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Abstract: The study objective was to field-validate the technical feasibility of a membrane- and
adsorption-enhanced water gas shift reaction process employing a carbon molecular sieve membrane
(CMSM)-based membrane reactor (MR) followed by an adsorptive reactor (AR) for pre-combustion
CO2 capture. The project was carried out in two different phases. In Phase I, the field-scale ex-
perimental MR-AR system was designed and constructed, the membranes, and adsorbents were
prepared, and the unit was tested with simulated syngas to validate functionality. In Phase II, the
unit was installed at the test site, field-tested using real syngas, and a technoeconomic analysis (TEA)
of the technology was completed. All project milestones were met. Specifically, (i) high-performance
CMSMs were prepared meeting the target H2 permeance (>1 m3/(m2.hbar) and H2/CO selectivity
of >80 at temperatures of up to 300 ◦C and pressures of up to 25 bar with a <10% performance
decline over the testing period; (ii) pelletized adsorbents were prepared for use in relevant conditions
(250 ◦C < T < 450 ◦C, pressures up to 25 bar) with a working capacity of >2.5 wt.% and an attrition
rate of <0.2; (iii) TEA showed that the MR-AR technology met the CO2 capture goals of 95% CO2

purity at a cost of electricity (COE) 30% less than baseline approaches.

Keywords: membrane reactor (MR); adsorptive reactor (AR); H2 generation; CO2 capture; carbon
molecular sieve membrane

1. Introduction

Integrated Gasification Combined Cycle (IGCC) power plants with carbon capture
and storage (CCS) promise to produce electricity from fossil fuels with no harmful CO2
emissions [1–6]. In these plants, the fossil fuel (e.g., coal or biomass), rather than being
combusted directly to produce power, is instead converted in a gasifier [7,8] into syngas, a
gas mixture containing H2/H2O/CO2/CO (and N2 when an air-blown gasifier is used).
This syngas is cooled down and treated in a cold-gas clean-up unit (CGCU) to remove trace
contaminants (e.g., H2S, COS, NH3) and is then heated up to the desired temperature to
react with steam, via the water gas shift (WGS) reaction (Equation (1)), to convert the

CO + H2O ↔ CO2 + H2 (1)

CO into H2 and CO2 [8,9] in a cascade of high-temperature shift (HTS) and low-temperature
shift (LTS) reactors [10,11]. For CCS, the CO2 in the reactor outlet is removed in absorption
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columns [7,12], and after drying and pressurization, is directed to permanent underground
storage [11] or finds beneficial uses (e.g., enhanced oil recovery (EOR)). The H2 is mixed
with N2 as a diluent and sent to a turbine to generate electricity [7,13,14].

IGCC with CCS plants entail higher capital costs than plants without CCS due to
their technical complexity involving multiple reaction, separation, and clean-up steps, and
are perceived as economically prohibitive for near-term market deployment. In recent
years, novel approaches have been explored to improve the technology, with reactive
separation processes (such as membrane reactors (MRs) and adsorptive reactors (ARs))
being dominant [9] among them because they integrate reaction and separation steps
in a single unit, which improves process efficiency [15–19], resulting in energy and cost
savings [7].

MRs employing hydrogen-selective membranes have been used for H2 production
from syngas [8,10,11] via the WGS route, with potential advantages that include lower
operating temperatures and reduced steam, catalyst, and downstream purification require-
ments [8–11,20]. Pd and Pd-alloy [21–24], amorphous silica [2,8], and dense polymeric
membranes [25,26] have all been utilized (see [2] for operating performance comparison)
but they are not suitable, however, for use in harsh IGCC conditions [27,28]. Carbon molec-
ular sieve membranes (CMSMs) are a promising alternative due to their robustness [8,29],
and a CMSM-based WGS-MR was studied by this group [8] for contaminant-free H2 pro-
duction in IGCC [30]. ARs employing a solid adsorbent for in situ CO2 removal also show
promise for application to IGCC with CCS [2,6,13,31–35], with advantages that include
lower operating temperatures and catalyst costs, increased safety [7], and decreased en-
ergy requirements for CCS by producing a pure CO2 stream ready for sequestration. The
IGCC with CCS process dictates using the right sorbent that operates at high temperatures
(523–573 K) and pressures (25 bar or higher) and has low cost, high CO2 adsorption capacity
and selectivity, fast and stable sorption kinetics, and high thermal/chemical/mechanical
stability [36]. Hydrotalcite-like materials are the sorbent of choice [5,8,33] as the sorption
capacity of common adsorbents (e.g., zeolites, silica, MOFs, active carbons, etc.) rapidly
declines with temperature.

A hybrid (named the HAMR) process that combines an AR and a MR in a single unit
was proposed by this group [16], which, by simultaneously separating/removing both H2
and CO2, attained improved performance over standalone (MR or AR) systems. Several
papers have since appeared using the process for the WGS reaction to obtain high-purity
H2 with simultaneous CO2 capture [16,19,20,23,37–40]. Recently, this group proposed a
new process (see Figure 1 for a schematic) for application to IGCC with CCS that offers
enhanced conversion and separation performance by simultaneously removing both H2
and CO2 in situ.
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But unlike the HAMR system, in the new process, the MR and AR units are physically
separated, which offers added flexibility for the IGCC with CCS application by allowing
one (i) to separately optimize the conditions for each individual unit without interference
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from the other (e.g., the CMSMs have an operating temperature threshold of ~350 ◦C, and
co-locating the adsorbent and membrane in the same unit may adversely impact adsorbent
regeneration); (ii) to operate the MR at steady state while the AR units are cycled between
reaction and regeneration modes, which is an important advantage as it lessens the burden
on membrane seals and materials during operation. This integrated MR-AR system can
simultaneously maximize CO conversion, H2/CO2 recovery, and purity and deliver a high-
pressure pure CO2 stream [7,13], and shows significant advantages over the standalone MR
and AR systems, which is the result of the added synergy created from the two individual
units brought together [15].

