K PHARMA
and the membrane MicroPES 12F is shown in Figure 11.

The individual components of the composite material can be well differentiated in
the µCT scan on the basis of the gray value differences. The adhesive dots are highlighted
with red arrows in Figure 11. On the basis of the µCT images, it becomes clear that during
the manufacturing process with the coarser fabric (05-4-660 K PHARMA), the connection
by means of adhesive dots with the membrane was not always ideal due to the strongly
deviating surface structure of the two materials. As long as the adhesive dots are directly
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on top of the multifilament fiber there is no loss of adhesion. However, due to the coarser
weave, the adhesive dots are sometimes placed more laterally on the multifilament fiber.
This increases the distance to the underside of the membrane, which must be bridged by the
adhesive dots to ensure sufficient adhesion. Bridging the distance, and thereby ensuring
bond strength, can be achieved either by increasing the adhesive quantity per dots, by
increasing the quantity of dots per area, or by a combination of both. The µCT images also
show that the adhesive dots spread out along the fiber directions when the second layer is
rolled up. This results in the merging of several small adhesive dots into larger ones on the
fiber tops. When the adhesive is applied and the second layer is pressed on by means of
a roller, it is ensured that the contact pressure acts predominantly on the fabric fibers lying
on top. Thus, when the appropriate amount of adhesive per area is selected the probability
of adhesive dots between the fibers blocking the flow is minimized. Blocking with adhesive
only occurs if too much adhesive or too-high contact pressures prevail and the formation of
a closed adhesive layer is possible. This can also be the case if higher adhesive quantities or
higher contact pressures only prevail locally due to manufacturing tolerances. A sectional
image of the membrane–fabric composite with the fabric 05-130-200 W and the membrane
MicroPES 12F is shown in Figure 12.
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Here, A indicates the area where the adhesive dots are ideally applied to the fiber
on the upper side, and B shows a local spread of the adhesive across three fiber bundles.
When using the fabric 05-130-200 W, it has been shown that a more uniform distribution of
adhesive dots is generally possible due to the previously mentioned effects.

3.3. Image Analysis and Determination of the Surface Coverage by the Adhesive Dots

The emerging gray value differences between fabric, membrane, and adhesive were
used to calculate the percentage distribution of the individual components in relation to the
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entire sample. The calculation was performed by defining the upper and lower threshold
values for the respective gray values of the composite components (Figure 13).
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Figure 13. Defining threshold values for the evaluation of the µCT measurements.

Figure 13 shows an original sectional image of the µCT measurement (top), the same
image with the adhesive points highlighted after the definition of the threshold values
(middle), and the whole solid volume of the sample highlighted (bottom). The obtained
volume fraction of the adhesive in the composite evaluated based on the µCT measurement
is shown in Figure 14.

Membranes 2023, 13, x FOR PEER REVIEW 11 of 17 
 

 

Here, A indicates the area where the adhesive dots are ideally applied to the fiber on 
the upper side, and B shows a local spread of the adhesive across three fiber bundles. 
When using the fabric 05-130-200 W, it has been shown that a more uniform distribution 
of adhesive dots is generally possible due to the previously mentioned effects. 

3.3. Image Analysis and Determination of the Surface Coverage by the Adhesive Dots 
The emerging gray value differences between fabric, membrane, and adhesive were 

used to calculate the percentage distribution of the individual components in relation to 
the entire sample. The calculation was performed by defining the upper and lower thresh-
old values for the respective gray values of the composite components (Figure 13). 

 
Figure 13. Defining threshold values for the evaluation of the µCT measurements. 

Figure 13 shows an original sectional image of the µCT measurement (top), the same 
image with the adhesive points highlighted after the definition of the threshold values 
(middle), and the whole solid volume of the sample highlighted (bottom). The obtained 
volume fraction of the adhesive in the composite evaluated based on the µCT measure-
ment is shown in Figure 14. 

 
Figure 14. Volume fraction of adhesive per sectional image over the entire specimen. 

The calculation of the adhesive proportion was carried out for each individual image. 
Since the cross-sectional images of the specimen show the distance of the set voxel size 
from each other, the area fraction can also be seen as the volume fraction of the adhesive. 
The adhesive volume is therefore the adhesive area multiplied by the depth (one voxel). 

