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Abstract: Pervaporation is an energy-efficient alternative to conventional distillation for water/alcohol
separations. In this work, a novel CHA zeolite membrane with an increased Si/Al ratio was synthe-
sized in the absence of organic templates for the first time. Nanosized high-silica zeolite (SSZ-13)
seeds were used for the secondary growth of the membrane. The separation performance of mem-
branes in different alcohol–aqueous mixtures was measured. The effects of water content in the feed
and the temperature on the separation performance using pervaporation and vapor permeation were
also studied. The best membrane showed a water/ethanol separation factor above 100,000 and a total
flux of 1.2 kg/(m2 h) at 348 K in a 10 wt.% water–ethanol mixed solution. A membrane with high
performance and an increased Si/Al ratio is promising for the application of alcohol dehydration.

Keywords: pervaporation; vapor permeation; zeolite membrane; template-free; Si-rich CHA zeolite

1. Introduction

Pervaporation (PV) and vapor permeation (VP) are promising alternative technologies
to distillation for the energy-saving separation of azeotropic and near-azeotropic mixtures
such as water/ethanol (EtOH) and water/isopropyl alcohol (IPA) [1–6]. Zeolite membranes
have become the most popular among polymer [7,8], zeolite [9–13], and silica [14,15] mem-
branes because of their excellent separation performance and improved hydrothermal
stability. Sodium A (NaA) zeolite membranes with LTA framework had been commer-
cialized for the PV and VP dehydration of water/alcohol mixtures [16,17]. It is a popular
rule that the resistance of a zeolite to water steam and acids increases, but hydrophilicity
decreases as the Si/Al ratio in the zeolite increases [18–21]. NaA zeolites possess the
lowest Si/Al ratio, close to 1, suggesting that NaA zeolite membranes could display high
dehydration performance but limited stability under hydrothermal and acidic conditions.
It was also proven via evidence in the literature that NaA zeolite membranes were not
stable in a mixture with water higher than 30% at high temperatures, or a mixture with a
few acetic acids [22,23]. FAU zeolite membranes with Si/Al ratios of 1–3 displayed high
water fluxes but relatively low selectivities, because the size of their 12-member-ring pore
of 0.74 nm × 0.74 nm was larger than the diameters of water and EtOH (or IPA). Similarly,
mordenite and ZSM-5 membranes displayed relatively low water/alcohol separation fac-
tors because their pore sizes were larger than the kinetic diameters of water and alcohols,
even if they displayed good resistance to acids, because Si/Al ratios in their frameworks
(5–10) were higher than that in FAU and LTA zeolite frameworks. Zeolite T (an intergrown
zeolite of erionite and offretite) membranes with Si/Al ratios of 3–4 were stable in the weak
acids with a pH value larger than 3 [24,25].

The CHA zeolite framework has 3D and interconnected channels with a window
size of 0.38 nm × 0.38 nm. The straight and 8-member-ring pores enable CHA zeolite
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membranes to display excellent water (0.28 nm) selectivity by size exclusion over methanol
(0.38 nm), EtOH (0.44 nm), and IPA (0.58 nm) when it grows to a continuous and uniform
membrane. Chabazite membranes with a Si/Al ratio of 2–3.5 were normally prepared
using the template-free route. Gu et.al. [18,26,27] reported that they synthesized high-flux
chabazite membranes with a Si/Al ratio of 2.8 from a clear solution. The membrane showed
a water flux of 13.3 kg/(m2 h) and a separation factor of 6000 for the PV dehydration of
10 wt.% water/EtOH mixture at 348 K. Furthermore, a chabazite membrane with a Si/Al
ratio of 3.2 displayed a total flux of 4.1 kg/(m2 h) and a separation factor of 39,500, as
reported by Hasegawa et al. [28]. These results show that CHA zeolite membranes are
suitable for the dehydration of alcohols.