In this paper, the findings of a field-scale study are presented, aiming to validate
the technical feasibility of this integrated MR-AR process with real syngas. Prior to the
initiation of this effort, the process was tested in the laboratory on simulated syngas and
important performance attributes and requirements were established. Specifically, this
team’s past efforts preceding the initiation of this field-scale study involved the following
key developments and Tasks (for further details about the laboratory study, see recent
publications by the team [7,13]):

• The lab-scale experimental MR-AR system was designed, constructed, and tested,
appropriate CMSM, adsorbents, and catalysts were selected and characterized, and
experimentally validated relevant multi-scale mathematical models were developed.
Subsequently, the proposed process was experimentally tested using a simulated
gasifier off-gas (from both air-blown and oxygen-blown coal gasifiers), and based on
the lab-scale results, an initial technical and economic feasibility study was completed.

• For use in the lab-scale experiments, “state-of-the-art” leading CMSMs we prepared
with exceptional performance meeting all the original project targets (set forth by US
DOE, which funded the laboratory study): H2 permeance (1 to 1.5 m3/m2/h/bar,
or 370.3 to 555.5 GPU) and a H2/CO selectivity of >80 in the relevant temperature
(up to 300 ◦C) and pressure conditions (up to 25 bar). The CMSMs exhibited very
robust and stable performances during a continuous long-term run (over >500 h of
H2S exposure at 25 bar of pressure) and maintained high He/N2 (~126) and H2/CO
(~100) selectivities over a total of 742 h of H2S exposure. The same type of CMSM but
with a larger length was utilized in the pilot-scale project.

• Hydrotalcite (HTC) adsorbents were prepared and characterized in high (up to 30 bar)
pressure conditions. These materials showed maximum CO2 uptake capacities of
>10 wt.% and working capacities under cyclic AR conditions of ~3 wt.% and exhibited
stable performance during CO2 cycling in various atmospheres, including a >500-h
continuous MR-AR run. A commercial sour-shift catalyst was utilized in the lab-scale
experiments, and data-validated global rate expressions were developed to simulate
the lab-scale MR-AR system as well as in the generation of a preliminary process
technoeconomic analysis (TEA). The same adsorbents and catalysts were used in the
field-scale project.

• The integrated MR-AR lab-scale system was tested during numerous multiple-cycle
runs with simulated gasifier off-gas and displayed superior performance to that of a
conventional packed bed reactor (PBR) generating a high-purity H2 product, which
is directly usable in a hydrogen turbine for power generation. A key conclusion
from the lab-scale study that motivated the field-scale efforts was that the CMSM,
catalyst, and adsorbent were very robust and stable under the large H2S concentration,
high-temperature, and high-pressure IGCC-like environment during the long-period
lab-scale MR-AR multiple-cycle run (similar in duration to the field-scale test).

The field-scale project has advanced the MR-AR technology by testing a 100× scaled-
up analog of the lab-scale MR-AR system with an actual coal gasifier off-gas. It was carried
out in two different phases, separated by an intervening ”go-no-go” review step. In Phase I
of the project, the team designed, constructed, and assembled the field-scale MR-AR system,
prepared the CMSM, adsorbents, and catalysts, tested the unit with simulated syngas to
validate functionality, and prepared a preliminary TEA of the technology. In Phase II, the
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team installed the unit at the test site (the CAER Center at the University of Kentucky
(UKy)) and completed all utility connections and hook-ups to the gasifier, field-tested the
MR-AR process using real coal gasifier off-gas, collected and analyzed experimental data,
and completed a detailed TEA of the technology.

All project milestones and success criteria set forth by the US DOE (that also supported
the field-scale study) were met. Specifically, the team (i) prepared high-performance
CMSM tubes (ID: 3.5 mm, OD: 5.7 mm, 76.2 cm long) that meet the target H2 permeance
(>1 m3/(m2.h.bar) or (>370.3 GPU)) and a target H2/CO selectivity of >80 in the relevant
temperature (up to 300 ◦C) and pressure conditions (up to 25 bar) with a <10% decline in
performance over each 250 h testing period; (ii) procured a commercial sour-shift catalyst in
sufficient quantity and prepared up to 10 kg of the pelletized adsorbent for use in relevant
conditions (250 ◦C < T < 450 ◦C, pressures up to 25 bar) with a target adsorbent working
capacity of >2.5wt.% and a target sorbent attrition rate of <0.2; (iii) installed the field-scale
unit at the test site (UKy) and tested the MR-AR process using real coal gasifier off-gas for
over 500 h in both static and flow experiments; (iv) updated the TEA from the lab-scale
study based on field-scale data and met CO2 capture goals of 95% CO2 purity at a cost of
electricity 30% less than baseline capture approaches. Key technical results from the study
are presented in this paper. Additional information, including more complete details about
materials, methods, and procedures can be found elsewhere [41].

2. Results and Discussion
2.1. Design, Construction, Assembly, and Preliminary Testing of the Field-Scale Unit

A field-scale experimental MR-AR system that was a scaled-up (100×) analog of the
lab-scale system was designed, constructed, and assembled. This effort began with the
design of the system, which was based on in-house models developed during the lab-scale
study and further upgraded during the present study for use in the design phase. The
various pieces of equipment necessary to construct/assemble the unit were either procured
from various external vendors or fabricated by the project team.

The field-scale system consisted of (i) the gas delivery system (for connecting the unit
to the gasifier); (ii) the MR containing the CMSM and the WGS catalyst (see Figure S1
in the Supplementary Materials section) housed in an explosion-proof oven; (iii) the AR
subsystem containing the adsorbent and catalyst with its appropriate valves and control
hardware (see Figure S2 in the Supplementary Materials section); (iv) the overall system
control hardware incorporating various system automation and safety features to minimize
the human-error potential and to facilitate extended long-term continuous operation and
data acquisition; and (v) the analysis section equipped with the appropriate analytical
equipment. A photograph of the pilot-scale unit, as installed at CAER at the UKy, is shown
in Figure 2.

The AR system consisted of two units (equipped with individual explosion-proof
heaters) for continuous cycling between adsorption/reaction and desorption/regeneration,
each consisting of three reactors in series (see Figure S2). The decision to employ two ARs
in parallel was taken based on project cost considerations and for simplicity of operation.
For continuous operation of two banks of three ARs in series, with one bank of reactors
regenerating and the other adsorbing at any given moment, equal adsorption and regen-
eration times are, however, necessary. Given that desorption is slower than adsorption,
selecting the switching time entails process optimization.

