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Abstract: The large-scale implementation of 2D material-based membranes is hindered
by mechanical stability and mass transport control challenges. This work describes the
fabrication, characterisation, and testing of self-standing graphene oxide (GO) membranes
cross-linked with oxides such as Fe2O3, Al2O3, CaSO4, Nb2O5, and a carbide, SiC. These
cross-linking agents enhance the mechanical stability of the membranes and modulate their
mass transport properties. The membranes were prepared by casting aqueous suspensions
of GO and SiC or oxide powders onto substrates, followed by drying and detachment to
yield self-standing films. This method enabled precise control over membrane thickness
and the formation of laminated microstructures with interlayer spacings ranging from 0.8 to
1.2 nm. The resulting self-standing membranes, with areas between 0.002 m2 and 0.090 m2

and thicknesses from 0.6 µm to 20 µm, exhibit excellent flexibility and retain their chemical
and physical integrity during prolonged testing in direct contact with ethanol/water and
methanol/water mixtures in both liquid and vapour phases, with stability demonstrated
over 24 h and up to three months. Gas permeation and chemical characterisation tests
evidence their suitability for gas separation applications. The interactions promoted by the
oxides and carbide with the functional groups of GO confer great stability and unique mass
transport properties—the Nb2O5 cross-linked membranes present distinct performance
characteristics—creating the potential for scalable advancements in cross-linked 2D material
membranes for separation technologies.

Keywords: graphene; metal oxide cross-linking; carbide cross-linking; membrane

1. Introduction
Separating and purifying substances from mixtures of liquids, vapours, and gases

are fundamental to several modern industrial processes. Membrane technologies have
been intensively explored as energy-efficient alternatives to conventional industrial sepa-
ration methods, often requiring high temperatures and costly thermal insulation systems.
Among these technologies, pervaporation (PV) and vapour permeation (VP) processes have
emerged as promising solutions for recovering organic solvents from aqueous solutions,
offering high flux and separation factors with low capital and energy costs [1–3]. While PV
has been widely studied for ethanol–water separation in binary mixtures, challenges like
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membrane fouling with direct contact [4,5] limit its application in several industries, such as
beverage, for fermentation broths. Therefore, the VP process is better suited for such scenar-
ios, reducing fouling risks by limiting direct contact. Various membrane types, including
inorganic and mixed-matrix membranes, have been explored for VP applications [6,7].

At the molecular and atomic levels, membranes based on laminates of 2D materials
represent a highly efficient approach to separation. These membranes integrate unique
characteristics, such as nano- and angstrom-scale pore-size distributions, highly interlocked
nanochannel structures, and strong physicochemical interactions with liquids and gases
due to their surface charge. These properties have fundamental advantages in molecular
sieving and selectivity, as evidenced by the well-established performance of graphene-based
membranes in gas and liquid separations [8–10].

Traditional nanostructured graphene oxide (GO) membranes consist of stacked layers
of graphene sheets with lateral sizes ranging from 1 to 10 µm, spaced at distances of 0.9
to 1.2 nm due to oxygenated functional groups, such as epoxide, hydroxy, and carboxy
groups [9]. The predominantly random distribution of these chemical groups allows the
formation of a percolative network of pristine graphene channels, which is fundamental for
mass transport within the membranes [11]. However, the physicochemical and mechanical
properties of laboratory-scale 2D material-based membranes often fail to meet the require-
ments of industrial-scale processes. To address such challenges, the use of multivalent
metallic cations as cross-linking agents between GO nanosheets to improve the stability
and mechanical stiffness of GO membranes has been reported in the literature [12–14].

Based on this concept, in this work, we explored the use of metallic oxides and carbide
as cross-linking agent sources, which not only improve the mechanical stability of GO
membranes but also impart additional functionalities that significantly influence their mass
transport and separation performance.

Here, we introduce a new generation of self-standing graphene oxide (GO) mem-
branes designed to meet the requirements of large-scale and industrial applications. Our
fabrication methodology enables great control over membrane thickness and facilitates
the formation of highly ordered laminated microstructures with interlayer distances rang-
ing from 0.8 to 1.2 nm. By combining the selectivity of 2D laminates with a design that
addresses the challenges of traditional 2D material membranes, our approach expands the
potential for scalable advancements in cross-linked 2D material membranes for separa-
tion technologies.

