
Academic Editor: Sébastien Déon

Received: 3 December 2024

Revised: 29 December 2024

Accepted: 8 January 2025

Published: 20 January 2025
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Abstract: One of the most important formalisms used to describe membrane transport is
Onsager–Peusner thermodynamics (TOP). Within the TOP framework, a procedure has
been developed for the transformation of the Kedem–Katchalsky (K–K) equations for the
transport of binary electrolytic solutions across a membrane into the Kedem–Katchalsky–
Peusner (K–K–P) equations. The membrane system with an Ultra Flo 145 Dialyser mem-
brane used for hemodialysis and aqueous NaCl solutions was used as experimental setup.
The H version of K–K–P formalism for binary electrolyte solutions was used to evaluate
theoretical coefficients characterizing fluxes of energies and efficiencies for membrane
transport processes. The coupling coefficients of membrane processes and the dissipative
energy flux were calculated on the basis of the Peusner coefficients obtained from transfor-
mation of K–K coefficients. The knowledge of dissipative energy flux, which is a function
of thermodynamic forces, allows for the determination of the energy conversions during
transport processes in a membrane system. In addition, a frictional interpretation of the
obtained coefficients is presented.

Keywords: membrane transport; Kedem–Katchalsky–Peusner equations; polymeric membrane;
Peusner transport coefficients; internal energy conversion; S-entropy

1. Introduction
Membrane transport as one of the basic nonequilibrium processes is observed in

various types of life-supporting biological and physicochemical systems and in applied
technological processes [1]. The typical examples of such processes are membrane dressings
to promote the healing of chronic wounds, the cellular and tissue systems of living organ-
isms, controlled drug release systems, and various systems with energy conversion [2–4].
In the aforementioned systems, polymeric membranes with a porous, capillary, or mosaic
structure and biocompatible composition, made of bacterial cellulose, polyvinyl chloride,
or cellulose acetate, mimicking to some extent the biological membrane, provide a selective
barrier to ensure their desired functionality [5,6].

A convenient and widely used tool for the study of membrane transport processes
is the network thermodynamics (NT) in Oster, Perelson and Katchalsky version [7], and
in the Peusner version (Peusner NT) [8–10]. The latter uses Onsager’s nonequilibrium
thermodynamics and the symbolism and laws of analog electric circuit theory [11–13].
One of the significant scientific achievements of L. Peusner is the development of Kedem
and Caplan’s idea of the degree of coupling of thermodynamic processes by introducing
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phenomenological coefficients, symmetric (L and R) and hybrid (H and P), to evaluate the
efficiency of energy conversion [9,10].

In recent years, the importance of a formalism that combines the Kedem–Katchalsky
equations with the research tools of Peusner’s network thermodynamics has been grow-
ing [9,10,14]. The starting point for these considerations is the energy dissipation function,
which is the product of entropy production and absolute temperature and is a measure
of the dissipation of energy in the system. In turn, as a measure of the irreversibility
of the transport processes of mass and charge, entropy production can be used. Energy
dissipation is also treated as a basis for the derivation of the Kedem–Katchalsky equations
of membrane transport and the equations for the conversion of internal energy [12–16].

According to Peusner’s idea, transducers for binary solutions are marked as L, R, H,
and P [9,10]. Their main components are two controllable sources (of thermodynamic force
or flow) and two dissipative elements (conductance or resistance). In this paper, we will
only consider the H version of Peusner’s equations. The model schemes for the H version
of Peusner network thermodynamics are shown in Figure 1.
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Figure 1. Two-port H diagrams of Equations (1) (a) and (2) (b), in which forces (𝑋ଵ, 𝑋ଶ) controlling 
flows (𝐽ଵ, 𝐽ଶ) are arranged in parallel with conductivities (𝐻ଵଵ, 𝐻ଶଶ) [9,10]. 

Previous works have presented procedures for analyzing the membrane transport of 
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Katchalsky–Peusner equations [19–21]. The procedure for converting chemical energy to 
free energy has also been presented. The beginning of this procedure was the calculation 
of energy dissipation by means of the L or R version of the K–K–P equations. Thermody-
namic forces (differences in osmotic pressure, electromotive force, etc.) and fluxes of so-
lute and ionic current were used in these procedures. 

