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Abstract: Membrane distillation (MD) is considered a promising technology for desalination. In
the MD process, membrane pores are easily contaminated and wetted, which will degrade the
permeate flux and salt rejection of the membrane. In this work, SiC ceramic membranes were used
as the supports, and an Al2O3 micro-nano structure was constructed on its surface. The surface
energy of Al2O3@SiC micro-nano composite membranes was reduced by organosilane grafting
modification. The effective deposition of Al2O3 nanoflowers on the membrane surface increased
membrane roughness and enhanced the anti-fouling and anti-wetting properties of the membranes.
Simultaneously, the presence of nanoflowers also regulated the pore structures and thus decreased
the membrane pore size. In addition, the effects of Al2(SO4)3 concentration and sintering temperature
on the surface morphology and performance of the membranes were investigated in detail. It was
demonstrated that the water contact angle of the resulting membrane was 152.4◦, which was higher
than that of the pristine membrane (138.8◦). In the treatment of saline water containing 35 g/L of
NaCl, the permeate flux was about 11.1 kg·m−2·h−1 and the salt rejection was above 99.9%. Note
that the pristine ceramic membrane cannot be employed for MD due to its larger membrane pore size.
This work provides a new method for preparing superhydrophobic ceramic membranes for MD.

Keywords: ceramic membrane; Al2O3 nanoflowers; superhydrophobic surface; vacuum membrane
distillation

1. Introduction

The problem of water scarcity is becoming severer due to industrial pollution and
climate change. Desalination technology has the potential to alleviate the shortage of
freshwater resources. Membrane distillation (MD) technology, as an emerging desalina-
tion technique, is receiving increasing attention because of its high separation efficiency
and mild operating conditions [1–3]. MD technology is a separation technique that uses
hydrophobic porous membranes to separate saline water. These membranes have a mi-
croporous structure. In the MD process, one side of the membrane is the feed side that
directly contacts with the feed solution, while the other side is the permeate side. Under
the action of vapor pressure difference, the membrane can selectively allow water vapor
to pass through and block the passage of saline water, thereby realizing the separation of
water and salt [4–7]. Therefore, the salt rejection can theoretically reach 100%.

The commonly used membranes are generally polymer membranes, such as polyvinyli-
dene fluoride (PVDF), polypropylene (PP), polyethylene (PE) and polytetrafluoroethylene
(PTFE) membranes [8–10]. However, polymer membranes cannot be employed under
critical conditions for a long time due to their poor chemical and mechanical properties.

Membranes 2024, 14, 117. https://doi.org/10.3390/membranes14050117 https://www.mdpi.com/journal/membranes

https://doi.org/10.3390/membranes14050117
https://doi.org/10.3390/membranes14050117
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/membranes
https://www.mdpi.com
https://doi.org/10.3390/membranes14050117
https://www.mdpi.com/journal/membranes
https://www.mdpi.com/article/10.3390/membranes14050117?type=check_update&version=2


Membranes 2024, 14, 117 2 of 12

In contrast, ceramic membranes have better thermal stability and mechanical stability,
and can also be employed under harsh conditions [11–13]. As a result, ceramic mem-
branes have gradually attracted attention in MD applications [14]. However, ceramic
membranes are hydrophilic due to the existence of a large number of hydroxyl groups
on the surface, so it is necessary to modify the surface of ceramic membranes to make
them hydrophobic [15]. The commonly used method at present is to directly modify the
membrane hydrophobicity using fluorosilane. However, membranes modified directly
through traditional methods often exhibit poor hydrophobicity and are prone to being
wetted. Wei et al. used a conventional hydrophobic modification method to modify the ce-
ramic membrane and found that asymmetric porous cordierite ceramic membranes directly
modified by 1H,1H,2H,2H-perfluorodecyl -triethoxysilane (PFDTS) experienced severe
wetting after a 6 h MD process [16]. How to improve the stability and hydrophobicity of
ceramic membranes in the MD process is challenging.