Previous research works have reported the cross-linking effect of pure metal cations in
GO [12,15]. Our work concentrates on investigating the alternative of using instead oxides
and carbides. Using metallic oxides and carbides in graphene oxide composites offers
several advantages over pure metals. Metal oxides and carbides are cheaper, primarily due
to the lower costs associated with raw materials sources and processing. Metal oxides and
carbides are also typically safer alternatives to pure metals in terms of toxicity due to their
lower reactivity and limited environmental persistence. The enhanced physicochemical
properties achieved by combining graphene with metal oxides are beneficial in applications
like environmental remediation, photocatalysis, and electrocatalysis [16–18]. Their unique
catalytic and electronic properties can be tailored to specific needs, and their compatibility
with graphene oxide enhances the potential for synergistic effects in areas like water filtra-
tion, energy storage, and gas separation. Focusing on these materials ensures sustainability,
safety, and performance without compromising functionality or economic viability.
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2. Materials and Methods
2.1. Materials

Absolute Ethanol (99.8%, Fisher Scientific International Inc., Singapore, Singapore)
was used to prepare ethanol/water mixtures in specific weight-to-weight (wt/wt) ratios.
The density and ethanol concentration of the solutions were measured using a density metre
(DMA 4500 M, Anton Paar, Graz, Austria) at 20 ◦C with a sample injection volume of 1.0 mL.
The density metre was calibrated before sample analysis to ensure measurement accuracy.

Commercial graphene oxide (GO) in the form of aqueous paste (10% GO, Abalonyx
Innovative Materials, Oslo, Norway) was used to prepare the GO suspensions and mem-
branes. Cross-linking agents were sourced from powder forms of niobium pentoxide
(Nb2O5, ≥99%, CBMM), iron (III) oxide (Fe2O3, 310,050 ≥ 99%, Sigma-Aldrich, St. Louis,
MO, USA), calcium sulphate hemihydrate (CaSO4·0.5H2O, 12,090 ≥ 97%, Sigma-Aldrich),
calcinated alumina (Al2O3, CT800, Almatis), and silicon carbide (SiC, Saint Gobain,
Courbevoie, France). Porous plates of CaSO4 and CaSO4/Al2O3 (1:1 wt. ratio) were
fabricated in-house, while SiC tubes were outsourced from Saint Gobain to be used as
cross-linking agent sources and substrates for membrane casting.

2.2. Pervaporation and Vapour Permeation Experiments

The PV and VP experiments were conducted using custom-made cells (Figure S1,
Supplementary Materials). On PV tests, the feed solutions were circulated across one
side of the membrane using a peristaltic pump (Watson Marlow) at a flow rate of 15 mL
min−1. Nitrogen gas was flowed on the opposite side of the membrane at a controlled
rate of 0.1 L/min, serving as sweeping gas. The permeate was collected in a cold trap
immersed in a liquid nitrogen Dewar flask (Sythware Glass Inc., Beijing, China, jacket
vacuum 4 × 10−4 Pa). The collected permeate weight was determined using an analytical
balance.

The flux (J), separation factor (α), and pervaporation separation index (PSI) were
calculated by the equations:

J =
m

A × ∆t
(1)

∝=
yi/(1 − yi)

xi/(1 − xi)
(2)

PSI = J·(α − 1) (3)

where m represents the mass transported through a membrane, A is the effective membrane
area, ∆t is the time interval, and xi and yi are the mass fractions of component i in the feed
and permeate solutions, respectively.

2.3. Gas Permeation Measurements

Gas permeance was measured at room temperature using the constant-volume and
variable-pressure method in a self-designed experimental setup, as described in our previ-
ous work [19]. A constant pressure was applied to the feed side using a pressure controller,
and the pressure increase on the permeate side was monitored using a pressure sensor
until equilibrium with the feed pressure was achieved. The rate of pressure increase was
recorded with a real-time pressure monitoring and recording system, and the data were
used to calculate the gas permeance [19–23]. For gas mixture experiments, compositions
were analysed using a gas chromatograph (GC-2014C, Shimadzu, Singapore).