The purpose of this work is to elaborate on a procedure for the hybrid conversion of 
K–K equations for binary electrolyte solutions to K–K–P equations using the formalism 
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an electric field superimposed on the membrane was developed using the H version of 
the K–K–P equations. The work is organized as follows. 
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brane and aqueous NaCl solutions. The values of the coupling parameter and energy con-
version efficiency coefficient (𝑒ு)௫ were used to evaluate the electrochemical energy 
conversion. The third section contains the results obtained from measurement and calcu-
lation and their discussion, while the fourth section includes the summary and conclu-
sions. 

2. Materials and Methods 
2.1. Membrane System 

A scheme of the system used to study the membrane transport is shown in Figure 2. 
The system consisted of two chambers (l, h) made of Plexiglas separated by a membrane 
(M), placed in a vertical plane. One of the chambers was connected to a calibrated pipette 
and the other to a solution reservoir. At baseline, chamber l was filled with an aqueous 
NaCl solution with concentration 𝐶 = const., while chamber h was filled with concentra-
tion 𝐶 > 𝐶. The density of solutions with 𝐶 and 𝐶 concentrations fulfilled the con-
dition 𝜌  > 𝜌  = const. The solutions separated by the membrane were mechanically 

Figure 1. Two-port H diagrams of Equations (1) (a) and (2) (b), in which forces (X1, X2) controlling
flows (J1, J2) are arranged in parallel with conductivities (H11, H22) [9,10].

The H version of phenomenological equations for linear two-port can be presented as:

J1 = H11X1 + H12 J2 (1)

X2 = H21X1 + H22 J2 (2)

These equations are hybrid in the sense that they combine forces and fluxes, but lead
to a useful two-port representation. As in the case of the L and R versions, for the H version,
no rigorous fulfillment of reciprocity relations is assumed [13,17,18]. Equations (1) and (2)
give practical interpretations of the coefficients of Hij (i, j ∈ {1, 2}): H11 = (J1/X1)J2=0,
H12 = (J1/J2)X1=0, H21 = (X2/X1)J2=0, and H22 = (X2/J2)X1=0, for open (zero flow) and
short-circuit (zero force) conditions. The coefficients in the hybrid notation combine directly
coupled thermodynamic forces and fluxes (H11 and H22) and determine the relationship
between fluxes (H12) and forces (H21) in the processes of the membrane system. In this
approach to non-equilibrium thermodynamics, it is possible, through coefficients, not
only to express the cross-relations between thermodynamic forces and fluxes, but also to
determine direct connections between the observed fluxes.

The H-circuit schemes shown in Figure 1a,b represent a two-port flow with hybrid
element H11 connected in parallel to source J1 = H12 J2 (a) and with hybrid element H22

connected in series to source J2 = H21 J1 (b). The total flow in case (a) is represented by
Equation (1) and in case (b) by Equation (2). In the hybrid representation, X1 and J2 are the
independent variables. The symmetrical coefficients in the hybrid approach (H11 and H22)
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express the respective electrical (or “diffusion”) conductivities in the hybrid system, while
the asymmetric dimensionless coefficients express the relations between voltage sources
(thermodynamic forces) or current densities (thermodynamic fluxes), respectively.

Previous works have presented procedures for analyzing the membrane transport
of binary homogeneous electrolyte solutions using the L and R versions of the Kedem–
Katchalsky–Peusner equations [19–21]. The procedure for converting chemical energy to
free energy has also been presented. The beginning of this procedure was the calculation of
energy dissipation by means of the L or R version of the K–K–P equations. Thermodynamic
forces (differences in osmotic pressure, electromotive force, etc.) and fluxes of solute and
ionic current were used in these procedures.

The purpose of this work is to elaborate on a procedure for the hybrid conversion of
K–K equations for binary electrolyte solutions to K–K–P equations using the formalism
developed on the basis of PNT. The transformation of internal to free energy conversion in
a membrane system containing aqueous electrolyte solutions with a concentration and an
electric field superimposed on the membrane was developed using the H version of the
K–K–P equations. The work is organized as follows.