This is because selecting a short switching time (not sufficiently long for complete
regeneration of the adsorbent bed) means that subsequent adsorption cycles will not start
with a fresh adsorbent bed. Selecting a long time, on the other hand, past adsorbent
saturation during the adsorption/reaction part of the cycle, will mean that the AR will
operate sub-optimally (i.e., it will function as conventional PBR) for a good fraction of time
during that part of the cycle.
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Figure 3 shows the results from such a simulation carried out during the design phase
of the field-scale unit for conditions relevant to the planned operation of the unit at the
field site (for the AR model used in these simulations, see [42], and for its experimental
validation, see further discussion in Section 2.2 below). The switching time for this run
was selected to be 5 min (based on an initial single adsorption run for the AR loaded
with fresh adsorbent that revealed a CO2 breakthrough time of ~6 min), while the other
parameters for the simulation can be found in Table S1 in the Supplementary Materials
section). The cycle simulations begin with initial adsorption in a bed of fresh adsorbent (AR
filled with steam at 523 K), followed by subsequent regeneration and adsorption cycles. It
is found that within a total of six such adsorption/regeneration cycles, long-term stable
behavior is attained. Figure 3 shows the outlet CO2 mole fraction (left vertical axis), as well
as the instantaneous CO conversion (right vertical axis) during an adsorption/reaction
six-cycle run.
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For use in the field-scale tests, CMSM tubes, 30′′ (76.2 cm) long, were prepared at
M&PT and potted into 2′′ (5.08 cm) outside diameter (OD) membrane bundles (containing
between 7 to 18 membrane tubes each). The individual membrane tubes (and the resulting
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bundles) were quality-tested at M&PT under non-reactive conditions for their separation
characteristics, routinely with inert gases, i.e., He and N2, and for a select number of such
membranes with a range of other test gases as well (e.g., He, H2, CO, N2, and/or CO2).

Sufficient quantities of adsorbent pellets (made from powders of a Mg-Al layer double
hydroxide material, prepared by a procedure previously developed by this team [43])
were also prepared for the pilot-scale test. The pelletization technique was developed
by testing various binder formulations and different pressing techniques of the resulting
hydrotalcite/binder mixtures. Preliminary screening among the various techniques was
based on the testing of physical properties, i.e., particle density and porosity, axial and
radial strength, and overall physical appearance. For the techniques that successfully
passed the initial screening, continued development focused on the adsorbent’s physical
robustness during thermal cycling and on the scaling-up of the preparation procedure to
transition from making small sorbent batches for laboratory testing to being able to prepare
the large quantity of adsorbents needed for the field testing (for further details about the
materials used and the pelletization methods employed, please see [41]).

A photograph of a number of adsorbent pellets (Batch #33), prepared by the final
pelletization technique selected, is shown in Figure 4 (left). In the same figure (right),
a photograph is also included of the same adsorbent pellets after they had undergone
numerous adsorption/regeneration testing cycles, under pressure/temperature conditions
relevant to the field testing for a total of 1000 h of experimentation. A post-cycle-testing
analysis of the pellets showed minimal damage and erosion to the pellets and no apparent
change in mechanical strength.
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Pellets from Batch#33 were analyzed using the BET technique to measure their surface
area, pore volume, and pore size distribution (PSD), both intact and in their powder
form (after grinding). Figure 5 shows the measured PSD, which is bimodal consisting of
mesopores with an average pore diameter of ~23 nm and a microporous region with an
average pore diameter of ~0.9 nm. The powder and the pellet materials have pore structural
properties that are similar to each other. A total of 10 Kg of Batch#33 adsorbent pellets were
prepared for the field testing.

Two different commercial Co/Mo/Al2O3 sour-shift catalysts (catalysts #1 and #2) were
available for the project. Catalyst #1 was a newer batch of the catalyst that was employed
in the predecessor lab-scale project. Catalyst #2 was employed by M&PT in a previous
field-testing project at CAER. The kinetics of both types of catalysts were investigated
because they were not known for catalyst #2, and for catalyst #1, it was desired to make
sure that the reaction kinetics developed in the lab-scale project were applicable to the
new catalyst batch purchased. Knowing these kinetics was also important in terms of
developing a global rate expression to be used in the multi-scale MR and AR models for
equipment design and scale-up.
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The experiments were carried out in the high-pressure and temperature lab-scale MR-
AR system at USC operating as a PBR. For the reaction kinetics studies, the reactor operated
under isothermal and isobaric conditions. A 1-D PBR model was utilized to analyze the
experimental data of both catalysts (for further details, see [8]). The applicability of three
different microkinetic rate models, previously developed for a commercial Co/Mo catalyst
by Osa et al. [33,34]) and tested for catalyst #1 in the previous project, was tested with
global reaction rate expressions as follows:

Formate intermediate model:

r =
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Direct oxidation (DO) mechanism:
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For catalyst #2, the Associative mechanism described the experimental data the best
(see Figure 6). For catalyst #1, as with the lab-scale data, among the microkinetic models,
the Direct Oxidation mechanism describes the experimental data the best.

In the lab-scale study, an empirical rate model was also shown to describe the kinetics
for catalyst #1equally well (in fact, slightly better), as follows:

r = kPa
COPb

H2OPc
Co2
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H2
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Commercial catalyst #2 was shown in the reaction kinetics investigations to be more
active than catalyst #1, but in the field-scale studies reported here that aimed to validate
the functionality of the MR-AR process, catalyst #1 was selected. There were two reasons
for such a choice: (i) a larger quantity of catalyst #1 was available in-house and (ii) the
team had significantly more working experience with catalyst #1, having had thousands of
hours of continuous operation during the lab-scale project. The global rate expression of
Equation (5) was, therefore, also used in the MR and AR models for equipment design and
scale-up.