As is well known to all, surface roughness plays a crucial role in the hydrophobicity
of membranes [17]. Based on the Cassie theory, rough micro-nano structures can trap
more air, forming an air layer on the membrane surface, thereby reducing the contact area
between the liquid and the membrane surface, making it easy for the liquid to slip off the
membrane surface [18–20]. Currently, enhancing membrane roughness is mainly achieved
by depositing inorganic nano-sized particles (such as ZnO, TiO2, SiO2, CuO, etc.) on the
membrane surface to construct a reentrant structure [21–23]. For example, Chen et al. [24]
deposited ZnO nanorods and nanoparticles on the surface of Al2O3 hollow fiber membranes
using the chemical bath deposition method, increasing the roughness from 93.41 nm to
186.34 nm, enhancing the wetting resistance of the membrane. Mohd et al. [25] synthesized
TiO2 nanoflowers and nanorods on mullite hollow fiber membranes via the hydrothermal
method, increasing the roughness from 51.4 nm to 136.8 nm. The prepared membrane
obtained a satisfactory water contact angle of 162◦, demonstrating excellent hydrophobic
properties. However, there is currently limited research on the application of the in situ
growth of Al2O3 nanoflowers on ceramic membranes via the hydrothermal method for MD.

In this work, the hydrothermal method was utilized successfully to obtain the in situ
growth of Al2O3 nanoflowers with different scales on SiC membranes. Additionally, the
membranes were modified using organosilane to lower the surface energy to fabricate
superhydrophobic Al2O3@SiC composite ceramic membranes. These nanoflowers cannot
only increase the membrane roughness but also regulate the pore structures of the mem-
brane (see Figure 1). The concentration of the Al3+ precursor and the sintering temperature
were investigated in detail for their impact on the microstructure of the resulting membrane.
The prepared composite ceramic membranes were also characterized using SEM, XRD,
XPS, etc. Moreover, the vacuum membrane distillation (VMD) performance of the prepared
membranes was investigated.
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Figure 1. Scheme of the in situ growth of Al2O3 nanoflowers.

2. Materials and Methods
2.1. Materials

Aluminum sulfate (Al2(SO4)3, AR) was purchased from Meryer Chemical Technol-
ogy Co., Ltd. (Shanghai, China). Urea (CO(NH2)2, 99%); 1H,1H,2H,2H-perfluorodecyl
-triethoxysilane (PFDTS, 98%) and sodium chloride (NaCl, 99.5%) were purchased from
Shanghai Aladdin Biochemical Technology Co., Ltd. (Shanghai, China). SiC supports
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were fabricated from SiC powders with a particle size of 5 microns. Deionized (DI) water
produced by a pure water machine of Nanjing Yuheng Instrument and Equipment Co., Ltd
(Nanjing, China) was used in all experiments.

2.2. Preparation of Superhydrophobic SiC Ceramic Membranes
2.2.1. Preparation of SiC Supports

SiC supports were fabricated from SiC powders with a particle size of 5 microns.
Five-micron SiC powders were used as the supporting aggregates, and an 8 wt% PVA
solution was used as binders. After thorough mixing, the green body (unsintered SiC
support) was obtained by a dry pressing process with the pressing time of 40 s and holding
pressure of 10 MPa. Subsequently, SiC supports were obtained through sintering at 1300 ◦C.
SiC supports are circular in shape, and they are discs (the thickness of the disc is 2.1 mm
and the diameter is 31 mm).

2.2.2. In Situ Growth of Al2O3 Nanoflowers

The growth of Al2O3 nanoflowers on the surface of SiC membranes was first carried
out using the hydrothermal method, followed by sintering. The pristine SiC supports
were washed by ethanol for 5 min and dried at 60 ◦C for 30 min. The precursor solution
was prepared by adding Al2(SO4)3 (with concentrations of 0.0875 M, 0.175 M, 0.2625 M)
and urea (with the concentration of 2.22 M) into 30 mL of deionized (DI) water. Then,
the solution was stirred thoroughly to obtain a clear and transparent solution. The SiC
supports were vertically placed into the Teflon lining and then the precursor solution was
poured into it. Subsequently, the SiC supports were reacted at 160 ◦C for 8 h. Then, the
membranes were washed thoroughly by DI water. Subsequently, membranes were dried
under a vacuum for 24 h. After that, membranes were sintered at different temperatures
(600 ◦C, 900 ◦C or 1200 ◦C) for 12 h.

