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Abstract: This study explores the development of chitosan-based membranes blended with three
distinct deep eutectic solvents (DESs) for the pervaporation separation of methanol and methyl
tert-butyl ether. DESs were selected for their eco-friendly properties and their potential to enhance
membrane performance. The chitosan (CS) membranes, both crosslinked and non-crosslinked, were
characterized in terms of morphology, chemical composition, wettability, mechanical resistance, and
solvent uptake. Pervaporation tests revealed that incorporating DESs significantly enhanced the
membranes’ selective permeability toward methanol, with up to a threefold increase in separation
efficiency compared to pristine CS membranes. The membranes demonstrated a strong dependence
on feed temperature, with higher temperatures improving permeation flux but reducing separation
factor. Crosslinking with glutaraldehyde further increased membrane selectivity by reducing free
volume into the polymer matrix. These findings underscore the potential of DESs as green additives
for improving the performance of biopolymer membranes, making them promising candidates for
efficient and eco-friendly organic–organic separations.

Keywords: deep eutectic solvents; membranes; pervaporation; chitosan; organic/organic separation

1. Introduction

The preparation of polymeric membranes using more sustainable and environmen-
tally friendly solvents is a highly relevant topic, as evidenced by the growing number of
publications in this area. A series of green solvents, in fact, have been already proposed and
employed with satisfactorily results for the preparation of membranes in different geome-
tries and exhibiting different morphologies [1]. Among them, ionic liquids (ILs) and deep
eutectic solvents (DESs) are considered as a new generation of sustainable solvents that
have been recently explored for the preparation of membranes [2,3]. DESs and ILs share
some comparable physicochemical properties, such as the low vapor pressure, the non-
flammability, the high chemical stability and, in some cases, the solubility in water [4,5]. In
particular, DESs can be typically synthesized from green precursors without the use of any
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additional organic solvent by connecting a hydrogen-bond acceptor (HBA) and a hydrogen-
bond donor (HBD) through hydrogen-bond formation [6,7]. At the same time, DESs are
widely appreciated for their biocompatibility, exceptional biodegradability, reusability, low
preparation cost, and low melting point [8,9]. For these reasons, they have been proposed
for several applications, such as organic reactions [10–12], CO2 adsorption [13], metal
electrodeposition [14], liquid–liquid extraction [15] and biotransformations [16]. In the field
of membrane technology, DESs have been recently used both as polymer solvents [17] and
as liquid additives immobilized within the membrane matrix to enhance its separation
properties [8,18].

Very recently, a DES made of zinc chloride and acetamide was used, for instance,
by Pulyalina et al. [19] as a modifier of membranes based on polyamide-imide (Torlon)
applied in pervaporation (PV). The incorporation of the DES resulted in membranes with
a different morphology (the formation of spherical domains at high DES concentrations)
and improved hydrophilicity. When tested in PV, for a water–isopropanol separation,
DES-based membranes were more permeable to water with respect to pristine Torlon mem-
branes but less selective as a consequence of a more porous architecture. In another work,
Jiang et al. [20] introduced a series of imidazole-based DESs as functional pore-forming
additives into polyethersulfone (PES) membranes. This resulted in the formation of more
porous membranes characterized by a macrovoid type structure in the support layer and a
larger pore size at the membrane surface. Membranes prepared with DESs demonstrated
improved water permeability while maintaining excellent separation performance, with
the lowest rejection rate for bovine serum albumin reaching up to 97.7%.