Increasing the Si/Al ratio of CHA zeolite membranes in the absence of an organic
template is very difficult [29]. In our previous study, a high-silica CHA zeolite membrane
(known as SSZ-13) with a Si/Al ratio of ~12 prepared with an organic template displayed
an excellent water/acetic acid selectivity of over 10,000 in the water/acetic mixture with
a pH of less than 2 [30]. These results further confirm that the stability against acidic
and hydrothermal corrosion has a singly positive correlation with the Si/Al ratio in the
zeolite framework. Moreover, the results suggest that the water/organic selectivity of a
zeolite membrane is related not only to the Si/Al ratio, but also to the density of defect
pores. When the pore size of zeolite membranes is between water and organic molecules
(CHA zeolites for example), a defect-free high-silica zeolite membrane could still display a
high water/organic selectivity [31]. Therefore, it is reasonable to construct a CHA zeolite
membrane with an increased Si/Al ratio but low defect density in order to increase its
hydrothermal and acidic stabilities, while maintaining high water/organic selectivities.

In this current study, a novel CHA zeolite membrane with a Si/Al ratio above 5 has
been prepared in the absence of an organic template with the assistance of high-silica CHA
(SSZ-13) seeds for the first time. Different alkalis, cesium hydroxide and sodium hydroxide,
were used to replace the normal alkalis of sodium hydroxide and potassium hydroxide.
The separation performance of the current CHA zeolite membranes was measured in
water/methanol, water/EtOH, and water/IPA mixtures as a function of temperature via
PV and VP experiments. The water/ethanol separation factor of the typical CHA zeolite
membrane is above 100,000, which is even higher than that of the normal low-silica CHA
zeolite membranes. Our findings suggest that the current high-performance CHA zeolite
membranes with an increased Si/Al ratio should display promising prospects in actual
applications in the field of water/organic separation.

2. Materials and Methods
2.1. Synthesis Procedure for CHA Zeolite Membranes

CHA zeolite membranes were prepared using an organic template-free recipe with a
molar composition of 11.0 SiO2: 2.0 Al (OH)3: 0.8 CsOH: 6.0 NaOH: 3.0 NaF: 600 H2O. The
addition of cesium hydroxide, CsOH, was used to increase the mineralization ability of the
gel, since CsOH has a strong alkalinity. For a typical synthesis, 3.9 g of aluminum hydroxide
(99%, Wako, Osaka, Japan) was added in a solution containing 6.1 g of sodium hydroxide
(96%, Sinopharm, Beijing, China), 6.0 g of cesium hydroxide (Sigma-Aldrich, St. Louis,
MO, USA, 50 wt.% in water), and 40.0 g of deionized water (homemade). The solution
was heated and stirred until all the aluminum source was fully dissolved. When cooling
to ambient temperature, 3.2 g of sodium fluoride (99%, Sinopharm Chemical Reagent
Co., Ltd. China), 41.0 g of colloidal silica (LUDOX HS-40, 40 wt.% aqueous suspension,
Sigma-Aldrich), and 203 g of deionized water (homemade) were added to the aluminate
solution one-by-one. An emulsion hydrogel was obtained by stirring the mixture for 24 h
aging at room temperature.

Tubular α-alumina supports, which had an asymmetric structure with a 200 nm
pore size (thickness of about 20 µm) and a 1.0 µm pore microporous alumina body, were
provided by Jiangsu Membrane Park Co., Nanjing, China. CHA zeolite membranes were
synthesized by secondary growth on the outer surface of a 10 cm long α-alumina support.
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High-silica SSZ-13 seeds, which possess the same CHA framework as the current CHA
zeolite membranes, were used to induce the formation of CHA zeolite membranes with
an increased Si/Al ratio in the framework. The outer surface of the tubular support was
coated with commercial nanosized SSZ-13 seeds (Dalian Zhuoran Tech. Co., Dalian, China,
Si/Al ratio of 14.2) by rub-coating. The supports were wetted with EtOH before rub-coating
and the wetted support was rolled in the dry seed powders. Then, the fingers wiped all
areas of the outer surface of the tube back and forth for about 1.0 min to ensure seeds
were coated on all areas of the support. Approximately 300 g of gel was added into a
Teflon-lined autoclave. And then, the secondary growth of a membrane was carried out for
24–72 h at 423 K. After the reaction, the autoclave was cooled to ambient temperatures with
tap water and the membrane was removed from the autoclave and washed several times
with deionized water until the solution becomes neutral. Subsequently, the membranes
were dried.