2.2.3. Hydrophobic Modification

Firstly, a 2 vol% C8 solution was prepared by adding 1 mL of 1H,1H,2H,2H-Perfluorod-
ecyl-triethoxysilane into 49 mL of ethanol. Secondly, the fluorination solution was sonicated
by a sonicator for 5 min to ensure uniform mixing. Then, the prepared SiC ceramic
membranes were immersed in the fluorination solution at 60 ◦C for 48 h. Subsequently,
membranes underwent condensation polymerization at 120 ◦C for 3 h. The specific sample
codes with different reaction processes are detailed in Table 1.

Table 1. Sample codes with different reaction processes.

Sample Codes Al2(SO4)3
Concentration (M)

Sintering
Temperature (◦C)

Fluorinated/
Unfluorinated

SiC-C1 0.0875 600 Unfluorinated
SiC-C2/SiC-T1 0.175 600 Unfluorinated

SiC-C3 0.2625 600 Unfluorinated
SiC-T2 0.175 900 Unfluorinated
SiC-T3 0.175 1200 Unfluorinated

SiC-C1-f 0.0875 600 Fluorinated
SiC-C2-f/SiC-T1-f 0.175 600 Fluorinated

SiC-C3-f 0.2625 600 Fluorinated
SiC-T2-f 0.175 900 Fluorinated
SiC-T3-f 0.175 1200 Fluorinated

2.3. Characterization

Membrane surface morphology was examined by desktop scanning electron mi-
croscopy (Hitachi TM3000, Hitachi, Japan) and field-emission SEM (Hitachi S-4800, Hitachi,
Japan). Pore size distribution of the membranes was measured using a capillary flow
porometer (PMI ipore 1500, PMI, Ithaca, NY, USA). The water contact angle was measured
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by Dataphysios OCA25 (OCA 25, Dataphysios, Filderstadt, Germany). Surface roughness
was observed by a surface profiler (PARK XE-100, Park Systems, Santa Clara, CA, USA).
X-ray diffraction analysis was conducted by an X-ray diffractometer (RIGAKU MiniFlex600,
Rigaku, Tokyo, Japan). The surface elements of the membranes were analyzed by X-ray
Photoelectron Spectroscopy (XPS, Thermo Fisher Scientific Escalab, Waltham, MA, USA).

2.4. Vacuum Distillation Experiment

VMD tests were carried out using a laboratory-made setup. The membrane distillation
setup is shown in Figure 2. In the MD application, the feed solution was heated in a
water bath at 70 ◦C and then flowed under the action of a peristaltic pump. The flow rate
was 200 mL/min. The vacuum degree was −0.090 MPa. When the feed liquid contacted
the membrane surface, generated water vapor permeated through the membrane and
condensed into liquid water. After a fixed period of time, the weight of the liquid in the
flask was measured, along with its conductivity
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Equation (1) can be used to calculate the permeate flux J (kg·m−2·h−1) of the membranes:

J =
m

A·∆t
(1)

where m represents the mass of the permeate water (kg), A represents the effective area of
the membranes (m2) and ∆t is the interval time (h).

Equation (2) can be used to calculate the salt rejection R (%) of the membranes:

R =
C1 − C2

C1
× 100% (2)

where R represents the salt rejection (%), C1 represents the conductivity of the feed solution
(uS/cm) and C2 represents the conductivity of the resulting water.