2.4. Characterisation Techniques

Field emission scanning electron microscopy (FESEM, JSM-6701F, JEOL, Tokyo, Japan)
equipped with energy dispersive X-ray spectroscopy (EDS) was performed to analyse
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membrane morphology. The membrane samples were attached to a sample holder using
conductive carbon tape.

X-ray diffraction (XRD, MiniFlex 600, Rigaku, Tokyo, Japan) data were collected with
CuKα radiation and Bragg–Brentano geometry. The instrument was set in step-scan mode
with a step size of 0.02◦ and a counting time of 1 s per step.

2.5. Membrane Fabrication on Porous Substrates

The fabrication of cross-linked self-standing graphene oxide (GO) membranes relied
on the surface interactions between metallic oxides or carbides, the cations they may release
in aqueous suspension, and the functional groups of GO sheets [15]. As most metallic
oxides and carbides are insoluble in water, the cross-linking interactions mainly occur
directly between the particles and the GO functional groups. For instance, alumina has
hydroxyl groups on its surface due to interactions with water or synthesis, which can
form hydrogen bonds or covalent interactions with oxygen-containing functional groups
(carboxyl, hydroxyl, and epoxy) on GO nanosheets. In the case of water-soluble metal
oxides, such as CaSO4, metallic cations are released in aqueous solution or suspension,
which subsequently promotes the formation of cross-linking sites with GO functional
groups. Additionally, metallic oxides and carbides can contain a variety of impurities
depending on their source, synthesis process, and post-processing treatments, such as
salt, oxide, or chloride forms of alkali, alkaline earth, and transition metals. Most of these
impurities are water-soluble and release cations when in aqueous solution. Thus, the
specifics of the membrane formation process vary depending on the purity and type of
metallic oxide or carbide used and the chosen membrane preparation procedure.

Homogeneous GO membranes were fabricated by sequentially casting multiple layers
and drying each layer before the next casting step. A suspension of 0.01 mg mL−1 GO was
prepared in water/ethanol solution (50/50 v/v) through mild sonication in a sonication
bath at room temperature for 30 min. After sonication, the suspension was cast onto porous
substrates of CaSO4, SiC, and Al2O3/CaSO4 (50:50 wt. ratio). The amount of suspension
used per layer ranged from 0.25 to 0.30 mL cm−2, with a minimum of three layers per
membrane. The minimal drying times for the first, second, third, and any further layers
were 1, 3, 6, and 12 h, respectively, under ambient conditions. The resulting dry membranes
were peeled off from the porous substrates. Membranes fabricated with three casting
layers were detached by immersion in sodium dodecyl sulphate (SDS) 0.1% w/v solution
in DI water, followed by washing the membranes in DI water for 1 h, as they are fragile
to handling. Self-standing GO membranes were obtained with all three substrates after
drying at room temperature for 24 h.

2.6. Membrane Fabrication with Mixed Suspensions

Mixed aqueous suspensions of GO and cross-linking agent sources were used to fabri-
cate membranes by casting them onto polytetrafluoroethylene (PTFE) surfaces. Specifically,
0.0005 M suspensions of Nb2O5, Fe2O3 and SiC were prepared using 0.1 mg mL−1 GO
suspension, homogenised through mild sonication for 3 h in a sonication bath. Mem-
branes were fabricated by sequentially casting four layers onto PTFE containers, applying
0.30 mL cm−2 of the prepared suspension per layer. Each layer was dried at room tempera-
ture for 24 h before the next casting step. Once dried, the membranes were easily peeled off
from the PTFE surface.

For comparison, self-standing GO membranes without any cross-linking agent were
fabricated by casting GO suspensions onto PTFE. These reference samples are referred to as
“pure GO”. The suspensions and membranes were prepared using the same concentrations
and parameters described above, but the drying times for each layer were doubled.