2.2. PV and VP Experiments

The as-synthesized membranes were measured for separation at 10/90 wt.% H2O/
EtOH, 10/90 wt.% H2O/IPA, and 10/90 wt.% and 30/70 wt.% H2O/MeOH via PV and
VP experiments. The PV experimental setup is shown in Figure 1. The liquid mixture was
pumped to a preheating cell, to the set temperature, using a piston pump and then went
through a membrane module, a cooling tank, and, finally, back to the feed tank. After
reaching and stabilizing the desired temperature, the feed was directed to the membrane
module via the three-way valve. The temperature of the feed was regulated, using thermo-
couples and temperature regulators, from room temperature to 150 ◦C. The retentate was
condensed and returned to the feed tank. The permeate line was vacuumed to less than
100 Pa and the permeated vapor was iced in a cold trap filled with liquid nitrogen.
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Figure 1. Schematic diagram of the PV experimental setup.

The VP experimental setup is shown in Figure 2. Before the VP experiments, the
membrane was sealed. One end of the membrane was obstructed with a metal plug and the
other end was connected to a glass tube using vacuum silicone grease and silicon rubber
tubes. And then, the silicone tube was attached to a vacuum side. The liquid with a volume
of about 500 mL in the three-necked flask was heated to the boiling point using a hot
plate and then the vapor was further heated using a heating jacket to the set temperature
(above boiling point), according to the gas–liquid equilibrium phase diagram of alcohol
and water. Since the membrane is grown on the out surface of the tubular support, the
membrane surface can easily contact the vapor directly. The vapor rose and then entered
a water-cooling condenser to become liquid before flowing back to the flask via gravity.
The condensed liquid mixture from the retentate could be collected through a three-way
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valve and was used to analyze the composition of the feed vapor mixture. The pressure
in the three-mouthed flask is close to atmospheric pressure. A gas chromatograph (GC,
GC-2014A, Shimadzu, Kyoto, Japan) was used to analyze the feed and permeate samples
in the PV and VP tests.
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The separation factor α, which is expressed by the mole fractions of the components in
the feed and the permeate, respectively, is given in Equation (1). The permeation flux of
each component or the total, J, which is expressed as the permeation amount in weight of
each component or the total through the membrane per units of membrane area and time,
is given in Equation (2).

αi/j =
yi/yj
xi/xj

(1)

J =
W
A·t (2)

where yi, yj, xi, and xj are weight fractions of component i (water) and component j (organic)
in the permeate and feed, respectively. The samples of the permeate and feed were analyzed
using the gas chromatograph (GC, GC-2014A, Shimadzu). A, w, and t are the membrane
area (m2), the weight of permeating mass of each component or the total (kg), and the test
time (h), respectively. The mass weight of the substance in the permeate side is obtained
by weighing them on a balance. The more substances collected through the membrane on
the permeate side per hour, the greater the flux of the membrane. The higher the flux and
selectivity, the better the separation performance of the membrane.

2.3. Characterization

The morphologies and Si/Al ratios of zeolite membranes were characterized using
Field Emission Scanning Electron Microscopy (FE-SEM, S-4800, Hitachi, Tokyo, Japan)
with Cu-Kα radiation and an Energy Dispersive x-ray Detector (EDX, EMAX x-act, Horiba,
Kyoto, Japan). The crystal phases and crystallinities were identified using X-ray diffraction
(XRD) (Mini Flex 600, Rigaku, Tokyo, Japan).