Prior to shipping the pilot-scale unit to UKy-CAER, AR adsorption test runs were
carried out at the M&PT laboratories using simulated gas streams to assess adsorption
performance. The experimental details for one of the AR adsorption test runs are shown
in Table S2, and the corresponding experimental data and simulation results using the in-
house models developed are shown in Figure 7. As can be seen in Figure 7, the experimental
CO2 breakthrough time, defined as the time at which the CO2 molar fraction at the outlet
reaches 1%, is 72 min in the specified operating conditions in Table S2. The simulation
results are consistent with this CO2 breakthrough time, but they slightly underestimate
the amount of CO2 leaving the saturated bed following the breakthrough time. Possible
explanations for this discrepancy include uncertainties in the CO2 adsorption rate model
and its parameters, as well as fluctuations in the experimental feed flow rate. Nevertheless,
the key conclusion from these simulations is that the AR model provides a reasonable
prediction of the experimental CO2 adsorption behavior of the bench-scale AR system,
particularly in providing an accurate estimate of the breakthrough time, which is an
important system operating parameter.

Prior to shipping and installation at the test site, the field-scale MR-AR system un-
derwent preliminary “shakedown” testing with simulated coal gasifier off-gas and other
relevant gas mixtures to validate system functionality and operation and to gain operating
experience. An example of such a test run is shown in Figure 8.

For this run, the temperature of the MR oven was set to 255 ◦C, the external heaters
for the ARs were set to 275 ◦C, the temperature of the MR steam generator was set to
245 ◦C, and the temperature of the steam generator for AR regeneration was set to 418 ◦C.
A simulated gasifier syngas mixture with a composition of 44% H2, 7% N2, 23% CO, 25%
CO2, and 1200 ppm H2S (simulating the oxygen-blown gasifier syngas at the UKy test
site) was fed to the MR at a pressure of ~10 bar and flow rate of 0.5 scfm (14.16 lpm—for
the results reported in Figure 8, the MR was run in its PBR configuration, i.e., with the
permeate side exit being closed) together with steam at a flow rate of 4.33 slpm. The outlet
gas from the MR served as the feed to the ARs for the testing of the MR-AR combined
system. Before the start of the run, the reactors were brought to the operating temperature
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under a N2 purge. The MR was then switched over to running on syngas and steam and
was allowed to stabilize for around two hours in order to reach a steady state before sending
the gas from the reject side to the ARs. The AR outflow was monitored for its CO2 content
with a real-time NDIR CO2 analyzer while the MR streams were monitored with a gas
chromatograph, sampling every 10 min. Additional data points were taken periodically by
the gas chromatograph to monitor other components of the AR outflow. AR breakthrough
time was established as the time at which 1.0% or more CO2 was seen by the analyzer on
the AR outlet. Figure 8 shows the CO2 breakthrough data for the AR unit A. For this run,
initial breakthrough results indicated a working capacity of >>3 wt.%.
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2.2. Installation and Operation of the Field-Scale Unit at the Test Site

Upon completion of the “shakedown” testing phase of the project, the MR-AR pilot-
scale system was transported to the UKy-CAER test site and connected to the gasifier for
the field-testing phase to commence with real gasifier syngas. Two different field-testing
campaigns were conducted. In between these two campaigns, there was a “hiatus” period
during which the experimental results from the first testing campaign were evaluated.
During this “hiatus” period, any modifications needed for the field-scale system were im-
plemented, and additional quantities of membranes and adsorbents were prepared for use
during the second testing period. The data collected during both testing periods were used
to quantify the CO conversion and H2/CO2 recovery and purity to provide the empirical
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information needed to complete the final process TEA (see further discussion below in this
paper). A key focus of the field testing was the evaluation of the chemical/mechanical
stability of membranes/adsorbents/catalysts following exposure to the various impurities
encountered in real syngas. All three key materials proved robust to the field-testing
environment and conditions.

The first field-testing campaign began with a series of MR-AR experiments intended
to study, in a systematic fashion, the impact of key parameters for the various modes of AR
adsorption and regeneration. In these tests, the syngas was introduced into the MR and
allowed to run long enough for it to stabilize and generate representative gas concentrations
in the reject and permeate streams. After that, the AR beds were switched on, one at a
time, to receive the MR reject gas stream, with or without make-up steam. For all these
preliminary runs, the ARs were allowed to run past the breakthrough point of 1% CO2 in
the outflow stream, in some instances all the way to saturation, in order to generate baseline
data on AR performance beyond the breakthrough level. For AR regeneration, a mixture of
steam and N2 was employed (out of experimental expedience—in a commercial unit, only
steam can be used for the regeneration step), but for some of the runs before initiating the
flow of the steam/N2 gas mixture, in order to provide additional data for model validation,
the bulk phase gas (“fill-gas”) in the AR bed was first bled-off with flowing N2.

The quality of syngas at the testing site was quite variable, and for some of the runs
involving poor-quality syngas, additional steam was added from the make-up steam
system to the MR reject stream prior to being directed into the AR unit. The results from
one of the runs are shown in Figure 9, which shows the CO2 concentration in the exit stream
from one of the ARs (AR A) during the adsorption/reaction and regeneration parts of the
experiment. For this experiment, the temperature of the MR oven was kept at ~254 ◦C
and the pressure at 238 psig (17.4 bar). The syngas feed composition for the duration
of the experiment was (H2 = 15.8%, N2 =25.3%, CO = 18.4%, and CO2 = 40.5%), its flow
rate was 1.41 scfm (39.93 slpm), and the steam flow rate 0.89 scfm (25.20 slpm). During
the adsorption/reaction part of the cycle, the reactor wall temperature (measured at the
midpoint of the reactor) was set at 265 ◦C, the pressure was 254 psig (18.51 bar), and the
MR reject stream was augmented with a steam flow of 1.52 scfm (43.04 slpm). During the
regeneration, the reactor wall temperature was set to 265 ◦C, the pressure was 250 psig
(18.25 bar), and the regeneration gas stream consisted of 0.25 scfm (7.08 slpm) N2 and
2.16 scfm (61.16) steam with an entering temperature of 356 ◦C. The breakthrough time for
the adsorption/reaction part of the cycle (defined as the time when the concentration of
CO2 in the exit stream reached 1%) was ~9.2 min.
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A series of cyclic experiments were conducted with the goal of understanding the
MR behavior and validating the kinetics and models developed during the lab-scale study
and Phase I of this project. A key challenge here, in terms of being able to compare model
results with experiments, was to identify conditions for which gasifier performance was
stable and the syngas feed composition stayed relatively constant. Figure 10 shows the
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data from one of these experiments during a time period for which the syngas composition
stayed relatively stable.
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Table 1 compares the experimental MR CO conversion with the MR model predictions
for the data shown in Figure 10. The experimental conversion data and the model predic-
tions, as well as the operating conditions for three other experiments carried out on different
dates during periods for which gasifier performance remained relatively stable, are also
shown in Table 1. Comparing the measured and simulated MR CO conversions for all four
datasets in Table 1 shows that the MR model does a good job of predicting the experimental
MR CO conversions. The relatively small differences between the experimental values and
the model conversion can be attributed to the uncertainty in determining the experimental
values due to the variability of the feed compositions, as noted above.