Membranes 2025, 15, 31 5 of 20

3. Results and Discussions
3.1. Membrane Durability and Robustness

All membranes fabricated demonstrated exceptional chemical and mechanical robust-
ness. They retained structural integrity even after prolonged immersion in water for several
months and exhibited excellent flexibility and ease of manipulation during assembly in
testing modules with different geometries. For instance, a self-standing GO membrane with
an area of 150 cm2 was fabricated by casting onto CaSO4 and detached using SDS-water
solution (Figure 1), followed by washing under immersion in DI water. The resulting mem-
branes present sufficient flexibility and mechanical stability to be employed as self-standing
membranes or to be tightly wrapped around porous ceramic tubes (Figure 1) or plates. The
latter configuration provides additional mechanical support for separation applications
operating under high pressures or flow rates. The membranes were stored in water for
approximately two weeks after detachment from CaSO4 before assembling as self-standing
membranes for PV and VP tests.
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Figure 1. GO membrane with an area of 150 cm2 detaching from CaSO4 plate in SDS-water solution
(top-left), membrane under washing by immersion in DI water (top-right), and tightly wrapped
around a 10 mm diameter (bottom) porous ceramic substrate in a tube shape.

3.2. Macroscopic and Microscopic Overview

A representative overview of membranes fabricated based on metal oxides/carbide
as cross-linking agents and sources is presented in Figure 2. The large-area membrane
cross-linked with CaSO4, shown in Figure 2, displays a relatively smooth, crack-free, and
uniform surface, as confirmed by optical microscopy in Figure 2-top. A bendable, semi-
translucent membrane (with a brown colouration) fabricated using Al2O3 is shown in
Figure 2. Due to the insolubility of Al2O3 in water, some localised concentration points and
defects were observed. However, the membrane remained mechanically stable and flexible,
as demonstrated in Figure 2. Similar membranes were obtained with Nb2O5.
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Figure 2. Overview of membranes with metal oxide-based cross-linking: large area self-standing
membrane (top-left), smooth, uniform and free of cracks surface by optical microscopy (top-right),
semi-translucent, mechanically stable, and bendable self-standing membrane (bottom).

The SEM general view in Figure 3 shows a membrane made by casting onto a SiC plate.
Moreover, a cross-sectional view evidences the undulated microstructure and crack-free
surface and reveals the characteristic laminated microstructure of GO membranes with an
average thickness of approximately 2.09 µm.

The membranes fabricated by casting onto CaSO4/Al2O3 present a smooth and un-
dulated surface. Its laminate and crack-free continuous microstructure, featuring a highly
ordered stacking of GO layers, can be observed in Figure 4, along with the thickness
measurements with an average value of approximately 0.6 µm.
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The SEM images of a membrane prepared with GO-Nb2O5 suspensions are presented
in Figure 5. The cross-sectional view presented in Figure 5-left reveals the laminated
microstructure of the membrane with a thickness of approximately 1.4 µm and a well-
ordered stacking of GO layers. The surface of the membrane features a regular distribution
of circular “hillock” structures and surrounding ripples, with diameters ranging from
about 1 µm to 10 µm, creating ripples across the surface, as detailed in Figure 5-right.
Despite their size, these “hillock” structures did not lead to the formation of cracks on the
membrane surface.

A detailed EDS analysis of the membrane surface (Figure 6) revealed niobium as the
primary component of the observed circular “hillock” structures. The elements distribution
analysis of a representative surface area is also shown in Figure 7, with the corresponding
spectrum graph. A localised image and analysis of one of these features is presented in SI
Figures S5 and S6, along with its spectrum graph.
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Figure 7. X-ray diffractograms of pure GO membranes and GO membranes with different ox-
ides/carbide cross-linking agents or sources.

The presence of niobium is observed across all the sample surfaces. Still, it is more
concentrated in regions where elevated oxygen concentration is also observed, suggesting
the presence of whole Nb2O5 particles between the GO layers, forming cross-links or
physically becoming trapped during the membrane fabrication. Trace amounts of calcium
were also detected, probably originating from impurities; however, its presence does not
seem to have affected or compromised the smoothness or integrity of the membrane surface.