The paper begins with an introduction, and the Section 2 presents the procedure
for deriving the H versions of the K–K–P equations describing the transport of homo-
geneous electrolyte solutions through the membrane. In addition, the Section 2 also
contains a derivation of the coupling coefficients hij and QH and the energy conversion
efficiency coefficient (eH)max. The equations for the energy dissipation function (ΦS)H
are also provided in this section. The obtained equations were used for the calculations:
(ΦS)H = f (∆πs/Cs, I), (ΦF)H = f (∆πs/Cs, I), and (ΦU)H = f (∆πs/Cs, I) based on the char-
acteristics Hij = f (∆πs/Cs, I) and Hij = f (∆πs/Cs, I), for Ultra Flo 145 Dialyzer membrane
and aqueous NaCl solutions. The values of the coupling parameter and energy conversion
efficiency coefficient (eH)max were used to evaluate the electrochemical energy conversion.
The Section 3 contains the results obtained from measurement and calculation and their
discussion, while the Section 4 includes the summary and conclusions.

2. Materials and Methods
2.1. Membrane System

A scheme of the system used to study the membrane transport is shown in Figure 2.
The system consisted of two chambers (l, h) made of Plexiglas separated by a membrane
(M), placed in a vertical plane. One of the chambers was connected to a calibrated pipette
and the other to a solution reservoir. At baseline, chamber l was filled with an aqueous NaCl
solution with concentration Cl = const., while chamber h was filled with concentration
Ch > Cl . The density of solutions with Ch and Cl concentrations fulfilled the condition
ρh > ρl = const. The solutions separated by the membrane were mechanically stirred
with frequency 500 rpm. Ag/AgCl electrodes in the form of a flat disk were placed in
each chamber.

The electrodes had equal thickness and equal surface area. As is well known, there
are two driving forces in such a system: the osmotic pressure difference (∆πs), generating
the solute flux (Js), and the electromotive force (E), generating the electric ionic current (I).
The voltage was applied to the electrodes using a suitable DC power supply.

The experiments were conducted in a chamber with a stabilized temperature
(T = 295 K); the metal chamber was also insulated and grounded to ensure the elimination
of electrical interference from external sources. The membrane used for the experiments
was an Ultra Flo 145 Dialyzer regenerated cellulose membrane (Artificial Organs Division,
Travenol Laboratories S.A., Brussels, Belgium) cut in the form of a disk from a hemodialysis
hose, which was a part of the “coiled artificial kidney” used in medicine in the second half
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of the 20th century [22]. The scan image of the Ultra Flo 145 dialyzer membrane presented
in a previous paper [21] shows the membrane as a compact structure with visible cellulose
fiber residues. According to Kedem–Katchalsky formalism, the transport parameters of
a membrane are determined by six coefficients: diffusion permeability (ωs), transference
number (τs), and conductance (κ).
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2.2. H Version of the Kedem–Katchalsky–Peusner Equations

The H versions of the Kedem–Katchalsky–Peusner equations for homogeneous
electrolyte solutions are obtained by an appropriate transformation of the classical
Kedem–Katchalsky equations for homogeneous electrolyte solutions with the assumption
Jv = 0 [10,14]:

Js = ωs∆πs +
τs

zsF
I (3)

I =
κτs

zsF
∆πs

Cs
+ κE (4)

where ωs—coefficient of diffusion permeability, Js—solute flux, I—electric ionic current,
∆πs = RT∆C—osmotic pressure difference, RT—the product of the gas constant and the
absolute temperature, ∆C = Ch − Cl (Ch > Cl)—difference of concentrations on the mem-
brane, Cs = (Ch − Cl)(lnChCl

−1)−1 = ∆πs(RTlnChCl
−1)−1 ≈ 0.5(Ch +Cl)—average solute

concentration in the membrane, ∆πs
Cs

= ln(ChCl
−1), E—is the potential difference (volt-

age) across membrane, τs—transference number, F—Faraday constant, κ—conductance
coefficient, and zs—valence of s-ion.