Table 1. MR CO conversions, measured vs. simulated.

Dataset Average Feed Composition
[CO/CO2/H2/H2O/N2]

Feed
Pressure

[psig]
Temp.
[◦C]

Flow Rate
[scfm]

Measured MR CO
Conv.
[%]

Simulated
MR CO Conv.

12-9 23.99/36.25/21.13/7.57/11.06 285 250 0.482 53 46

12-13 16.35/38.75/16.57/25.84/2.49 249 240 0.585 39 41

12-14 12.75/32.76/13.90/30.10/10.49 255 249 0.614 51 52

12-15 14.58/29.90/14.37/29.87/11.28 245 263 0.626 52 46
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One of the key objectives for the testing of the MR component of the MR-AR system
was validating membrane performance stability. During the MR experiments described
above, when the opportunity arose (e.g., no syngas available from the gasifier), the mem-
brane permeation properties were tested with single-gas permeation experiments with He
(serving as surrogate gas for H2) and N2 (as surrogate gas for CO). The single-component
membrane permeation data are shown in Figure 11, indicating no significant performance
degradation after ~25 h of syngas exposure. Post-mortem tests have also been performed
with several of the membrane modules utilized in the field study, which similarly showed
no signs of performance degradation.
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Several experimental runs were also carried out specifically focused on investigating
AR performance during cyclic operation. In order to efficiently utilize the time that the
gasifier was available to the team and exhibited stable performance, for these experiments,
two of the three vessels in the AR A were disconnected from the series of reactors, with
the remaining single-vessel AR A unit then being used for the cyclic behavior studies. To
accommodate this change, the MR-AR system was re-configured for AR A to receive only
a fraction (~30%) of the MR reject stream as feed for the adsorption–regeneration cyclic
tests. For these cyclic tests, the adsorption run was carried out for ~8 min, which is less
than the CO2 breakthrough time, after which the AR A was switched to regeneration mode
for ~40–45 min. The exit CO and CO2 concentrations during a few consecutive cycles for
one of the cyclic tests are shown in Figure 12.

For the cyclic run in Figure 12, the CO2 concentration reached periodic behavior by
the 4th cycle and peaked at approximately 45%. This is consistent with modeling studies
also showing periodic behavior by the fourth cycle of the run (e.g., Figure 3). The CO peaks
observed at the start of each regeneration step were the direct result of flushing off of the
residual (unreacted) CO remaining at the end of the preceding adsorption step.

After the completion of the first testing campaign, several key design modifications
were made to the MR-AR skid for enhanced performance and data collection. They
included adding overtemperature thermocouples and additional flow control measures
to the AR feed gas plumbing. “Quick to NDIR” ports were added for the MR section of
the skid, secondary thermocouple logging equipment was either repaired or replaced, and
the ARs were replumbed. The new thermocouples were connected to overtemperature
switches, which were intended to shut off the syngas supply to the MR-AR skid if they read
overtemperature or detected a faulty operation. This was in response to over-temperature
conditions experienced, on one occasion, during the first testing campaign due to probable
oxygen infiltration into the syngas from the gasifier. The primary modification to the
MR-AR skid prior to the second testing campaign involved reducing the number of beds
in series in each AR from 3 to 2 and reconfiguring the heater of the third bed as an in-line
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heater in between the two AR beds in series. This modification significantly improved the
efficiency of the regeneration step.
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During the second testing campaign, MR, MR-AR experiments and CO2 breakthrough
tests were carried out using both syngas and pure CO2 streams. The MR tests were carried
out in a seven-tube membrane bundle running in a vertical orientation to avoid vibration-
induced damage, which was discovered to be a problem in some instances during the first
testing campaign when placing the membrane module in a horizontal position inside the
oven. The membrane surface area for the bundle was 0.031 m2 and the reactor contained
635 g of the catalyst. Table 2 compares the experimental MR CO conversions with the
multi-scale model predictions under the same operating conditions (the experimental data
in the second and third rows were generated during the same run, but at different times of
the day during which the syngas compositions from the two gasifiers were quite different
from each other). A comparison of the measured and simulated MR CO conversions for
the various datasets shows close agreement with the results.

Table 2. MR CO conversions, measured vs. simulated.

Dataset Average Feed Composition
[CO/CO2/H2/H2O/N2]

Feed
Pressure

[psig]
Temp.
[◦C]

Flow Rate
[scfm]

Measured MR CO
Conv.
[%]

Simulated
MR CO Conv.

1st MR Test 15.29/37.09/15.19/22.94/9.49 258 265 0.328 35 34

2nd MR Test
15.73/30.80/16.19/23.60/13.68 255 265 0.284 32 30

9.34/24.12/9.05/37.37/20.12 220 265 0.284 75 74

Several MR-AR cyclic tests were also carried out using the same vertical seven-tube
bundle, with a surface area of 0.031 m2 and a catalyst loading of 635 g. Prior to each run,
the AR beds were regenerated with steam and flushed out with N2 to remove any residual
gases. For the reaction–adsorption run using syngas, only a portion (~40%) of the MR reject
stream was fed to the AR. The AR A beds contained 451.8 g of the catalyst and 3505 g of the
adsorbent, while the AR B beds contained 615 g of the catalyst and 3325 g of the adsorbent.