3.3. X-Ray Diffraction (XRD)

The X-ray diffraction patterns of pure GO membranes and those with different ox-
ides/carbide cross-linking agents or sources are shown in Figure 7. The broad peaks around
2θ = 10.50◦ correspond to the (200) Bragg reflection of GO. The interplane distances for each
membrane, calculated using the Bragg equation, are summarised in Table 1 (the uncertainty
is ±0.04 Å). The angular positions of the diffraction peaks were determined by fitting the
diffraction data with the Pearson VII function, as shown in the graphs.

Table 1. Interplane distances of the pure GO membranes and GO membranes with different ox-
ides/carbide cross-linking agents or sources.

Membrane Angular Position 2θ (◦) d (Å)

Pure GO 10.175 8.69

GO + Nb2O5 10.170 8.69

GO + Fe2O3 10.074 8.77

GO + SiC 10.190 8.67

CaSO4 + Al2O3 10.348 8.54

3.4. X-Ray Photoelectron Spectroscopy (XPS)

X-ray photoelectron spectroscopy (XPS) was performed to investigate the detailed
chemical composition of selected GO membranes, including pure GO and membranes
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cross-linked with CaSO4 + Al2O3, Nb2O5, and SiC. The survey spectrum of the pure GO
membrane (Figure 8) reveals its clean composition with no impurities. The spectrum
presents peaks corresponding to the binding energies of C1s, O1s, and O2s, confirming the
expected elemental composition of GO.
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Figure 8. XPS survey spectrum for pure GO membrane.

The XPS analyses for the fabricated membranes reveal significant variations in ele-
mental composition and binding energies, confirming the incorporation of different cross-
linking agents into the membrane structure. The elemental composition variations depend
on the specific cross-linking agents and their sources, highlighting how different metal ox-
ides and carbides influence the membrane’s chemical composition, bonding environment,
and structure.

Figure 8 presents the XPS survey spectrum for the pure GO membranes and Figure 9
illustrates the membranes prepared on CaSO4/Al2O3, showing prominent peaks corre-
sponding to O1s, Ca2s, Ca2p, and C1s binding energies. A magnified view in the range of
0 to 300 eV reveals additional peaks for Al2p and Ca3p, indicating secondary interactions
involving aluminium and calcium cations, likely originated from the partial dissolution of
Al2O3 and CaSO4 during the membrane fabrication process due to the slightly acidic nature
of GO suspension. Minor impurities, such as S and SiO2, were also detected, probably
originating from the porous ceramic substrate materials.

The detailed Ca2p scan spectrum in Figure 10 further confirms the chemical states
of calcium. It shows two main components due to spin–orbit coupling, with Ca2p3/2 at
approximately 347.4 eV and Ca2p1/2 at around 351.1 eV. These peaks are attributed to the
presence of calcium in the forms of CaCO3 and CaO. They display slightly higher binding
energy due to the bonding with GO.

These results emphasise the role of calcium ions in promoting cross-linking between
GO nanosheets and the chemical composition of the membranes. The presence of CaCO3

and CaO suggests that the calcium cations from CaSO4 contribute to forming stable cross-
links, further strengthening the membrane structure.
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These results emphasise the role of calcium ions in promoting cross-linking between
GO nanosheets and the chemical composition of the membranes after interaction with the
cross-linking agents.

Figures 11 and 12 present the XPS survey spectrum of membranes prepared with SiC-
and Nb2O5-based cross-links. Low-intensity binding energy peaks of Si and Nb, along
with the prominent peaks of C and O, were identified in both cases.
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XPS spectra, with a large acquisition area of 50 × 100 µm, were taken from the
membranes to further characterise the interaction of oxide compounds with the functional
groups of GO. A qualitative comparison of the narrow C1s and O1s spectra of Nb2O5-cross-
linked GO, CaSO4 + Al2O3-cross-linked GO, and pure GO (Figure S7) reveals differences
in their peak shapes and areas, particularly in the C1s region associated with oxygen-
containing functional groups [24–28]. In Figure 13, the XPS spectrum of the Nb3d binding
energy region reveals the formation of carbide species. Considering that Nb is a transition
metal, its behaviour as a cross-linking agent can be described as similar to the case of TiO2

nanoparticles and GO, as reported in the recent literature [29,30], where TiO2 reacts with
the C–O and C–OH groups of GO, converting them into Ti–O–C and Ti–C species. Likewise,
the formation of carbonates was observed in the case of the CaSO4 cross-linking-based
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membrane, as discussed above. The formation of carbides from the interaction of the
cross-linking agents and the GO functional groups, detected by XPS peaks in the different
samples, is summarised in Table 2.
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Table 2. Example of XPS peak energies corresponding to carbides formed in the membranes with
oxide-based cross-linking.