Over the last decades, chitosan (CS) has been demonstrated to be a great platform to
fabricate high-performance PV membranes due to its highly hydrophilicity. To date, several
concepts of CS-based membranes have been developed using different membrane fabrica-
tion strategies, including polymer blending, composites, and mixed-matrix membranes,
as recently reviewed in detail [21,22]. Interestingly, CS-based membranes have shown
extraordinary capability in separating different solvent mixtures via PV technology, such
as water–organic, organic water, organic–organic, and seawater desalination [23,24]. In this
regard, Castro-Muñoz et al. [8] prepared novel CS membranes using the DES L-proline–
sulfolane (molar ratio 1:2) as an additive, and applied the developed membranes in PV
for the methanol (MeOH)-methyl tert-butyl ether (MTBE) azeotropic separation. From the
results, it was found that the addition of DES was able to improve the overall performance
of the membranes, which showed a threefold higher separation efficiency respect to the
pristine CS membranes. This was likely due to the fact that the chosen DES facilitated the
formation of H-bonding interactions, thereby promoting the permeation of MeOH (a more
polar molecule) through the membrane. On the basis of these encouraging results, the
aim of this work was to carry out a more systematic study by exploring the incorporation
of three different non-ionic DESs, exhibiting different chemical–physical properties, to be
used as functional additives into CS membranes for the pervaporative separation of the
organic–organic MeOH/MTBE azeotropic solution. Specific DESs, such as proline–glucose,
2-pyrrolidone-5-carboxylic acid–sulfolane, and proline–xylitol, were selected based on their
composition of naturally derived compounds, low toxicity, cheapness and compatibility
with polymer matrices. Their combination with a biopolymer like CS aligns with the goal
of making the membrane fabrication process more sustainable.

The produced membranes were characterized in terms of morphology, chemical
composition, wettability, mechanical resistance, and solvent uptake. The PV tests were
carried out by studying the effect of different feed solution temperatures on membrane flux
and separation factor. The crosslinking influence on membrane properties and performance
was also evaluated.
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2. Materials and Methods
2.1. Materials

MeOH was purchased from VWR chemicals (Milan, Italy) and MTBE 99.9% was
obtained from Sigma Aldrich (now Merck, Milan, Italy). Chitosan, specified as medium
molecular weight, was bought from Sigma Aldrich. The precursors of the synthesized DESs
were acquired as follows: sulfolane (purity ≥ 99%, Alfa Aesar); 2-pyrrolidone-5-carboxylic
acid (purity ≥ 99%, Sigma Aldrich); sulfuric acid (ACS purity, Avantor Performance
Materials Poland S.A.); L-proline (purity ≥ 98%, Sigma Aldrich, Poznan, Poland); xylitol
(pure, WarChem, Warsaw, Poland); glucose (pure, WarChem). Hydrochloric acid (analytical
reagent) was purchased from POCH S.A. (Gliwice, Poland) while glutaraldehyde (25%
solution) and acetic acid (purity ≥ 99%) were purchased from Sigma Aldrich (now Merck,
Milan, Italy).

2.2. Membrane Preparation

As for DES synthesis, proline–glucose (PRO:GLU), 2-pyrrolidone-5-carboxylic acid–
sulfolane (PCA:SULF) and proline–xylitol (PRO:XYL) solvents were prepared following
the same procedures already documented by our research group [25–27]. Table 1 enlists
the chemical structure of the DES precursors, molar ratios, and codes used over this study.
Once the DESs were prepared, they were independently used in the preparation of CS
membranes. In dense membrane preparation, the so-called dense-film casting method
was applied to fabricate the flat membranes. Basically, CS dope mixtures (1.5 wt%) were
prepared using an aqueous solution containing acetic acid (2 wt%), which was continuously
stirred overnight after preparation. Thereafter, each DES (5 wt%), which represents the
optimal DES percentage at a given molar ratio in respect to CS, was added into the dope
polymer solution. The right DES percentage was preliminarily studied and determined
in previous research [26]. The CS/DES dissolution was mixed for 4 h, followed by the
chemical in situ crosslinking when required. Then, glutaraldehyde (100 µL), followed by
HCl (100 µL), were doped to the final CS/DES dissolution. Given 15 min mixing, the dope
mixtures were independently cast onto Petri plastic dishes for film formation. The flat
membranes were exposed to solvent evaporation over 48 h. The membrane specimens
presented ca. 30 µm thickness, determined by microscopy. The membranes prepared
are referred to throughout the manuscript by the codes “CS” or “xCS” (for crosslinked
membranes), followed by the code of the DES incorporated into their matrix.