The phenomenological coefficients appearing in Equations (3) and (4) are defined by
the following expressions [9]:

ωs =

(
Js

∆πs

)
I=0

(5)

κ =

(
I
E

)
∆πs=0

(6)

τs =
zsF
Cs

(
Js

I

)
∆πs=0

(7)

Using the procedure proposed by Kedem and Katchalsky, the coefficients ωs, κ, and τs

can be expressed by the membrane friction coefficients [14]:

ωs =
K ϑ

∆x( fsw + fsm)
=

Cs φw
2ϑ

C∆x f 0w
s

(8)
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κ =
F2X ϑ

f1w∆x
=

ϑXF2

f 0w
1 ∆x

(9)

τ2 =

(
Cs φw

X

)2 f1w
f2w

(10)

where K—distribution coefficient for salt between aqueous solution and membrane,
∆x—thickness of the membrane, fiw—friction coefficient between i-th ion and water
molecules, fim—friction coefficient between i-th ion and membrane, X—fixed charges con-
centration in the membrane matrix, (indexes: 1—for counterion, 2—for coion), φw—volume
of water in membrane, ϑ—winding coefficient of channels in membrane, Cs—average
solute concentration in the membrane, f 0

iw—friction coefficient in free solution, and i = 1, 2.
Equations (8)–(10) represent a frictional interpretation of the coefficients ωs, κ, and

τs. Equations (8) and (9) show that the values of the coefficients ωs and κ decrease as the
thickness of the membrane and the friction of the solute with water and membrane increase.
In turn, an increase in the value of the K coefficient leads to an increase in the ωs coefficient.
The coefficient ϑ should be taken into account when the lengths of the channels inside
the membrane are longer than the macroscopic thickness of the membrane ∆x. The actual
dimension of the membrane channels is given by the ratio ∆x/ϑ, in which ϑ < 1. The value
of the τs coefficient increases with the square of Cs φw and decreases with the square of X.
Moreover, the value of the τs coefficient is directly proportional to f1w/ f2w.

Transforming Equations (3) and (4) with Peusner’s network thermodynamics method,
we get the H version of Equations (3) and (4):

Js = H11
∆πs

Cs
+ H12 I (11)

E = H21
∆πs

Cs
+ H22 I (12)

where:

H11 =

(
Js

∆πs/Cs

)
I=0

= Csωs (13)

H12 =

(
Js

I

)
∆πs/Cs=0

=
τs

F
(14)

H21 =

(
E

∆πs/Cs

)
I=0

= −τs

F
(15)

H22 =

(
E
I

)
∆πs/Cs=0

=
1
κ

(16)

Equations (11) and (12) can also be written in a matrix form:[
Js

E

]
=

[
H11 H12

H21 H22

][
∆π
Cs

I

]
= [H]

[
∆π
Cs

I

]
(17)

where [H] is the hybrid matrix of Peusner coefficients Hij (i, j ∈ {1, 2}) for binary homo-
geneous electrolyte solutions. Equations (11)–(17) are among the H forms of the Kedem–
Katchalsky equations.

Comparing the Equations (14) and (15), we can state that, for nondiagonal coefficients,
the condition H12 = −H21 is fulfilled. For Js and E coupled to force ∆πs/Cs and flux I, the
relations H11H22 ≥ H12

2 and H11H22 ≥ H21
2 are valid. Furthermore, flux Js can only be

coupled to the current density I if H12 ̸= 0. In turn, flux I can only be coupled to the force
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∆πs/Cs if H21 ̸= 0. Cross coefficients Hij(i ̸=j) (i, j ∈ {1, 2}) describe the relationship between
different irreversible processes.

h12 =
H12√

H11H22
=

τs

F

(
κ

Csωs

) 1
2
= −h21 (18)

The expression formed from the coefficients Hij determines the degree of coupling
between the observed processes (Kedem and Caplan coefficient) [9,10]. This means that the
coefficient h12 is a measure of the degree of coupling. If h12 = 0, the irreversible processes
are independent, while when h12 = ±1, the irreversible processes are maximally coupled.

Using Peusner’s definition [9,10], the energy coupling parameter Q can be written as:

QH =
2|H12H21|

4H11H22 − 2H12H21
=

|h12h21|
2 − h12h21

= Qh =
κτs

2

2CsωsF2 + κτs2 (19)

QH can be used to analyze the efficiency of the biological and physico-chemical
processes of energy conversion.