Cross-Link Agent (Form) Carbides Formed Peaks and Binding Energies

Al2O3 + CaSO4 Al2C2O3
Al2p3/2 at 74.95 eV

C1s at 283.70eV

Al2O3 + CaSO4 CaCO3

Ca2p at 25.30 eV
Ca2p3/2 at 347.40 eV
Ca2p1/2 at 351.10 eV

Nb2O5 (powder in liquid) NbC C1s at 281.90 eV

Nb2O5 (powder in liquid) NbCO Nb3d5/2 at 205.80 eV

Metallic oxides, such as Nb2O5, Al2O3, and CaSO4, can interact with graphene oxide
(GO) sheets and facilitate cross-linking through various mechanisms. GO sheets are neg-
atively charged due to oxygen-containing functional groups on their surface and edges,
while metallic oxides can generate positively charged surface species in aqueous solu-
tions [9,25,31]. These positively charged species electrostatically interact with the negatively
charged GO sheets, promoting the formation of stable hybrid structures via ionic bonds or
strong electrostatic attractions.

In addition, oxygen functional groups on GO can form hydrogen bonds with hy-
droxyl groups on the surface of metal oxide particles. These non-covalent interactions
help assemble or align GO sheets in proximity. Furthermore, metallic oxides can physi-
cally anchor to defects, edges, or functional groups on GO, while metal species may also
coordinate with oxygen atoms in GO to form metal-O coordination complexes [15,32,33].
This combination of mechanisms enhances interlayer binding and stabilises the structure
through anchored oxide particles, offering improved mechanical strength and stability for
multifunctional membranes.
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A deeper XPS data analysis of cross-linked membrane samples can provide further
insights into the bonding and interaction mechanisms between GO sheets and the cross-
linking agents originating from the interactions of GO and metallic oxides and carbides,
which will be essential to fully understanding the mechanisms, structural integrity, and
performance of the membranes in separation systems.

4. Testing in Pervaporation and Vapour Permeation Applications
The performance of fabricated GO membranes in pervaporation and vapour per-

meation applications was evaluated as self-standing membranes (without any porous
mechanical support). The separation processes were applied to binary solutions comprised
of DI water/ethanol and DI water/methanol. For comparison, GO membranes similar to
the self-standing membranes were fabricated using a well-known method for coating GO
on ceramic porous substrate [5,10]. We used SiC as the porous substrate to produce these
membranes, hereinafter called “coated membranes”. The membranes’ selectivity and flux
were evaluated in both separation processes.

During the selectivity tests, the membranes demonstrated excellent stability and
resistance to the harsh conditions of saturated vapours and liquids despite the inherently
high hydrophilicity of GO. The self-standing membranes, with similar thicknesses to
the coated membranes, showed a significant improvement in selectivity for the same
solvent/water mixtures without requiring heating in most cases.

The self-standing membranes performed well in pervaporation and vapour perme-
ation tests for ethanol/water mixtures, as detailed in Tables 3–5 and Figures 14 and 15.
This improvement in selectivity emphasises the effectiveness of the self-standing mem-
brane structures, which overcomes some of the performance limitations often encountered
in coated membrane configurations. The results demonstrate the potential of these self-
standing membranes for use in solvent/water separation processes, offering enhanced
efficiency without the need for elevated temperatures.

Table 3. Separation factor and flux of different membranes for PV of ethanol/water mixtures
with concentration 50/50 w/w at 23 ◦C (uncertainties in α and flux are ±1 and ±0.06 kg/m2·h,
respectively).

Parameter
Self-Standing Membranes with Cross-Linking Coated Membranes

Al2O3 CaSO4 + Al2O3 GO on SiC

α 33 45 16

Flux (kg/m2·h) 0.51 0.41 0.27

Table 4. Separation factor and flux of different membranes for PV of ethanol/water mixtures with
concentration 80/20 w/w at 23 ◦C.