Table 1. Characteristics of the investigated DES.

DES Composition DES Chemical Structure

DES Code
HBA HBD Molar Ratio

(HBD:HBA) HBA HBD

Proline Glucose 5:1
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2.3. Membrane Characterization
2.3.1. FT-IR and Scanning Electron Microscopy (SEM)

FT-IR was measured in membrane specimens by means of a Nicolet iS10 spectrometer
(from Thermo Fisher Scientific, Rodano, Italy), equipped with deuterated triglycine sulfate
(DTGS) detector and a Golden Gate diamond ATR. The spectra data were taken in the
range 4000–400 cm−1, with a resolution of 16 cm−1.

The morphology of the membranes was evaluated by means of a SEM instrument
(Zeiss EVO, MA100, Assing, Monterotondo, Italy). Membrane samples were sputter-coated
before the analyses with a thin layer of gold using a Quorum Q150 RS sputter machine
(Quorum Technologies, Lewes, UK) (4 min was set as the duration time of the cycle).

2.3.2. Contact Angle and Mechanical Tests

Contact-angle values were measured using ultra-pure water (5 µL drop) by means of
a CAM 200 contact-angle instrument (CAM200, KSV Instruments, Espoo, Finland). The
mechanical properties were determined at room temperature by means of a Zwick/Roell
Z2.5 test unit (BTC-FR2.5TN-D09, Zwick Roell Group, Ulm, Germany). Membrane strips
were extended at the constant elongation rate of 5 mm min−1 until they broke, and the
elongation at break and Young’s Modulus were, then, determined.

2.3.3. Uptake Experiments

The solvent uptake (swelling degree) of all investigated membranes was evaluated for
MeOH:MTBE at the azeotropic point (14.3% MeOH and 85.7% MTBE). For each membrane,
three different pieces were weighed (Wd) with a digital balance (Gibertini, Crystal 500,
Novate Milanese, Italy) and immersed in the swelling solution to reach the equilibrium for
24 h at room temperature. After this time, the wet membrane pieces were removed, wiped
with tissue paper to remove excess liquid from the surface, and weighed again (Ws). The
degree of swelling (DS) was calculated as follows (Equation (1)):

DS(%) =
Ws − Wd

Wd
× 100 (1)

Ws and Wd correspond to the wet and dry membrane weights, respectively.

2.4. Pervaporation Tests

PV tests were performed using the setup schematically shown and described else-
where [1]. Basically, a 300 mL jacketed reservoir was filled with an azeotropic MeOH/MTBE
(14.3%/85.7%) mixture in contact with the membrane with an active area of 9.6 cm2. The
feed solution was maintained at a specific temperature (25, 35, or 45 ◦C) using a digital
circulating bath (Thermo Electro Corporation, HAAKE P5, Thermo Fisher Scientific, Ro-
dano, Italy). The vacuum on the permeate side was maintained at 0.04 mbar by means
of a vacuum pump (Edwards XDS 5, Cinquepascal, Trezzano sul Naviglio Milano, Italy).
During the 5 h experiment, the vapor permeate was condensed and collected in a cold
trap placed in a liquid nitrogen and analyzed at 25 ◦C using an Abbe 60 refractometer
(60/DR, Bellingham + Stanley Ltd., Nottingham, UK). After determining the permeate
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composition, the total flux (J) (Equation (2)), the partial flux (Ji) for each component i
(Equation (3)), and the separation factor (α) (Equation (4)) were calculated according to the
following equations:

J =
Q
At

(2)

where Q is the weight of the permeate in kg, A corresponds to the active membrane area
(m2), and t is the operating time (expressed in h).

Ji = w·J (3)

where Ji represents the fraction of permeate component i in the total permeate flux (J) and
Pi corresponds to its weight fraction.

α =
YMeOH/YMTBE

xMeOH/xMTBE
(4)

where y and x represent the weight fraction of the two components in the permeate and
feed, respectively.