3. Results and Discussion
3.1. Characterization of Pristine SiC Support

Figure 3a displays the surface morphology of the pristine SiC support, which consisted
of irregular particles. The membrane surface was smooth without any obvious defects.
Figure 3b shows the pore size distribution of the SiC support. It can be seen that the average
pore size was about 1.56 µm. Note that the pore size of the membrane was large (>1 µm)
and the feed solution can easily wet the membrane [26]. Thus, the pristine SiC support was
not suitable for MD application directly.
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3.2. Effects of Al2(SO4)3 Concentration

Based on the above discussion, it is meaningful to decrease the pore size of the SiC
support. In situ growth of inorganic nanoflowers can regulate the pore size and surface
roughness simultaneously. Herein, Al2O3 nanoflowers were proposed to decorate the
membrane structures. The concentration of Al2(SO4)3 in the precursor solution significantly
influenced the in situ growth of Al2O3 nanoflowers. When the sintering temperature
was 600 ◦C, the surface morphologies of membranes prepared using varying Al2(SO4)3
concentrations are illustrated in Figure 4. At an Al2(SO4)3 concentration of 0.0875 M, the
formation of a flower-like structure was not prominent. Instead, leaf-like structures were
observed, which were inadequately distributed on the membrane surface and the surface
remained relatively smooth. Additionally, there were still some macropores to be observed
on the membrane surface. When the concentration of Al2(SO4)3 was 0.175 M, nanoflowers
were evenly distributed on the membrane surface. When the Al2(SO4)3 concentration was
increased to 0.2625 M, more nanoflowers appeared on the membrane surface, resulting
in a hierarchical structure. As the Al2(SO4)3 concentration increased, there was a gradual
increase in both the number and size of nanoflowers. This could be attributed to the
low concentration of Al2(SO4)3, which failed to provide sufficient Al3+ to react effectively
with urea.
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To further determine the concentration of Al2(SO4)3, the pore size distributions of
the membranes with different Al2(SO4)3 concentrations were investigated (see Figure 5a).
The mean pore sizes of SiC-C1, SiC2 and SiC-C3 were around 1.37 um, 0.51 um and
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0.37 um, respectively. The grown nanoflowers modified the membrane pore structures
and thus decreased the membrane pore size, which was consistent with the SEM image in
Figure 4. The surface roughness plays an important role in the hydrophobic properties of
the membranes. The surface roughnesses of the prepared membranes were characterized
by the surface profiler (See Figure 5b–e). The surface roughness of the pristine support
was only 1.321 µm. After the in situ growth of Al2O3 nanoflowers on the membrane
surface, the surface roughness of the membrane initially increased and then remained
stable. The roughness of the SiC-C1 was only 1.443 µm. When the Al2(SO4)3 concentration
was 0.175 M, the roughness increased to 2.056 um. When the concentration of Al2(SO4)3
further increased to 0.2625 M, the membrane roughness did not have an obvious change,
with a roughness of 2.012 µm. The membrane roughness increased after the in situ growth
of Al2O3 nanoflowers compared to the pristine supports. A rough membrane surface can
store more air, leading to the presence of air pockets between the membrane surface and
the feed liquid, and then reduce the contact area, enhancing the hydrophobic performance
of the membranes. In summary, the most suitable concentration of Al2(SO4)3 was 0.175 M.
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3.3. Effects of Sintering Temperature

In addition to the concentration of the precursor solution, the effects of the sintering
temperature after the hydrothermal treatment on the prepared membranes were also
investigated. It can be observed from Figure 6 that flower-like nanostructures were formed
on the membrane surfaces at different sintering temperatures. However, as the sintering
temperature rose, the number and size of flower-like structures on the membrane surface
gradually decreased. SiC-T1 and SiC-T2 exhibited a significant presence of nanoflowers on
the surface of membranes, while the surface of SiC-T3 appeared smoother with noticeable
block-like structures of SiC particles, and the nanoflowers mainly existed within the pores
formed by SiC particles. When the precursor concentrations were the same, the size
of the formed nanoflower via the hydrothermal method remained the same. However,
as the sintering temperature increased, the resulting crystal structure exhibited a larger
apparent density, leading to a reduction in size and number after being sintered at higher
temperatures. It can be observed from Figure 7 that the average pore sizes of SiC-T1, SiC-T2
and SiC-T3 were 0.51 um, 0.62 um and 0.71 um, respectively. As the sintering temperature
rose, the average pore size of the Al2O3@SiC composite ceramic membranes increased
continuously, which was also in line with the SEM images. In summary, the most suitable
sintering temperature was 900 ◦C.
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3.4. XRD Analysis of Al2O3 Nanoflowers Synthesized via Hydrothermal Method