3. Results and Discussion
3.1. Membrane Preparation

To investigate the effects of reaction time on the growth of CHA zeolite membranes,
membrane samples were comparably prepared by secondary growth at 423 K for 24–72 h.
The XRD results in Figure 3 show that CHA zeolite membranes can be obtained for 24–72 h.
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It was well known that the crystallinity of zeolite always increased with the increase in
synthesis time, until equilibrium is reached. For zeolite membranes, membrane thickness
always increased with the extension of synthesis time before the dissolution was domi-
nated. The characteristic peaks of the CHA zeolite increase with increasing synthesis time,
indicating that crystallinity and the thickness of the membrane increase with the extension
of synthesis time.
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Figure 4 displays SEM images of CHA zeolite membranes fabricated for various
reaction times. A lot of walnut-shaped crystals were intergrown on the outer surface of
the support. The walnut shape of the crystals in these membranes is the typical one, as
has been reported in the literature [18,20]. However, the inter-crystalline pinhole defects
were evident in the membrane layer, indicating that this membrane was discontinuous
after only 24 h of synthesis (Figure 4d). The intergrowth behavior was improved and the
membrane thickness increased from 2.9 to 10.2 µm, as reaction time was prolonged from
24 to 72 h (Figure 4c–j). A continuous and dense membrane with a thickness of 4.5 µm was
formed after 48 h of synthesis (Figure 4g,h). Notably, the presence of a conspicuous seed
composite layer close to the support layer (Figure 4d,f,h) demonstrated that the membrane
layer was epitaxially grown upon the seeded layer. CHA zeolite membranes were formed
by epitaxial growth of homogeneous and heterogeneous seed crystals [32–34]. These results
indicated that the different values of the cross section came from the thickness increase,
along with synthesis time in the time range. The intergrowth behavior was improved
over time. Typically, alkali metal cations play a crucial role as mineralizers or inorganic
structure directing agents during zeolite crystallization [32]. The utilization of cesium
and sodium mixed cations could be a crucial issue to the crystallization of zeolite with
CHA topology [35,36]. The use of mixed cations may promote the efficient nucleation of
amorphous aluminosilicate gel, and the nuclei are subsequently deposited on the seed layer
to facilitate the membrane growth. Ultimately, this process could lead to the formation of a
continuous and dense membrane layer via the epitaxial growth of the seed layer.

EDX analysis was utilized to detect the Si/Al ratio of the CHA zeolite membrane. The
Si/Al ratio of the membrane was 5.3, as shown in Figure 5 and Table 1. The synthesized
CHA zeolite membrane had a higher Si/Al ratio than other CHA zeolite membranes
prepared in the absence of an organic template (Si/Al < 3.5) [26,28]. In this study, the
epitaxial growth of high-silica SSZ-13 seeds (Si/Al = 14.2) induced the formation of CHA
zeolite membranes and led to the formation of membrane layers with an increased Si/Al
ratio (5.3). This is consistent with previous findings that the utilization of zeolite seeds with
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different Si/Al ratios may lead to the formation of membrane layers with different Si/Al
ratios via epitaxial growth [37].
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Table 1. EDX results from Figure 5 for a CHA zeolite membrane prepared under optimized conditions
and SSZ-13 seeds.

Si (Atomic%) Al K (Atomic%) Si/Al Ratio

M3 84.24 15.76 5.3
SSZ-13 seeds 93.41 6.59 14.2

3.2. PV and VP Performance

Table 2 shows the PV performance of these membranes prepared for different syn-
thesis times in a 10/90 wt.% H2O/EtOH mixture. It was found that the flux of CHA
zeolite membranes decreased over the reaction time, due to the increasing thickness of the
membrane. However, H2O/EtOH selectivity had a maximum when the synthesis time
was 48 h. The separation factor decreased when synthesis time increased from 48 to 72 h.
It is mainly attributed to the overgrowth of membrane crystals. The particle size of the
membrane crystals was as large as 10 µm (Figure 4i) and the overgrowth of the membrane
crystals tended to form large inter-crystalline boundary defects [38]. Therefore, 48 h was
the optimal synthesis time for our case. The best membrane, M5, showed a water/EtOH
separation factor larger than 100,000, together with a flux of 1.1 kg/(m2 h) at 348 K in
a 10/90 wt.% H2O/EtOH mixture. Four membranes were prepared under optimized
conditions. All the membranes displayed excellent separation performances, with fluxes of
1.1–1.4 kg/(m2 h) and water/EtOH separation factors higher than 16,000. It suggests that
the template-free synthesis of high-quality CHA zeolite membranes with enhanced Si/Al
ratios is reproducible.