The dependence of permeate flux on the temperature was determined by applying the
Arrhenius model, as reported in Equation (5).

J = J0·exp
(
−

Ep

R T

)
(5)

where J0 and Ep are the pre-exponential factor and the apparent activation energy, respec-
tively; R is the gas constant, and T is the absolute temperature.

2.5. Hansen Solubility Parameters (HSPs)

HSPs are physicochemical parameters made up of three components, each correspond-
ing to different types of molecular interactions that occur between materials:

• δd: dispersive interactions (van der Waals forces)
• δp: polar interactions
• δh: hydrogen bonding

The HSPs of DESs were calculated using the method of Hoftyzer Van Krevelen [17,28–30]
through the following Equations (6)–(8) for each component of the molecule:

δd =
∑ Fdi

V
(6)

δp =
∑ Fpi

V
(7)

δh =

√
∑ Fhi

V
(8)

where Fdi, Fpi and Fhi are the contributions of each molecular component for dispersion,
polar, and hydrogen-bonding forces, respectively, and v is the molar volume.

The HSPs for the whole molecule of DESs and NADESs were calculated by using
Equation (9) according to Rasool et al. [31], Li et al. [32], and Boston [33]:

δx = (S1·X% + S2·X%)/100 (9)

where δx is the HSP (δd, δp or δh) of the entire DES molecule, S1 and S2 represent the HSP
(δd, δp or δh) of the single solvent components (HBD and HBA), and X is the percentage of
their molar ratio.
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3. Results and Discussion
3.1. Characterization of Produced Membranes

Figures S1–S8 in the Supplementary Materials show the FT-IR spectra of the mem-
branes produced with and without DES. The IR spectrum of the pristine CS and xCS
membranes (Figures S1 and S2) showed the characteristic peaks of the CS molecule.

A band in the region 3262 cm−1 corresponds to N-H and O-H stretching, as well as
the intramolecular hydrogen bonds in the amino group of the chitosan molecules. The
absorption bands at around 2884 cm−1 could be correlated to C-H stretching. The bands at
around 1628 cm−1 (C=O stretching of amide I) and 1310 cm−1 (C-N stretching of amide III)
suggest residual N-acetyl groups [8].

The CH3 symmetrical deformations were confirmed by the bands at around 1377 cm−1.
The absorption band at 1151 cm−1 indicate asymmetric stretching of the C-O-C bridge.
Finally, the bands at 1065 and 1025 cm−1 correspond to C-O stretching [34].

For the membranes produced with the DES containing proline (CS PRO:GLU and
CS PRO:XYL) (Figures S3 and S7), it is possible to observe an overlap of the spectra in
the range of 3000–2900 cm−1, which are ascribed to O–H, N–H and C–O oscillations in
chemical functionalities of the eutectic mixture and polymer (i.e., polymer and DES), as
already observed by Jakubowska et al. and Castro-Muñoz et al., who fabricated CS/DES
membranes [26,35]. For the membrane CS PRO:XYL, the broader peak observed at 3000 and
3400 cm−1 could be due to the contribution of the–OH groups of the xylitol molecule [36].
For the membranes prepared with CS PCA:SULF (Figure S5), it is possible to observe a
broadening of the peak in the region of 1633–1531 cm−1 as a possible shift in the carbonyl
C=O stretch of the carboxylic acid.

The crystal structure of CS membranes with and without DES is reported in Figure 1.
XRD is useful, in the case of composite materials, to study the interactions among the
different components. The pristine xCS membrane showed two main strong characteristic
diffraction peaks at about 2θ = 14◦ and 17◦ [37], indicating a high crystallinity of the polymer.
The presence of hydroxyl and amino groups are responsible for the strong intermolecular
and intramolecular hydrogen bonds which, along with the regular structure of CS, provide
a high degree of crystallinity [38,39].
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The characteristic peaks of xCS appeared at the same position after doping with DES,
independently of their different chemical structure and the effect of crosslinking. This
is an indication of the uniform distribution of the DES into the CS membranes with a
preservation of the polymer semi-crystalline structure [40].