0

5

10

15

0 500 1000 1500 2000

Vo
lu

m
e 

fra
ct

io
n 

/ %

Sectional µCT image / -

Volume fraction adhesive
Mean value

Figure 14. Volume fraction of adhesive per sectional image over the entire specimen.

The calculation of the adhesive proportion was carried out for each individual image.
Since the cross-sectional images of the specimen show the distance of the set voxel size
from each other, the area fraction can also be seen as the volume fraction of the adhesive.
The adhesive volume is therefore the adhesive area multiplied by the depth (one voxel).
From the evaluated data, it becomes clear that a uniform adhesive application has been
achieved during the production of the composite material because the volume fraction only
deviates by a few percent across all cross-sectional images of the specimen. As shown in
Figure 14, the applied adhesive has an average volume fraction of 8% of the total composite
volume, as shown in Figure 13. However, the calculated area fractions in the cross-sections
do not correspond with the covered area from the upstream side. In this case, only the
spreading of the adhesive dots on the fibers is decisive, as it can block the flow directly. For
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this reason, the µCT images were re-evaluated with the projection in the direction of the
membrane surface. This resulted in the surface distribution shown in Figure 15.
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In Figure 15, all areas colored in blue correspond to the adhesive dots, and those in
black represent the free area without adhesive application. The distribution shows that the
adhesive dots are aligned on the respective fibers. The theoretical coverage of the upstream
side by the adhesive dots is almost 50%, but as previously explained, even a high coverage
of the incident flow surface does not significantly hinder the flow resistance as long as they
are not predominantly located in areas relevant for the flow.

3.4. Delamination and Tensile Tests of the Membrane–Fabric Composites

Figure 16 shows a typical force–displacement diagram of the delamination tests de-
scribed in Section 2.5.
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For the evaluation of the individual measurements, the peaks over the measurement
distance were considered and averaged over the number of measurements. The peaks (red
dots in Figure 16) can be assumed to represent the failure of a complete row of adhesive dots
lying next to each other. A series of small force peaks or an associated uniform application of
force is more likely to indicate that individual sections of the adhesive dots failed one after
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the other or that the joint was not optimal at the given point. The results of all delamination
tests are shown in Figure 17.
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Figure 17. Delamination breakage force of the composites measured with the test setup according to
Figure 6a.

The abbreviation “MFC 1” stands for the composite with the fabric 05-4-660 K PHARMA
and the membrane MicroPES 12F; the abbreviation “MFC 2”, for the composite with the
fabric 05-130-200 W and the membrane MicroPES 12F; “e”, for samples taken at the edge;
and “c”, for samples taken at the center. An image of the breakage surface with a SEM
close-up of a single adhesive dot on the membrane side is shown in Figure 18.
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Figure 18. Image of the breakage surface with a SEM image of the adhesive dot.

As can be seen in Figure 17, only slight differences exist between the delamination
breakage forces required to delaminate the composite components at the edge and in the
center of the material exists. This confirms a homogeneous manufacturing process with
an associated uniform distribution of the adhesive dots, as could already be determined
on the basis of the µCT images. Also, the type of fabric, i.e., whether it has a coarse or
finely woven surface structure, has been shown to play a subordinate role with regard to
the adhesion properties as long as the adhesive dots were properly applied. The parallel
recording of the breakage surface with the camera as well as the SEM recording of a single
adhesive dot provided extended information on the adhesion properties. As can be seen in
Figure 18, the detachment of the adhesive dots took place exclusively on the fabric side.
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The adhesion properties of the used polyurethane-based hotmelt adhesive are therefore
better for the PES membrane than for the PP fabric. This also became evident from the
SEM image, which clearly showed that the individual fiber bundles of the multifilament
have been released from the adhesive while the adhesive remains on the membrane. In
Figure 18, it is also clearly visible that the elongated orientation of the adhesive dots on
the underside of the membrane can be attributed to the direction of the fabric fiber at the
corresponding opposite contact point. Hence, the finding that the adhesive dots are located
predominantly on the upper side of the multifilament fibers could be confirmed again. The
results of the tensile tests according to the test setup in Figure 6b are shown in Figure 19.
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Figure 19. Tensile breakage forces of the membrane MicroPES 12F, the fabric 05-130-200 W, and the
composite measured with the test setup according to Figure 6b.