Table 2. Pervaporation performance of membranes fabricated for different times (10/90 wt.%
H2O/EtOH, 348 K).

Sample Synthesis Time
(h)

Permeate
(H2O wt.%)

Flux
[kg/(m2 h)]

Separation
Factor

M1 24 99.79 2.0 4300
M2 36 99.82 1.6 6600
M3 48 99.94 1.1 16,600
M4 48 99.98 1.4 31,600
M5 48 >99.99 1.1 >100,000
M6 48 >99.99 1.2 >100,000
M7 72 99.13 1.0 1000
M8 72 99.25 0.6 1300
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Figure 6 presents the effects of temperature and water content on the flux and sepa-
ration factor of the membranes. As the test temperature rose from 348 (PV state) to 393 K
(VP state), the flux of the membrane increased from 1.1 to 1.8 kg/(m2 h). It is interesting
that the separation factor increased with temperature. The temperature dependence of
the permeation property through zeolite membranes can be described in accordance with
the Arrhenius-type equation [39]. The activated diffusion increased the permeation flux as
feed vapor temperature increased. The water permeation flux through hydrophilic zeolite
membranes was attributed to the combinatory effects of adsorption and diffusion [40].
According to the experimental results (Figure 6), the water flux increased along with tem-
perature. It indicated that the permeation was dominated by activation diffusion through
zeolite pores within the investigated temperature range. The ethanol flux also increased
with increasing temperature, but the upward trend of ethanol was flatter than that of water.
It could be attributed to the fact that the interaction of water–EtOH molecules reduces with
temperature, resulting in an increasing diffusivity of water and increasing inhibition ability
of water against the diffusion of EtOH through the membrane. Therefore, the water/EtOH
separation factor increased. It agreed with the results for NaA membranes, as has been re-
ported in the literature [41]. This result showed that CHA zeolite membranes could achieve
water–alcohol separation over a wide range of temperatures in either pervaporation or
vapor permeation, as shown in Figure 6a. The flux increased with water content in the feed,
as shown in Figure 6b. A reason for this could be that the partial water pressure near the
membrane surface increases with increasing water content in the bulk feed. The separation
factor changed less with feed water content. Please note that the membrane still displayed
a high separation factor even though the feed contained only 5 wt.% water.

Membranes 2024, 14, x FOR PEER REVIEW 8 of 13 
 

Table 2. Pervaporation performance of membranes fabricated for different times (10/90 wt.% 
H2O/EtOH, 348 K). 

Sample 
Synthesis Time 

(h) 
Permeate 

(H2O wt.%) 
Flux 

[kg/(m2 h)] Separation Factor 

M1 24 99.79 2.0 4300 
M2 36 99.82 1.6 6600 
M3 48 99.94 1.1 16,600 
M4 48 99.98 1.4 31,600 
M5 48 >99.99 1.1 >100,000 
M6 48 >99.99 1.2 >100,000 
M7 72 99.13 1.0 1000 
M8 72 99.25 0.6 1300 