By looking at Figure 1, there is a significant variation (intensification of peak patterns)
in the diffraction pattern of the DES-doped CS membranes compared with bare xCS. In
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particular, three DES-doped membranes (xCS PRO:XYL, CS PRO:XYL, xCS PCA:SULF)
showed an increase in the peak intensities, suggesting that the crystallinity of CS mem-
branes has been influenced by their addition. This could be explained by the fact that the
incorporation of these DESs may, in certain cases, enhance intermolecular bonding between
chitosan molecules, making the chains more rigid and restricting their movement. This, in
turn, affects the crystallinity of the membranes, leading to an improvement in their elastic
properties, such as elongation at break (see Figure 1). The addition of PRO:GLU was the
only case where a significant lower peak intensity, with respect to xCS, was observed. In
the cases of xCS, PRO:GLU, and CS PCA:SULF, no decrease in peak intensity and, therefore,
in crystallinity was observed.

The surface morphologies of the prepared membranes are shown in Figure 2. All the
membranes displayed a dense and compact surface, typical of membranes prepared by
a solvent evaporation technique. The addition of DES into the CS matrix did not cause
evident phase separation or an alteration of the surface morphology, which resulted in
defect-free and uniform structures regardless of the DES employed. This result can be
considered an indication of the proper dispersion and incorporation of the employed DES
into CS membranes.
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Figure 2. SEM images of the top surfaces of investigated membranes (for a fair comparison, all the
images were taken at the same magnification of 10,000×).

The results of the contact-angle measurements of the prepared membranes are pre-
sented in Figure 3. In particular, CS and xCS membranes presented contact values of
90◦ and 95◦, respectively. The contact-angle values of CS-based membranes, reported in
the literature, range from 74◦ to 90◦ [41,42] and are influenced by many factors such as
the degree of acetylation, which generally foster the hydrophilicity of the membrane [43].
On the contrary, the DES-based membranes displayed lower contact-angle values and,
hence, a superior hydrophilic moiety. In particular, the membranes prepared with the DES
PRO:GLU presented the lowest contact angle (between 49 and 59◦). Despite the hydropho-
bic nature of proline, glucose is in fact a polar molecule, bearing different hydroxyl groups
able to attract polar molecules (like water and MeOH) to establish hydrogen bonds. For
the membranes prepared with DES PRO:XYL, xylitol is a natural carbohydrate classified
as a sugar alcohol with five hydroxyl groups in its structure. Despite its hydrophilic na-
ture, its partition coefficients, with respect to glucose, are higher, indicating a relatively
lower hydrophilic character [44]. This could explain the higher contact-angle values (about
80◦) of the membranes prepared with this DES. Finally, the membranes prepared with
the PCA:SULF showed a contact angle between 74 and 81◦. Compared to our previous
analysis [25], this latter membrane composition seems to be more hydrophilic; however,
water contact-angle measurement, to some extent, provides insight into the membrane
surface geometry, i.e., surface roughness, but does not imply any correlation between the
intrinsic properties and the chemical nature of the composite structure [45]. In other words,
a hydrophilic polymer can be tuned to possess a more hydrophobic geometry by changing
the surface roughness.
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Figure 4 shows the mechanical properties in terms of Young’s Modulus and elongation
at break of the produced membranes. The reference CS samples exhibited a Young’s
Modulus up to 1400 N/mm2, as an indication of the stiff properties of the CS membranes
(in particular for the crosslinked one), while the elasticity was very low and between 6 and
11%. The incorporation of DES into CS membranes greatly decreased the stiffness of the
membranes, which was particularly evident for the membranes prepared with PRO:XYL
where the Young’s Modulus dropped up to 9 N/mm2. The same behavior has already been
observed in our previous work, where a different DES (L-proline–sulfolane) was embedded
into a CS matrix [25]. This effect could be related to the fact that the presence of DES can
alter the intermolecular interactions among the CS molecules, leading to a plasticization
effect [26]. The addition of plasticizers into CS, in fact, is responsible for a transition from a
rigid to a softer material with more elastic properties [46]. This aspect can, on one hand,
justify the decrease in Young’s Modulus in DES-based membranes and, on the other hand,
their increase in elongation at break, especially in the PRO:XYL DES. The same trend was
also observed by Wang et al. [47], who incorporated the choline chloride/urea DES into
cellulose based membranes. Even in this case, the addition of DES led to a decrease in
tensile stress and Young’s Modulus of the resulting membranes, but with an improvement
of their elongations, indicating a significant plasticizing effect. The increase in membrane
elasticity could be the result of an easier movement possibility of CS chains related to the
formation of hydrogen intermolecular bonds between plasticizer and CS [48].
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3.2. Pervaporation Results