Parameter
Self-Standing Membranes with Cross-Linking Coated

Membranes

Nb2O5 CaSO4 Fe2O3 Al2O3 SiC CaSO4 + Al2O3 GO on SiC

α 17 8 20 68 36 40 39

Flux (kg/m2·h) 0.06 0.23 0.13 0.11 0.15 0.14 0.24

For ethanol dehydration with feed concentrations exceeding 95 wt.% (the azeotrope
concentration), the self-standing membranes demonstrated better performance than the
coated membranes, with the selectivity and flux increased by a factor of 4.7 and 3, re-
spectively. At lower ethanol concentrations (50 wt.%), selectivity improvements ranged
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from 2 to 7 times, achieving similar or higher fluxes than those detected with the coatings.
Surprisingly, these performance enhancements were obtained under room temperature.

Table 5. Separation factor and flux of different membranes for VP of ethanol/water mixtures with
concentration 96/4 w/w at 40 ◦C.

Parameter
Self-Standing Membranes with Cross-Linking Coated

Membranes

Nb2O5 Fe2O3 Al2O3 GO on SiC

α 13 22 52 11

Flux (kg/m2·h) 0.15 0.16 0.20 0.07
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In the case of the methanol/water mixtures, the selectivity of the self-standing mem-
branes with CaSO4 + Al2O3 at 40 ◦C was α ≈ 23, about six times higher than that of the
coated membrane (α ≈ 3.8) at 50 ◦C, despite both membranes having similar flux values
(~0.1 kg/m2·h).

Pervaporation tests for the mixture of ethanol/water 80/20 w/w at room temperature
were also performed with pure GO and cross-linked self-standing membranes to investigate
the effect of cross-linking on the separation performance and mechanical stability. All
membranes were fabricated with the same amount of GO (20 mg) by casting four layers
using the procedure described in the methodology section. The results in Table 6 show that
the Al2O3 cross-linked membranes exhibited separation factors nearly three times higher,
with similar or higher flux compared to the pure GO membranes. Figure 16 illustrates
the superior performance of the membranes made with oxides and carbide cross-linkers
compared to the pure GO membranes regarding the separation factor and pervaporation
separation index. The selectivity to water over ethanol is related to the hydrophilicity of
the oxides. This explains why the best performances were obtained for the membranes
containing Al2O3, which is the most hydrophilic [34].

Table 6. Separation factor, flux, and pervaporation separation index of membranes with and without
cross-linking for PV of ethanol/water 80/20 w/w at room temperature.

Membrane α Flux (kg/m2·h) PSI (kg/m2·h)

Pure GO 24 ± 3 0.117 ± 0.004 2.7 ± 0.4

GO + Fe2O3 25 ± 2 0.140 ± 0.005 3.3 ± 0.5

GO + SiC 29 ± 4 0.145 ± 0.003 4.1 ± 0.7

GO + Al2O3 + CaSO4 40 ± 3 0.140 ± 0.008 5.4 ± 0.7

GO + Al2O3 68 ± 4 0.113 ± 0.002 7.5 ± 0.6
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The main reason for these improvements is the ordered stacking laminate microstruc-
ture of the self-standing membranes, which addresses some structural challenges associated
with coatings. Furthermore, the self-standing membranes showed increased flux and per-
meability in most cases, even with similar thicknesses. Based on these results, the ability to
control the fabrication parameters further addresses challenges related to the scalability of
GO-based membranes for various applications.

A self-standing membrane with Al2O3 + CaSO4 cross-linking was tested for PV of a
water/methanol mixture 90/10 w/w at room temperature. The membrane showed selectiv-
ity to methanol over water with separation factor α = 2.9 ± 0.5, flux = 0.22 ± 0.1 kg/m2·h,
and PSI = 0.36 ± 0.2 kg/m2·h. This result agrees with the differences in the methanol
permeation behaviour to other alcohols through GO membranes described in the litera-
ture [35–37], which indicates that the methanol molecules can compete with the water ones
due to their similar sizes and polarity.