Figure 6 presents the effects of temperature and water content on the flux and sepa-
ration factor of the membranes. As the test temperature rose from 348 (PV state) to 393 K 
(VP state), the flux of the membrane increased from 1.1 to 1.8 kg/(m2 h). It is interesting 
that the separation factor increased with temperature. The temperature dependence of 
the permeation property through zeolite membranes can be described in accordance 
with the Arrhenius-type equation [39]. The activated diffusion increased the permeation 
flux as feed vapor temperature increased. The water permeation flux through hydro-
philic zeolite membranes was attributed to the combinatory effects of adsorption and 
diffusion [40]. According to the experimental results (Figure 6), the water flux increased 
along with temperature. It indicated that the permeation was dominated by activation 
diffusion through zeolite pores within the investigated temperature range. The ethanol 
flux also increased with increasing temperature, but the upward trend of ethanol was 
flatter than that of water. It could be attributed to the fact that the interaction of water–
EtOH molecules reduces with temperature, resulting in an increasing diffusivity of wa-
ter and increasing inhibition ability of water against the diffusion of EtOH through the 
membrane. Therefore, the water/EtOH separation factor increased. It agreed with the re-
sults for NaA membranes, as has been reported in the literature [41]. This result showed 
that CHA zeolite membranes could achieve water–alcohol separation over a wide range 
of temperatures in either pervaporation or vapor permeation, as shown in Figure 6a. The 
flux increased with water content in the feed, as shown in Figure 6b. A reason for this 
could be that the partial water pressure near the membrane surface increases with in-
creasing water content in the bulk feed. The separation factor changed less with feed wa-
ter content. Please note that the membrane still displayed a high separation factor even 
though the feed contained only 5 wt.% water. 

  
Figure 6. Water and ethanol fluxes and separation factors of membrane M2 as functions of (a) 
temperature and (b) water content in feed. 

340 350 360 370 380 390 400
0

0.4

0.8

1.2

1.6

2.0
 Flux
 Separation factor

Temperature (K)

Fl
ux

 [k
g/

(m
2  h

)]

(a)

Water

Ethanol

100

101

102

103

104

105

 S
ep

ar
at

io
n 

fa
ct

or

0 10 20 30 40 50
0

0.8

1.6

2.4

3.2

4.0
 Flux
 Separation factor

Water content (wt%)

Fl
ux

 [k
g/

(m
2  h

)]

100

101

102

103

104

105

 S
ep

ar
at

io
n 

fa
ct

or

(b)

Water

Ethanol

Figure 6. Water and ethanol fluxes and separation factors of membrane M2 as functions of
(a) temperature and (b) water content in feed.

Table 3 displays the VP performance of membrane M2 in three binary H2O/MeOH,
H2O/EtOH, and H2O/IPA mixtures. The permeation property of zeolite membranes
is related to the interaction forces between the guest molecules and the zeolite surface,
as well as the forces between the guest molecules [42]. For water/alcohol mixtures, the
small-size and high-polarity water molecules were preferentially adsorbed on the surface
of the hydrophilic CHA zeolite, which may block the entrance of the alcohols in zeolite
pores by the mechanisms of molecular sieving and preferential adsorption. The pore
size of CHA (0.38 nm) is between water molecules (kinetic diameter of 0.27 nm) and
alcohol molecules (methanol: 0.38 nm, ethanol: 0.44 nm, and isopropanol: 0.49 nm),
indicating that the mechanism of molecular sieving benefits the water-selective separation
over the alcohols. On the other hand, CHA zeolite membranes with a Si/Al ratio of 5.3
are still hydrophilic in nature. The water molecules could be preferentially adsorbed
on the surface of CHA pores and pass quickly through the pore channels. The water
molecules that occupy the pores will impede the permeation of the weakly adsorbed
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alcohol molecules, resulting in an excellent dehydration performance of the membrane.
Moreover, the interaction force between isopropanol molecules and CHA pores is rather
weaker than that between ethanol and CHA pores. The permeation of methanol inhibits
the permeation of water molecules, which results in a relatively low flux and separation
factor in the water/methanol mixture. Water molecules tend to occupy CHA pores more
readily in an H2O/IPA system, thereby inhibiting the permeation of isopropanol to a
greater extent. As a result, the flux rose from 0.6 to 2.5 kg/(m2 h) in the following order:
H2O/MeOH < H2O/EtOH < H2O/IPA, which was consistent with the results in some
cases using NaA and CHA zeolite membranes [40,43].

Table 3. VP performance at 378 K of membrane M2 in MeOH, EtOH, and IPA aqueous mixtures.