Figure 5a displays the PV performances in terms of total flux (J) as a function of the
feed temperatures for all the investigated membranes.
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As expected, as the feed temperature was increased from 25 to 45 ◦C, the total permeate
flux also increased. This trend could be related to the increase in thermal motion of the
polymer chains at higher temperatures, which leads to the creation of more free volumes
inside the membrane, fostering the passage of permeating molecules [49]. The plot of total
flux as a function of the reciprocal of the absolute temperature shows a linear relationship,
indicating an Arrhenius dependence of total flux and operating temperature (Figure 5b).
The apparent activation energies (Ea), calculated from the slopes of the curves and by
Equation (5), and shown in Table 2, show positive values very similar to these (except for the
pristine CS membranes), indicating that the permeation flux increases with the temperature.
For all the investigated membranes, the crosslinking with GA led to a decrease in the total
flux, mainly ascribable to a free volume reduction [50]. The CS pristine membrane and
the CS PRO:GLU membrane presented the highest total flux values (between 0.025 and
0.04 kg m−2 h−1), in comparison to all other investigated membranes. The flux trend could
be related to the swelling measurement, as shown in Figure 6. These two membranes, in
fact, were characterized by the highest swelling degree as an index of their propension
to adsorb the permeating molecules present in the feed mixture. On the other hand, the
lowest total flux value was found for the xCS PRO:XYL membrane (between 0.007 and
0.01 kg m−2 h−1), which could be related, also in this case, to its lowest swelling degree at
the azeotropic point respect to the other membranes.
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Table 2. Apparent activation energies for total flux, MeOH and MTBE partial fluxes.

Membrane Activation Energy (Ea) Values (KJ/mol)

Total MeOH MTBE

CS 7.89 5.10 20.02

xCS 12.20 13.07 15.33

CS PRO:GLU 3.23 1.33 7.63

xCS PRO:GLU 4.53 3.64 7.96

CS PCA:SULF 3.02 2.35 5.99

xCS PCA:SULF 3.18 3.23 7.03

CS PRO:XYL 4.65 4.43 5.42

xCS PRO:XYL 6.51 5.42 11.84
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Figure 7a,b display the partial fluxes of MeOH and MTBE. Except for the CS membrane,
the MeOH partial fluxes were always higher than the MTBE ones. The partial fluxes, both
for MeOH and MTBE, increased as the feed temperature was increased. By looking at
the values of Ea reported in Table 2, it is possible to observe that, in almost all cases, the
values for MTBE were higher than the ones for MeOH, indicating that MTBE flux is more
influenced by the temperature than MeOH. This could be ascribed to an enlargement of the
polymer free volume with temperature, which promotes the passage of larger molecules
such as MTBE [51,52].

According to the calculation of total apparent activation energy, the solvent molecules
require more activation energy to be able to permeate across the membrane interfaces
when presenting in situ crosslinking. This is in agreement with the fact that crosslinking
chemically rearranges the polymer chains, restricting their motion and thus providing
higher selectivity. Moreover, the presence of DES clearly reduces the energy required for
molecules to permeate the membranes, lowering the Ea toward both solvents.