The next parameter determines the energy conversion efficiency (eH)max and fulfills
the condition 0 ≤ (eH)max ≤ 1. This coefficient is determined by the equation:

(eH)max =
|H12H21|

H11H22

(
1 +

√
1 − H12 H21

H11 H22

)2 =
2QH

(1 + QH)
(

1 +
√

1 − 2QH
1+QH

)2 =
h12h21(

1 +
√

1 − h12h21
)2 = (eh)max (20)

(eH)max =
τs

2κ

2F2Csωs − τs2κ + 2
√

F2Csωs − τs2κ
(21)

Equations (20) and (21) describe the relationship between the degree of coupling and
the efficiency of energy conversion. It is worth mentioning that full coupling (h12 = 1) occurs
at (eH)max = 1. This means that the stationary states of membrane transport characterized
by minimum entropy production are identical to the state with maximum efficiency.

2.3. Mathematical Model of Energy Conversion in the Membrane System

The dissipation function ΦS is defined as product of absolute temperature (T) and
entropy production (diS/dt) and can be used as the measure of S-energy dissipation. The
mathematical equations for S-energy dissipation in a system with membrane separating
homogeneous electrolytic solutions with different concentrations can be derived using the
previously elaborated procedures [21].

The equation for the H version of the dissipation function for the membrane transport
of electrolytic solutions in condition Jv = 0 can be written as:

(ΦS)H = (ΦS)Js
+ (ΦS)I = Js

∆πs

Cs
+ IE (22)

We will now calculate the (ΦS)H of Equation (23) using the H versions of the Kedem–
Katchalsky–Peusner equations. Taking into account Equations (11) and (12), in Equation (22),
we obtain:

(ΦS)H = H11

(
∆πs

Cs

)2
+ (H12 + H21)I

∆πs

Cs
+ H22 I2 (23)

Because H12 = −H21, Equation (23) can be written as:

(ΦS)H = H11

(
∆πs

Cs

)2
+ H22 I2 = Csωs

(
∆πs

Cs

)2
+

1
κ

I2 (24)
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The internal energy (U-energy) of membrane systems can be converted into free energy
(F-energy) and dissipated energy (S-energy) [8]. The fluxes of these energies satisfy the
following condition:

(ΦU)H = (ΦF)H + (ΦS)H (25)

where (ΦU)H = A−1dU/dt is the flux of U-energy, (ΦF)H = A−1dF/dt is the flux of
F-energy, (ΦS)H = TA−1 diS/dt is the flux of dissipated energy (S-energy), diS/dt is
the rate of entropy creation in the membrane system by irreversible processes (flux of
cumulative entropy production), T is the absolute temperature, and A is the membrane
surface area. Equations (23) and (24) show the H version of the S-energy dissipation.
The (ΦS)H is the flux of dissipated energy, i.e., the time change of energy per unit area
of the membrane expressed in W/m2. We can calculate the (ΦF)H and (ΦU)H for the
homogeneous conditions using the following equation [8]:

(eH)max =
(ΦF)H
(ΦU)H

=
(ΦF)H

(ΦF)H + (ΦS)H
(26)

Transforming Equation (26), we get:

(ΦF)H =
(eH)max

1 − (eH)max
(ΦS)H (27)

(ΦU)H =
1

1 − (eH)max
(ΦS)H (28)

where (eH)max is the energy conversion efficiency defined by means of Kedem–Caplan–
Peusner coefficients.

In order for the denominator of Equations (27) and (28) to be different from zero, the
condition (eH)max ̸= 1 must be fulfilled. The internal energy (U-energy) of membrane
systems can be converted into free energy (F-energy) and dissipated energy (S-energy) [8].

The (eH)max coefficient is limited by the relation 0 ≤ (eH)max ≤ 1; (eH)max = 0 when
H12H21 = 0 or h12h21 = 0, and (eH)max = 1 when H12H21 = H11H22 and h12h21 = 1. Taking
into account Equation (20), in Equation (27), we get:

(ΦF)H =
H12H21

H22

(
1 +

√
1 − H12 H21

H11 H22

)2
− H12H21

(ΦS)H (29)

Taking into consideration Equation (20), in Equation (28), we get:

(ΦU)H =
H11H22H2

H11H22H2 − H12H21
(ΦS)H (30)

where:

H = 1 +

√
1 − H12H21

H11H22
(31)

Based on Equations (18)–(28), we can calculate the total internal U-energy and available
F-energy, which is useful.