Figure 13 shows the total carbon in the form of CO and CO2 fed to the MR and
the corresponding total carbon detected at the MR reject-side exit once steady-state MR
operation was obtained for one of these runs. For this run, the syngas composition remained
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fairly constant at (dry basis) H2: 28.37%, N2: 14.19%, CO: 26.12%, CO2: 30.95%, and
H2S/CS2: 0.37%. After steady-state behavior was established, the average feed pressure,
temperature, and flow rate (dry basis) were 230 psig (16.87 bar), 251 ◦C, and 9.633 slpm,
respectively. The fact that, essentially, all the carbon in the syngas fed to the MR is recovered
in the MR reject-side exit confirms that a negligible amount of carbon permeates through the
membrane, thus ensuring high H2 purity for the MR permeate stream, and it is consistent
with the high H2 permselectivity of the CMSM.
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Figure 14 shows the performance of one of the ARs (AR B) during one of the cyclic
runs. For this experiment, the syngas composition was fairly stable during the day of the
experiment (dry basis, H2: 21%, N2: 35%, CO: 14%, CO2: 30%), the dry MR feed flow
rate was ~23 slpm, the MR feed steam flow rate ranged between 9 and 11 slpm, and the
feed pressure and temperature were 231 psig (16.93 bar) and 268 ◦C, respectively (at these
conditions, the MR CO conversion was ~45%). Prior to each cyclic run, the beds were
regenerated/flushed with N2/steam to remove any entrained gases. The AR A (AR B)
beds contained a total catalyst mass of 451.8 g (615 g) and a total adsorbent mass of 3505 g
(3325 g), as noted previously. Before the start of the cyclic runs, pure CO2 was fed at a
predetermined pressure of ~10 psig (1.69 bar) to pre-saturate the beds, until the AR inlet
and outlet CO2 concentrations were the same. The pure CO2 feed pressure was chosen
to be approximately equal to the predicted (from the AR multi-scale model) CO2 partial
pressure throughout the AR bed at the end of the AR regeneration phase when long-term
AR behavior has been established. Pre-loading the bed with CO2 in this manner was
intended to hasten the establishment of the long-term behavior in the AR, prior to the
initiation of the cyclic testing.

The AR feed pressure was 185 psig (13.76 bar) and the Wads/FCO2 (ratio of the weight
of adsorbent to the CO2 feed molar flow rate) was set at 4250 g/slpm, which meant that
only a fraction of the reject stream of the MR was used as feed for the ARs. Each AR cycle
run consisted of an adsorption phase of 20 min, followed by a regeneration phase of 20 min.
Regeneration was carried out using a mixture of steam at a flow rate of ~37 slpm at 400 ◦C,
and N2 at a flow rate of ~6 slpm. Figure 14 shows the CO/CO2 concentration data for
AR-B for which steady cyclic behavior is established after four cycles, in agreement with
the results of the multi-scale model.
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2.3. Post-Mortem Materials Characterization

Upon completion of the second testing campaign, spent adsorbents and catalysts were
tested for their activity and attrition characteristics. For the testing of catalyst activity, after
the completion of the tests at CAER, the catalyst was removed from the MR vessel and
tested for its activity in a lab-scale reactor at M&PT (during the transfer step, the catalyst
was kept under a N2 atmosphere to avoid exposure to air since it is pyrophoric), employing
simulated syngas. Prior to installing the catalyst inside the MR operating at CAER for the
experimental testing to commence, the catalyst activity had been tested with simulated
syngas in the same lab-scale reactor at the M&PT laboratories. The results of the spent
catalyst indicated that its activity has remained quite stable and unaffected by the exposure
to the gasifier syngas, which is in line with the findings of the laboratory study.

To enable catalyst and adsorbent pellet attrition testing, one of the AR vessels (Ves-
sel 3, from AR A) was removed from the MR-AR skid to collect the used catalyst and
adsorbent pellets to examine their attrition characteristics. At the time, the vessel was
removed from the skid for catalyst and adsorbent pellet testing and it had undergone
38 adsorption/regeneration cycles and had been subjected to 165 h of cumulative syngas ex-
posure. Visually, the used pellets appeared to be intact and similar in size and texture to the
original pellets. For attrition testing, a modified version of the ASTM attrition method was
used. While the rotating drum test is considered the standard method for testing catalysts,
adsorbents, and other pelletized materials, the adsorbent/catalyst pellets being used in this
project were exposed to other stressors: thermal/hydrothermal cycling and exposure to
sulfur and heavy metal components. The attrition testing in the project, therefore, followed
the ASTM method except for replacing the drum test with syngas exposure/cycling. The
850 µm screen was used as the determining cut-off for the attrition testing. The results of
these tests indicated that the adsorbent shows the highest attrition rate (~0.16) with the
catalyst showing a much smaller rate (~0.036), both meeting the attrition rate target of
0.2 set forth by DOE. Testing of the surface area for the used pellets showed no significant
change from the unused adsorbent pellets.

2.4. Detailed TEA Study

Upon completion of the field-testing of the MR-AR process and based on the experi-
mental performance of the field-scale system, a TEA study of the proposed MR-AR IGCC
plant was carried out and compared to a reference IGCC plant with CCS (Case B5B of the
reference document “Cost and Performance Baseline for Fossil Energy Plants—Volume 1:
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Bituminous Coal (IGCC) to Electricity. 24 September 2019”). The major differences between
the MR-AR IGCC plant and the reference/baseline plant (Case B5B) are as follows:

• MRs and ARs replace the WGS reactors in the syngas clean-up (reaction) section of the
plant. The MRs feature simultaneous H2 and CO2 generation and H2 removal, while
the ARs feature simultaneous H2 and CO2 generation and CO2 removal.

• H2 and CO2 removal is facilitated by multidirectional steam flows during MR opera-
tion and AR regeneration, respectively.

• A single-stage Selexol unit is employed in the MR-AR IGCC plant for H2S removal
only, as opposed to a dual-stage Selexol unit employed in the baseline case for both
CO2 and H2S removal.