In Figure 8, the separation factor of the prepared membranes is shown. The mem-
branes were all methanol-selective according to the separation factor values, and this agrees
with the calculated methanol activation energy values reported in Table 2. Methanol, in
fact, requires less energy than MTBE to permeate across all formulated membranes, and
crosslinking-free membranes presented even lower values of activation energy. Moreover,
MeOH molecules have a smaller kinetic molecular diameter (about 3.6 Å) with respect
to MTBE (about 6.2 Å), and they are more likely to permeate through membranes’ free
volumes. Another aspect which makes the membranes more selective for MeOH is rep-
resented by their hydrophilicity. All the membranes, in fact, and, in particular, the ones
loaded with DES, displayed a contact angle lower than 90◦ (see Figure 3) as an indication
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of their hydrophilic nature, which provides them with a higher affinity for polar molecules
(like MeOH).
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results in the formation of wider free volumes more permeable to bigger molecules like
MTBE [53]. The same effect explains the higher separation factor, which can be observed
for the crosslinked membranes with respect to the non-crosslinked ones. The xCS PRO:XYL
membrane was the more selective one, reaching a separation factor of 36.4 (at 25 ◦C), fol-
lowed by the CS PRO:XYL membrane (α = 31.4 at 25 ◦C) and the xCS membrane (α = 28.8
at 25 ◦C). Pristine CS and CS PRO:GLU membranes were the less selective ones, in line
with their higher total fluxes.

The PV results align with the solvent uptake measurements. As illustrated in Figure 6,
the xCS PRO:XYL membrane exhibited one of the lowest solvent uptake values, while
the less selective membranes (CS and CS PRO:GLU) showed some of the highest. Higher
solvent uptake leads to greater membrane swelling, which increases free volume, resulting
in higher flux but reduced selectivity.

The compatibility of a polymer with a solvent can be analyzed using the Hansen
solubility theory, following the principle of “like dissolves like”. According to the HSPs,
polymers are soluble only in solvents with similar HSP values, considering dispersive
(δd), polar (δp), and hydrogen-bonding (δh) forces. The HSP values of polymers and
DESs were plotted on a three-dimensional space (Figure 9) in order to better visualize the
affinity of the investigated DESs for the polymer and the target permeating species (MeOH
and MTBE). The closer the HSPs of the polymer are to those of the solvent, the greater
the expected solubility. As can be seen from Figure 9, CS exhibits high polar (δp) and
hydrogen-bonding (δh) values, suggesting the possibility of strong interactions with polar
solvents such as MeOH, which, in fact, is due to its proximity. Conversely, MTBE, being
less polar than MeOH, lies further from the CS position, indicating weaker interactions
with the chitosan matrix. This distance supports the experimental findings where MeOH is
preferentially permeated over MTBE. Based on the positions of the various DESs evaluated,
PRO:XYL and PRO:GLU are the closest to MeOH, indicating a strong affinity with the
alcohol. However, PRO:GLU is also positioned near MTBE. This may explain the higher
selectivity observed in the xCS PRO:XYL membrane, as PRO:XYL is close to MeOH and
the furthest from MTBE. Additionally, the closer proximity of this DES to CS suggests
a greater compatibility with the polymer, potentially leading to a denser and thus more
selective membrane structure. The hypothesis is that PRO:XYL can effectively fine-tune the
interaction between the membrane and MeOH, improving its selective separation.
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3.3. Comparison with the Current State of the Art of PV Membranes Applied for MeOH/MTBE