The abbreviation “Membrane” stands for the membrane MicroPES 12F; “Fabric”, for
the fabric 05-130-200 W; and “Composite”, for the composite with the fabric 05-130-200 W
and the membrane MicroPES 12F. As can be seen in Figure 19, the tensile breakage force
of the composite is predominantly influenced by the tensile breakage force of the fabric
used. The resistance of the membrane to mechanical tensile load is several times lower.
This was also the basic assumption and motivation for the production of the composite
materials, which has now been confirmed once again by the measurements. The fact that
the composite has, on average, slightly lower tensile breakage forces than the fabric can be
attributed to either manufacturing tolerances in weaving or minor deviations in cutting the
specimens to size. When comparing the mean values of the delamination breakage force
of the composite “MFC2” in Figure 17 at the edge (1.31 N) and in the center (1.66 N) with
the mean tensile breakage force of the membrane (12.08 N), it becomes clear that further
optimization potential for the bond strength between the membrane and fabric is possible
since maximum delamination breakage forces can only be achieved in the range of the
tensile breakage forces of the weakest component of the composite, i.e., the membrane.

4. Conclusions

For several decades, investigations have been focused on the realization of gas
throughput-free cake filtration, whereby the filter media in particular remains a critical part
for successful large-scale industrial implementation. In this study, a novel membrane–fabric
composite filter medium was developed and tested with the goal of enabling large-scale ap-
plication due to the manufacturing process used. Paste dot coating with adhesive, a known
method in the textile industry, was applied to bond a PES membrane to a PP fabric. The
selected PES membrane ensures continuous cake filtration without gas throughput at
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a standard differential pressure of 0.8 bar and, at the same time, a maximum possible flow
rate for this pore size.

Based on flow through measurements, it was shown that a paste dot coating with
adhesive can be used for filtration applications without significantly hindering the flow.
This is crucial for industrial filtration since membranes generally have a lower flow-through
rate than fabrics due to their smaller pore sizes. Therefore, the maximum possible flow rate
of the membrane should not be significantly reduced by the application of an adhesive.
In the worst-case scenario, flow rates that are too low can make the entire process uneco-
nomical. Why the filter medium resistance is not greatly affected by the adhesive dots
could be explained using the µCT images. After evaluation of the individual µCT sectional
images, it becomes clear that the adhesive dots was able to be predominantly applied to
the fabric fibers standing upwards due to the contact pressure of the application roller. At
these locations, the adhesive dots do not impede the flow since the flow predominantly
passes around the fabric fibers or the flow rate through a multifilament fiber is negligibly
small. Based on the delamination tests carried out, it was also shown that a homogeneous
composite production could be achieved, as the delamination breakage force did not show
any major changes over different samples. The aim behind the production of the composite
material, which was to reinforce the membrane with a fabric, was also demonstrated by
the tensile tests performed. It became clear that the overall strength of the composite was
predominantly influenced by the fabric used. In summary, on the basis of the various
experiments performed, it can be stated that the membrane–fabric composites produced
have the potential to quickly leave the laboratory scale and finally the ensure large-scale
industrial implementation of gas throughput-free cake filtration.

For future membrane–fabric composites, bonding identical material pairings would be
interesting as it can be assumed that bonding a PES fabric to a PES membrane would result
in higher adhesion properties and higher delamination breakage forces. Due to the lack
of availability of PES fabric, this assumption has yet to be investigated in detail because
commercially available fabrics for filtration are predominantly made out of PP. Identical
material combinations would be also beneficial with regard to the chemical resistance of
the membrane–fabric composite since each individual material has different resistances
that must be considered in combination with each other.

The feasibility of a point-bonded membrane–fabric composite and the associated
advantages and challenges in manufacturing, which were discussed in this study, offers
overall the possibility of initiating new product developments for manufacturers of filtration
materials. In terms of further expected cost increases for energy and necessary resource
conservation in general, efforts to apply an industrially applicable filter medium for gas
throughput-free cake filtration should still be regarded as worthwhile.
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