• Several of the MR-AR IGCC case studies presented feature elevated syngas humid-
ification, which leads to the generation of humidified H2, whose combustion in the
combustion turbine (CT) occurs at reduced temperatures and to the production of
saleable N2 that is generated in the Air Separation Unit (ASU).

• A case study also involves ASU modification for the production and sale of both N2
and Ar.

The MR-AR section of the MR-AR IGCC plant was designed based on the simulation
results of the experimentally validated multi-scale model, but apart from the modifications
listed above, the other subsystems of the MR-AR IGCC plant are identical to those of the
baseline plant, Case B5B, with little to no modification. In carrying out the detailed TEA,
the following assumptions were utilized based on the reference plant:

• A capacity factor (CF) of 80% was used for the MR-AR IGCC plant.
• The combustion turbine (CT) operating philosophy is 2 × 232 MWe for a gross output

of 464 MWe.
• Air pollution controls meet the applicable New Source Performance Standard (NSPS)

targets for sulfur dioxide (SO2) [0.40 lb/MWh-gross], nitrogen oxides (NOx)
[0.70 lb/MWh-gross], and particulate matter (PM) [0.07 lb/MWh-gross]. Mercury (Hg)
and HCl removal devices meet the Utility Mercury and Air Toxics Standard (MATS)
targets of [3 × 10−6 lb/MWh-gross] and [0.002 lb/MWh-gross], respectively. To meet
these standards, H2S is converted into elemental sulfur in a Claus plant with tail gas
recycle to limit SO2 emissions; NOx is minimized with the use of low-NOx burners
(LNBs) and N2 dilution, as well as with syngas humidification; PM is controlled via
water quench and the use of a syngas scrubber and a cyclone; Hg is controlled via
sulfur-impregnated carbon beds; HCl is removed from the syngas scrubber with a
brine concentrator and crystallizer.

• CO2 capture is greater than or equal to 90%.
• Steady-state process simulations with material and energy balances were used to size

various process equipment for cost estimation.
• Capital and operating cost estimates are reported in 2018 dollars.
• The levelized price of coal (Illinois No. 6, Midwest) is $2.11/GJ on a higher heating

value (HHV) basis and CO2 transport and storage (T&S) cost is $10/tonne ($9/ton).

Table S3 gives the overall performance of the MR-AR IGCC plant. The MR-AR IGCC
power plant produces a net power output of 586 MW at a net plant efficiency of 35.5% (HHV
basis). Table S4 gives the MR-AR plant levelized cost of electricity (LCOE) breakdown. The
LCOE of the MR-AR plant, excluding CO2 T&S, is 130.7 $/MWh, compared to the baseline
plant value of 144.2 $/MWh. In the MR-AR IGCC plant, steam is used to reduce the CT
firing temperature; therefore, N2 is available as a saleable product. As a result, the N2
compression power requirement (36.58 MWe) can be eliminated. The elimination of the N2
compression power requirement results in a net power production of 623 MWe. The ASU
produces 588 ton/h of 99.6% pure N2, of which 576 ton/h is available for sale at $30/ton.
The remainder is used as a stripping medium in the AGR (single-stage Selexol) unit. If N2
sale is not possible (e.g., in the absence of a local market for N2—it is envisaged that the N2
market will grow largely due to its use in blue ammonia production, as demonstrated in
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Saudi Arabia and Japan), N2 can be used for CT firing temperature dilution, and in this case,
N2 compression costs are reintroduced. The LCOE breakdown for N2 sales with/without
N2 compression is shown in Table S5. If N2 is compressed but not sold, then the plant’s
LCOE is the same as that shown in Table S4.

An alternative is to incorporate another high-purity separation unit in the ASU that
can deliver high-purity Ar. The process can then generate approximately 10,000 kg/h of
Ar, which, at present, can be sold at a price of 4.0–6.0 $/kg. In this price range, the plant
would generate an additional $280,320,000–$420,480,000 of revenue per year. However,
modifying the ASU to separate high-purity Ar would incur increased capital (20%) and
fixed operating (7%) costs. Increasing the capital cost of the ASU by 20% adds an additional
$21,217,200 to the capital cost, which translates to $0.3659/MWh ($0.3441/MWh) for a net
MR-AR power production of 586 MWe (623 MWe). If we assume the most extreme case, in
which all the fixed operating costs are due to the ASU, then the maximum increase in the
fixed operating cost is $7,412,800, which translates to $1.808/MWh ($1.701/MWh) for a net
MR-AR power production of 586 MWe (623 MWe). The resulting COE for this case, which
accounts for Ar sales at $4.0/kg, is shown in Table S6. The CO2 capture costs are shown in
Table 3 for the various scenarios of the MR-AR IGCC plant.

Table 3. CO2 capture costs.

Net Power LCOE (Excluding T&S) CO2 Captured Cost of CO2 Captured

Plant MW $/MWh tonne/MWh $/tonne

Reference Non-capture
Plant COE * 650 64.4 - -

Baseline IGCC Plant
COE (Case B5B) 556 144.2 0.814 98.06

MR-AR IGCC Plant
(with N2 Compression) 585 130.7 0.823 80.60

MR-AR IGCC Plant with
N2 Sales @ $30/ton (with

N2 Compression)
586 101.2 0.823 44.76

MR-AR IGCC Plant with
N2 Sales @ $30/ton (with

no N2 Compression)
623 95.3 0.774 39.87

MR-AR IGCC Plant with
Ar Sales @ $4.0/kg (with

N2 Compression)
586 64.6 0.823 0.27

MR-AR IGCC Plant with
Ar Sales @ $4.0/kg (with

no N2 Compression)
623 60.8 0.774 −4.62

* The reference non-capture plant for the purpose of calculating the cost of CO2 captured is supercritical pulverized
coal (SCPC) plant without capture (case B12A of reference document).