As reported in Table 3, the comparison of the different concepts of polymer and
composite membranes applied for MeOH/MTBE separation is presented. It is worth men-
tioning that the PV performance of a membrane is affected by important factors, including
the membrane characteristics (structure, free volume, nature, etc.), and operating conditions
(temperature, pressure, feed concentration, etc.) directly related to the process itself [54].
Therefore, the performance comparison of different PV membranes needs to be carried out
in similar operating conditions. Herein, we report the available studies carried out with
similar operating parameters. For instance, xCS PRO:XYL seems to exhibit similar selective
properties (a separation factor of 36.4) compared to other CS membranes blended with DES,
but superior separation factor compared to pristine polymer (PEEKWC, PVA, PLA, CS)
and mixed-matrix membranes (such as GO-polyimide). Impressively, polyarylethersulfone
with cardo filled with [Cu2(bdc)2(bpy)]n was reported as outperforming selectivity with
values as high as 2300. As for the permeate fluxes, most of the membranes presented very
low permeation rates, which are usually obtained in organophilic separations [54]; how-
ever, xCS PRO:XYL membranes (ca. 0.090 kg m−2 h−1) are competitive compared to other
reported membranes based on hydrophilic polymers (CS, polyimide, PEEKWC). On the
contrary, PLA, PVA and polyarylethersulfone with cardo filled with [Cu2(bdc)2(bpy)]n still
stand as more permeable for this organic–organic separation. To some extent, it seems that
CS membranes blended with DESs present great potential for the extremely challenging
organic–organic separation via pervaporation; however, more efforts must be focused on
optimizing the membrane structure to overcome the limitation of low permeation while
maintaining the selective properties.

Table 3. PV membranes used for the selective separation of MeOH-MTBE.

Membrane Type Filler Loading MeOH
Concentration

Operating
Conditions:

J
(kg m−2 h−1)

Separation
Factor (α) Ref.

GO-polyimide 4 wt% 4.3 wt% MeOH 45 ◦C, 0.05 mbar 0.091 9.0 [55]

PEEKWC - 15 wt% MeOH 40 ◦C, 6.1 mbar 0.068 10 [56]

PVA - 30 wt% MeOH 45 ◦C, 15 mbar 0.900 25 [57]

PLA - 15 wt% MeOH 30 ◦C, 6 mbar 0.620 5 [51]

xCS:PRO:SUF - 14.3 wt% MeOH 25 ◦C, 0.05 mbar 0.008 35.4 [8]

CS - 30 wt% MeOH 50 ◦C 0.120 7 [58]

Sulfonated
polyarylethersulfone
with cardo filled with

[Cu2(bdc)2(bpy)]n

30 wt% 15 wt% MeOH 40 ◦C, 6 mbar 0.28 2300 [59]

xCS PRO:XYL - 14.3 wt% MeOH 25 ◦C, 0.05 mbar 0.090 36.4 This work

4. Conclusions

In this work, we evaluated the potential of three different deep eutectic solvent (DES)
formulations in fabricating dense CS membrane films. According to the microscopic
characterization, all membrane formulations presented a dense structure, indicating that
this pattern was not greatly modified by the DES incorporation, while their crystallinity and
mechanical properties were substantially influenced. However, according to the surface
analysis (contact angle), the main contribution of the DESs has been observed on the
membrane surfaces, on which, depending on the DES precursors and their polarity, the film
membranes exhibited different contact-angle measurements, interpreted as hydrophilic
or hydrophobic. Additionally, the membranes also benefited from improved selective
properties toward MeOH. In comparison with pristine CS, the membranes doped with DES
showed an improved separation factor (which was even further improved by applying the
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crosslinking) and permeation rates. To some extent, the permeate flux and the separation
factor were dependent on the feed temperature as well. In conclusion, this work confirms
the potentiality of improving CS membrane performance by applying green additives, like
DES, which were fully compatible with the investigated biopolymer chitosan.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/membranes14110237/s1, Figure S1: FT-IR spectrum of CS mem-
brane; Figure S2. FT-IR spectrum of xCS membrane; Figure S3. FT-IR spectrum of CS PRO:GLU
membrane; Figure S4. FT-IR spectrum of xCS PRO:GLU membrane; Figure S5. FT-IR spectrum of CS
PCA:SULF membrane; Figure S6. FT-IR spectrum of xCS PCA:SULF membrane; Figure S7. FT-IR
spectrum of CS PRO:XYL membrane; Figure S8. FT-IR spectrum of xCS PRO:XYL membrane.
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