Feed Perm
(H2O wt.%)

Flux
[kg/(m2 h)] Separation Factor

10/90 wt.% H2O/EtOH 99.7781 1.8 4000
10/90 wt.% H2O/IPA 99.3903 2.5 1500

10/90 wt.% H2O/MeOH 97.7295 0.6 270
30/70 wt.% H2O/MeOH 98.8528 1.7 510

Figure 7 reveals the long-term stability test of CHA zeolite membrane (M3) at 348 K in
a 10/90 wt.% H2O/EtOH mixture for 64 h. The permeated samples were obtained every
2 h. According to the experimental results shown in Figure 7, the membranes maintained
stable flux and separation factors under the test conditions. The flux decreased in the initial
stage, probably because it took time to reach adsorption–desorption equilibrium. Then,
the flux stabilized around 1–1.1 kg/(m2 h) and the water content in the permeate was
consistently above 99.8 wt.% during the investigated period. The excellent water-selectivity
of CHA zeolite membranes, together with their remarkable stability, suggests that it has
great potential for alcohol dehydration.
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Figure 7. Evaluation of long-term stability of CHA zeolite membrane (M3) in a 10/90 wt.%
H2O/EtOH mixture at different temperatures for 64 h.

Figure 8 and Table 4 show the comparison of PV performance between our membranes
and other dehydrated membranes in a 10/90 wt.% H2O/EtOH mixture. Most reported
zeolite membranes for EtOH dehydration were NaA and CHA zeolite membranes with a
Si/Al ratio of less than 3.5. NaA zeolite membranes (Si/Al ratio = 1) displayed a total flux
of 1.65 kg/(m2 h) and a water/EtOH separation factor of 4100 [33]. In this work, template-
free-synthesized CHA zeolite membranes with an increased Si/Al ratio (Si/Al = 5.3) had a
separation factor higher than 100,000 for 10/90 wt.% H2O/EtOH, which was the highest
one among the reported membranes in Figure 8 and Table 4. Although our membrane had a
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higher Si/Al ratio, its low defect density could be the reason for the excellent selectivity for
water/ethanol separation. The separation performance of the membrane was comparable
to the reported ones, as shown in Figure 8 and Table 4. It indicates that our high-quality
CHA zeolite membrane has potential applications for ethanol dehydration, especially for
the purification of ethanol with ultra-high purity requirements, such as the purification of
electronic grade anhydrous ethanol for the semiconductor industry.
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Figure 8. Comparison of PV performance of our membrane M6 with the reported ones in a 10/90 wt.%
H2O/EtOH mixture at 348–353 K.

Table 4. PV performance of our membrane M5 and reported ones in a 10/90 wt.% H2O/EtOH
mixture at 348–353 K.

Membranes Flux
[kg/(m2 h)] Separation Factor References

Cu-LTA 3.52 3600 [44]
Na-LTA 1.65 4100 [44]

NaA 3.82 73,800 [45]
NaA 0.54 >10,000 [46]
Silica 1 800 [47]
CHA 4.14 39,500 [28]
CHA 13.3 6000 [26]
CHA 7.3 2000 [31]
CHA 6 2000 [12]
CHA 1.2 >100,000 This work

4. Conclusions

A novel CHA zeolite membrane with an increased Si/Al ratio of 5.3 was synthesized
using an organic template-free method via the epitaxial growth of high-silica SSZ-13 seeds.
The use of cesium and sodium mixed cations is crucial for the formation of a continuous and
dense CHA zeolite membrane. Membrane synthesis displayed good reproducibility. The
flux of the membrane rose with increasing temperature and feed water content. The typical
CHA zeolite membrane exhibited a water/EtOH separation factor higher than 100,000,
together with a total flux of 1.1 kg/(m2 h) at 348 K in a 10/90 wt.% H2O/EtOH mixture.
The membrane also displayed excellent separation performance in water/isopropyl alcohol
and water/methanol mixtures. It indicates the current membranes with enhanced Si/Al
ratios have the potential for stable separation of water/alcohol mixtures.
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