Two critical technology parameters are affecting the COE in the TEA: the membrane
lifespan and the sale price of N2 from the ASU. The membrane lifespan assumed for the
TEA presented above is 10 years. A 5-year lifespan would increase the LCOE of the plant by
0.63% (0.60%), while a 2-year lifespan would increase the LCOE by 2.53% (2.40%), compared
to a 10-year lifespan for 586 MWe (623 MWe) net power production. The modular nature of
the MR process, which consists of several identical MR subunits, provides “economies of
numbers” since the worst scenario of the 2-year membrane lifespan becomes less likely to
occur in all MR subunits. The ASU produces 588 ton/h of pure N2, of which 576 ton/h
could be sold at approximately $30/ton. However, the cost of semi-pure (99%) bulk N2 has
been quoted at approximately $414/ton by different N2 providers such as Praxair and West
Air Gas. This value accounts for transportation, storage, and delivery costs, however. If N2
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was to be sold at $1/ton, this would mean the MR-AR design’s LCOE is 10.04% (15.32%)
lower than the baseline LCOE for a net power production of 586 MWe (623 MWe). A N2
sale price of $414/ton would result in negative LCOE.

Therefore, in summary, when compared to the baseline IGCC plant (case B5B), the
MR-AR plant with N2 sales at $30/ton (no N2 compression) achieves a higher carbon
capture rate (96% vs. 90%), a higher net power production (623 MWe vs. 556 MWe),
lower CO2 capture costs (39.9 $/tonne vs. 98.1 $/tonne), and lower LCOE (95.3 $/MWh
vs. 144.2 $/MWh). When Ar is sold for $4.0/kg (no N2 compression scenario), the CO2
capture costs and LCOE are −4.6 $/tonne and 60.8 $/MWh, respectively. A summary of
key performance indices for all cases is presented in Table 4.

Table 4. Overall performance comparison of the baseline and MR-AR IGCC plant.

Case B5B
(Baseline)

MR-AR with N2
Compression

MR-AR (N2 Sale
@ $30/ton, No N2

Compression)

MR-AR (N2 Sale
@ $30/ton, N2
Compression)

MR-AR (Ar Sale
@ $4.0/kg, No N2

Compression)

MR-AR (Ar Sale
@ $4.0/kg, N2
Compression)

Target

Carbon Capture 90% 96% 96% 96% 96% 96% N/A

CO2 Purity 99.5% 99.9% 99.9% 99.9% 99.9% 99.9% 95.0%

Net power Production
(MWe) 556 586 623 586 623 586 N/A

LCOE (Excluding T&S),
$/MWh 144.2 130.7 95.3 101.2 60.8 64.6 100.9

CO2 Captured Cost,
$/tonne 98.1 84.7 41.3 46.5 −4.6 0.3 N/A

3. Conclusions

The overarching objective of this field-scale study was to field-validate the technical
feasibility of a membrane- and adsorption-enhanced WGS reaction process that employed a
CMSM-based MR followed by an AR for pre-combustion CO2 capture while demonstrating
progress towards achievement of the overall performance goals of CO2 capture with 95%
CO2 purity at a COE of 30% less than the baseline capture approaches. The main goal of
this field-scale project was to advance the technology readiness level (TRL) of the proposed
MR-AR transformative CO2 capture technology on its way to further pilot-scale testing.
The project began at TRL 4, as the system prototype had already been validated in the
laboratory on simulated syngas. The project ended at TRL 5, via scaling up of the prototype
system and testing it on actual syngas at a host site (CAER at the UKy).

The project was carried out in two different phases. In Phase I, the team designed,
constructed, and assembled the field-scale experimental MR-AR system, prepared the
membranes, adsorbents, and catalysts, tested the field-scale unit with simulated syngas
to validate functionality, and prepared a preliminary TEA of the technology. In Phase
II, the team installed the unit at the test site at the UKy site and completed all utility
connections and hook-ups, field-tested the novel MR-AR process in the field-scale system
using real syngas, collected and analyzed experimental data, and completed a detailed
TEA of the technology. A key aim of the project was to identify and address the technical
and process risks and to generate information to advance the technology to the next stage
of development.

All project milestones and success criteria were met. Specifically, (i) we prepared
high-performance CMSM tubes that met the target H2 permeance (>1 m3/(m2.h.bar) or
(>370.3 GPU)) and the target H2/CO selectivity of >80 at the relevant temperature (up
to 300 ◦C) and pressure conditions (up to 25 bar) with a <10% decline in performance
over each 250 h testing period; (ii) we prepared a sufficient quantity for the field testing of
pelletized adsorbent for use in relevant conditions (250 ◦C < T < 450 ◦C, pressures of up to
25 bar) with a target adsorbent working capacity of >2.5wt.% and a target sorbent attrition
rate of < 0.2; and (iii) updated the TEA of the process based on field-scale data to show that
the proposed MR-AR IGCC technology met CO2 capture goals of 95% CO2 purity at a COE
30% less than baseline capture approaches.
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The CMSM, HTC adsorbents, and catalysts employed all exhibited very robust and
stable performances during the long-term run (over a >250 h live syngas run). Furthermore,
the proposed MR-AR IGCC system achieved a LCOE with a N2 sale price of $30/ton, with
N2 compression (no N2 compression) of 101.2 $/MWh (95.3 $/MWh), which represents a
29.8% (33.9%) LCOE reduction in the baseline IGCC with carbon capture of 144.2 $/MWh.
The proposed MR-AR IGCC delivers a CO2 capture cost of 44.8 $/tonne (39.9 $/tonne)
vs. 98.1 $/tonne of the baseline capture case and a net power production of 586 MWe
(623 MWe) vs. 556 MWe of the baseline capture case.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/membranes14020051/s1, Figure S1: P&ID of the MR and the
main oven. Figure S2: P&ID of the AR component. Table S1: AR design parameters and operating
conditions (adsorption/regeneration). Table S2: AR adsorption test-run parameters. Table S3: MR-AR
IGCC plant performance summary. Table S4: MR-AR plant LCOE breakdown. Table S5: MR-AR
plant LCOE breakdown with N2 sale @ $30/ton, with/without N2 compression. Table S6: MR-AR
plant LCOE breakdown with Ar sales @ $4.0/kg, with/without N2 compression, and a 20% and 7%
increase in ASU capital cost and fixed operating cost, respectively.
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