5. Testing in Gas Separation Applications
Gas permeability tests were performed on self-standing cross-linked GO membranes

for hydrogen (H2), carbon dioxide (CO2), and nitrogen (N2) gases. The membranes were
subjected to high-purity H2, CO2, N2, and H2/CO2 gas mixture (1:1) flux using a gas
permeation apparatus with a module for testing flat membranes. Porous alumina discs
placed over a stainless-steel mesh were used to give mechanical support to the membranes
with thicknesses ranging from 2 to 7 µm.

The membranes made with CaSO4+Al2O3 and with Nb2O5 cross-linking demonstrate
performances beyond the upper bound, effectively limiting the trade-off between the H2

permeability and selectivity over CO2 and N2 [38,39]. Table 7 summarises the results of
single gas permeation and ideal selectivity, with uncertainties of 16% for permeability and
7% for selectivity.

Table 7. Single gas permeation and ideal selectivity for membranes with cross-linking based on
Nb2O5 and Al2O3+CaSO4.

Membrane H2 Permeability
(Barrer)

CO2 Permeability
(Barrer)

N2 Permeability
(Barrer)

H2/CO2
Selectivity

H2/N2
Selectivity

GO + Al2O3 + CaSO4 90,947 32,839 33,667 2.8 2.7

GO + Nb2O5 23,398 6443 7779 3.6 3.0

For the H2/CO2 mixture, a membrane with CaSO4 cross-linking showed a selectivity
of 1.4 and a permeability of 21,523 Barrer, which is also a performance over the upper
bound. Furthermore, all tested freestanding membranes withstood gas pressures up to at
least 1.5 bar.

6. Conclusions
The fabricated self-standing GO membranes, with areas ranging from 0.002 m2 to

0.090 m2 and thicknesses between 0.6 µm and 20 µm, demonstrate good flexibility and
chemical/physical stability. They maintained structural integrity during continuous testing
in direct contact with ethanol/water and methanol/water mixtures for more than 24 h.
A scalable method for the fabrication of GO-based membranes was demonstrated, and
it can be extended to other 2D materials. The method was successfully applied using
various metallic oxides and a carbide as cross-linking agents and sources, including Fe2O3,
Al2O3, CaSO4, SiC, Nb2O5, a mixture of CaSO4/Al2O3 (50/50 w/w). The effect of these
cross-linking agents in GO membranes extends far beyond enhancing mechanical sta-
bility. The interaction of the oxides with GO functional groups, particularly prominent
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in Nb2O5-based cross-linked membranes, suggests significant opportunities for scalable
investigations into mass transport mechanisms controlled by metallic oxide cross-linking
in graphene-related and other 2D materials as the membranes performed well on diverse
separation applications, such as liquid, vapour, and gas separations, demonstrating their
high potential.

Specifically, this work opens pathways to investigating how oxides influence the
binding energies of liquid, vapours, and gas molecules in graphene-related materials. Un-
derstanding such interactions is fundamental for chemisorption and physisorption [29,40]
and could promote the reversible uptake of gas molecules at near ambient conditions,
improving the efficiency of separation and storage applications.

7. Patents
International Patent Application No. PCT/SG2024/050470: “Crosslinked Graphene-

Based Membranes: Fabrication Methods, Characteristics, And Applications In Separation
Processes”.

Inventors: 1. Juan Alfredo GUEVARA CARRIO (NUS), 2. VSSL Prasad TALLURI
(NUS), 3. Swamy Thipperudra TOOLAHALLI (NUS), 4. Sergio GRANIERO ECHEVERRI-
GARAY (NUS), 5. Antonio Helio de CASTRO NETO (NUS).

Taiwan Patent Application No. 113127752: “Crosslinked Graphene-Based Membranes:
Fabrication Methods, Characteristics, And Applications In Separation Processes”.

Inventors: 1. Juan Alfredo GUEVARA CARRIO (NUS), 2. VSSL Prasad TALLURI
(NUS), 3. Swamy Thipperudra TOOLAHALLI (NUS), 4. Sergio GRANIERO ECHEVERRI-
GARAY (NUS), 5. Antonio Helio de CASTRO NETO (NUS).
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