2.4. Evaluation of the Transport Properties of the Ultra-Flo 145 Dialyser Membranę

The transport coefficient ωs of the Ultra Flo 145 Dialyser membrane appearing in
Equation (3) in the studied range of NaCl concentrations is constant and is equal to
ωs = 5.5 × 10−10 mol/Ns. In turn, the values of transport coefficients κ and τs in the
studied range of NaCl concentrations are concentration dependent. The dependencies
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κ = f
(
∆πs/Cs, I = 1.5 A/m2) and τs = f

(
∆πs/Cs, I = 1.5 A/m2) are presented in

Figure 3a,b, while Figure 3c,d show dependencies κ = f (I, ∆πs/Cs = 6.63 kJ/mol) and
τs = f (I, ∆πs/Cs = 6.63 kJ/mol).
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and aqueous NaCl solutions.

The electrical conductivity coefficient for the membrane (κ) is a parameter that is
assumed to be constant in models for simple cases of membrane systems in which there are
small thermodynamic forces. The use of larger thermodynamic forces, especially in systems
with complex membrane structures, causes the approximation of constant coefficients to
no longer be fulfilled. For this reason, models with descriptions that take into account
the variability of coefficients are beginning to play an increasingly important role in the
thermodynamics of non-equilibrium processes. As can be seen in Figure 3a,c, the electrical
conductivity coefficient of the Ultra Flo 145 membrane depends on both ∆πs/Cs and I. With
the increase of both ∆πs/Cs and I, the membrane conductivity for ions increases, while
for lower values of control parameters (∆πs/Cs < 6 kJ/mol or I < 1.8 A/m2), the changes
are small. Above these values, the rates of change of membrane electrical conductivity
are significantly higher. At high values of control parameters (for ∆πs/Cs > 8 kJ/mol or
I > 2.3 A/m2), the rate of increase of the electrical conductivity value of the membrane
is slower and decreases with the increase of the control parameter. These effects may be
related to the interactions of ions with the membrane, with other ions and changes in the
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hydration shells of ions during their transport through the membrane. The visible increase
in the rate of change of conductivity above a some value of the control parameter may be
the result of a suitable increase in the concentration of transported ions in the membrane,
which probably causes a facilitated flow of ions through the membrane, probably related to
the effect of “screening” the interaction of ions with the membrane by other ions. When
the next large threshold values of control parameters are exceeded, this effect weakens,
which results in a decrease in the rate of electrical conductivity with an increase in the
control parameter.

In turn, the ion transference number, whose dependence on the control parameters is
presented in Figure 3b,d, may depend, similarly to electrical conductivity, on the density
of the transferred ions in the membrane. In both cases, the ion transfer number increases
with increasing control parameters, and the rate of the increase of this coefficient is increas-
ingly slower. Probably, above sufficiently large values of the control parameters (e.g., for
πs/Cs > 7.5 kJ/mol or I > 1.3 A/m2), a “saturation” effect can be observed, i.e., the ion
transfer number becomes established for sufficiently large values of the control parameters.

These dependencies show that a nonlinear model connected with Equations (8) and (9)
should be used for an accurate description of membrane processes, in our case, taken into
account through the dependence of the transport coefficients of models κ and τs on the
control parameters.

The κ and τs coefficients that determine the electrical transport properties of the
membrane play an important role in ion transport through both artificial and biological
membranes. As is shown in Figure 3, in the range of lower values of both control parameters
(up to about 1 A/m2 or up to about 6 kJ/mol), the value of the coefficient τs of the Ultra
Flo 145 Dialyser membrane changes only slightly, which, with some approximation, can be
considered consistent with Kedem–Katchalsky–Peusner formalism for the area of linear
dependence between control parameters.