The XRD patterns in Figure 8a show the unsintered Al2O3 nanoflower powders ob-
tained from the hydrothermal reaction of urea and varying concentrations of Al2(SO4)3 at
160 ◦C for 8 h. It can be seen that the XRD patterns of the obtained powders are similar at
different Al2(SO4)3 concentrations with diffraction characteristic peaks appearing at 14.48◦,
28.18◦, 38.34◦ and 48.93◦, respectively. Compared with the diffraction card of boehmite
(JCPDS 21-1307), it was found that they corresponded to the (020), (120), (031) and (200)
crystal planes of the boehmite phase. This was attributed to the hydrolysis of urea in the au-
toclave at 160 ◦C that generated OH− and NH4

+. Subsequently, Al3+ reacted with OH− to
form Al(OH)3 colloidal. The Al(OH)3 colloid dissolved and recrystallized in the hydrother-
mal solution, ultimately forming boehmite microcrystals [27]. Note that the powders also
contained byproducts such as ammonium sulfate and ammonium bicarbonate.
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concentrations of 0.0875 M, 0.175 M and 0.2625 M, respectively. T1, T2 and T3 represent powders
sintered at 600 ◦C, 900 ◦C and 1200 ◦C, respectively.

Figure 8b shows the XRD patterns of the powders sintered at different temperatures.
It was observed that the XRD patterns of powders sintered at 600 ◦C and 900 ◦C were
similar with diffraction characteristic peaks appearing at 37.60◦, 39.49◦, 45.86◦ and 67.03◦,
respectively. Compared with the diffraction standard card of γ-Al2O3 (JCPDS 10-0425),
it was found that they corresponded to the (311), (222), (400) and (440) crystal planes
of γ-Al2O3, respectively. When the powders were sintered at 1200 ◦C, the XRD pattern
corresponded to the diffraction standard cards of θ-Al2O3 (JCPDS 35-0121) and α-Al2O3
(JCPDS 10-0173). The peaks observed at 31.47◦, 32.78◦, 36.68◦, 38.92◦, 39.86◦, 44.83◦, 47.62◦

and 67.42◦ corresponded to the (004), (20-2), (111), (104), (20-4), (21-1), (006) and (215)
crystal planes of θ-Al2O3 (JCPDS 35-0121). Additionally, the peaks at 25.58◦, 35.13◦, 37.78◦,
43.36◦, 57.52◦, 66.55◦, 68.19◦ and 76.88◦ corresponded to the (012), (104), (110), (113), (116),
(214) and (300) crystal planes of α-Al2O3 (JCPDS 10-0173) [28]. This indicated that the in
situ-synthesized nanoflowers sintered at different temperatures were Al2O3. When the
sintering temperature was 600 ◦C and 900 ◦C, γ-Al2O3 was formed on the membrane
surface, and when the sintering temperature reached 1200 ◦C, α-Al2O3 and θ-Al2O3 were
formed on the membrane surface.

3.5. Hydrophobic Modification and Membrane Distillation

After investigating the fabrication parameters of the membranes, the Al2O3 nanoflower-
grown SiC composite membranes were produced successfully under the optimized con-
ditions. Finally, the membranes were hydrophobically modified and characterized. XPS
was carried out to analyze the chemical composition of the membrane surface deposited
by Al2O3 nanoflowers. As shown in Figure 9a, two peaks were observed at 74.38 eV
and 531.2 eV in the spectrum of the non-fluorinated membranes, corresponding to Al2p
and O1s, respectively. Additionally, a peak was observed at around 689.09 eV in the
spectrum of the fluorinated membranes (corresponding to F1s). The O1s spectrum of the
non-fluorinated membranes is shown in Figure 9b with a prominent peak at 530.1 eV (as-
signed to O-Al), indicating the successful deposition of Al2O3 on the membrane surface [29].
Figure 9c displays the C1s spectrum of the fluorinated membranes, showing two prominent
peaks at 294.78 eV (assigned to CF3) and 292.1 eV (assigned to CF2), indicating successful
fluorination [30].
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Figure 9. (a) XPS spectra of Al2O3@SiC membranes and Al2O3@SiC-f membranes, (b) decomposition
of O1s in Al2O3@SiC membranes and (c) decomposition of C1s in Al2O3@SiC-f membranes.

The SiC-T1-f, SiC-T2-f and SiC-T3-f membranes were selected for MD application.
Note that the data reported in Figure 10 were obtained after a 12 h MD process.Due to
the in situ growth of numerous micro-nanostructures on the surface, the contact angle of
the SiC-T1-f membrane can reach 152.7◦ (see Table 2), but the initial permeate flux of the
SiC-T1-f membrane was exceptionally low when treating saline water containing 35 g/L
of NaCl at 70 ◦C (only 7.41 kg·m−2·h−1) (see Figure 10a). SiC-T3-f’s contact angle can
reach 150.5◦ (see Table 2). Because of the presence of some large membrane pores, the feed
can directly pass through SiC-T3’s pores, resulting in a lower salt rejection. By contrast,
SiC-T2-f was more appropriate for MD. Aside from the appropriate pore size distribution
and distribution density of Al2O3 nanoflowers, SiC-T2-f′s water contact angle also reached
152.4◦ (see Table 2). When the feed solution was distilled water, SiC-T2-f’s permeate flux
was 12.5 kg·m−2·h−1. In the treatment of saline water containing 35 g/L of NaCl at 70 ◦C,
the permeate flux was about 11.1 kg·m−2·h−1 and the salt rejection was above 99.9% (see
Figure 10b). Table 3 displays the ceramic membrane properties of MD reported in previous
works. It is demonstrated that the water flux of the resulting ceramic membranes in this
work is satisfactory.
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Table 3. Ceramic membrane properties for MD reported in previous works.

Refs. Membrane
Material

Concentration of
the NaCl/g L−1

Permeate
Flux/kg·m−2·h−1 Salt Rejection/%

[31] Si3N4 20 12 99
[32] SiC 50 0.13 98
[25] Mullite 35 4.32 99.99

This work SiC 35 11.1 99.9

4. Conclusions

In this work, superhydrophobic Al2O3@SiC composite ceramic membranes were fabri-
cated successfully. The presence of nanoflowers cannot only regulate the pore structures,
but also increase the surface roughness, thus improving hydrophobicity and enhancing
resistance to fouling and wetting. The effects of precursor solution concentration and sin-
tering temperature on the morphology and performance of membranes were investigated.
An appropriate preparation condition was determined through SEM, pore size distribu-
tion and MD performance. Results show that the optimal concentration of Al2(SO4)3 was
0.175 M and the optimal sintering temperature was 900 ◦C. The roughness of the prepared
membrane increased from 2.056 µm to 1.321 µm and the water contact angle was about
152.4◦. In the treatment of saline water containing 35 g/L of NaCl at 70 ◦C, the permeate
flux was about 11.1 kg·m−2·h−1 and the salt rejection was above 99.9%. Currently, there
are few reports on the growth of Al2O3 nanoflowers on ceramic membranes. This work
provides a new approach for preparing superhydrophobic ceramic membranes. However,
the long-term stability of this membrane is not satisfactory that should be further investi-
gated in detail by finely-tuning the pore size of the ceramic support and microstructures of
the membrane.
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