However, for high values of ∆π/Cs and I, an observed decrease in the rate of change
in ionic conductivity with an increase of one of the control parameters may indicate
the observed tendency for the appearance of a “saturation effect” related to the limited
capacity of the membrane to transport ions at high values of thermodynamic forces (this is
particularly evident for electrical conditions). The shape of the curves for κ and τs, which
are easily measurable parameters characterizing the electrical properties of the membrane,
are the starting point for obtaining further parameters in the presented model and provide
more information about the phenomenon of electrolyte transport through the membrane.

3. Results and Discussion
3.1. The Characteristics Hij = f (∆πs/Cs,I)(i, j∈{1, 2})

Calculations of the coefficients Hij = f
(
∆πs/Cs, I = 1.5 A/m2) (i, j ∈ {1, 2}) were

performed for the following data: R = 8.31 J/mol K, T = 295 K, F = 9.65 × 104 C/mol,
Cl = 1 mol/m3, Ch ∈ {1 ÷ 20 mol/m3} and ∆πs/Cs ∈ {0 ÷ 8.34 kJ/mol}, and zs = 1. To calcu-
late the dependencies Hij = f

(
∆πs/Cs, I = 1.5 A/m2), Hij = f (I, ∆π/Cs = 6.63 kJ/mol),

and (i, j ∈ {1, 2}), Equations (13)–(16) and (18) were used. The results of the calculations are
presented in Figures 4a–d and 5a,b.



Membranes 2025, 15, 36 10 of 17

Membranes 2025, 15, 36 10 of 17 
 

 

3. Results and Discussion 
3.1. The Characteristics 𝐻 = 𝑓(∆𝜋௦/𝐶௦, 𝐼) (𝑖, 𝑗 ∈ {1, 2}) 

Calculations of the coefficients 𝐻 = 𝑓(∆𝜋௦/𝐶௦, 𝐼 = 1.5 A/mଶ) (𝑖, 𝑗 ∈ {1, 2}) were per-
formed for the following data: 𝑅 = 8.31 J/mol K, 𝑇 = 295 K, 𝐹 = 9.65 × 104 C/mol, 𝐶 = 1 
mol/m3, 𝐶 ∈ {1 ÷ 20 mol/m3} and ∆𝜋௦/𝐶௦ ∈ {0 ÷ 8.34 kJ/mol}, and 𝑧௦ = 1. To calculate the 
dependencies 𝐻 = 𝑓(∆𝜋௦/𝐶௦, 𝐼 = 1.5 A/mଶ) , 𝐻 = 𝑓(𝐼, ∆𝜋/𝐶𝑠 = 6.63 kJ/mol ) , and (𝑖, 𝑗  ∈ 
{1, 2}), Equations (13)–(16) and (18) were used. The results of the calculations are presented 
in Figures 4a–d and 5a,b. 

  
(a) (b) 

  
(c) (d) 

Figure 4. Graphic illustration of dependencies: (a) 𝐻ଵଵ = 𝑓(∆𝜋/𝐶௦)ூୀଵ.ହ /మ , (b) 𝐻ଵଵ =𝑓(𝐼)∆గ/ೞୀ.ଷ ୩/୫୭୪  , (c) 𝐻ଵଶ = −𝐻ଶଵ = 𝑓(∆𝜋௦/𝐶௦)ூୀଵ.ହ /మ , and (d) 𝐻ଵଶ = −𝐻ଶଵ =𝑓(𝐼)∆గ/ೞୀ.ଷ ୩/୫୭୪  for aqueous NaCl solutions. 

It can be seen in Figure 4a–d that the graphs illustrating the dependencies 𝐻ଵଵ =𝑓(∆𝜋௦/𝐶௦, 𝐼 = 1.5 A/mଶ)  and 𝐻ଵଵ = 𝑓(𝐼, ∆𝜋/𝐶𝑠 = 6.63 kJ/mol )  are nonlinearly increasing 
functions of ∆𝜋௦/𝐶௦ or 𝐼. Equation (13) shows that at a fixed value of 𝜔௦, the value of 𝐻ଵଵ 
is a linear function of 𝐶௦. While the graph shown in Figure 4b approximately fulfills this 
criterion, the graph shown in Figure 4a shows significant deviations from linearity. These 
deviations can be explained using the equation for 𝐻ଵଵ, which can be obtained by includ-
ing Equations (8)–(10) in Equation (13). After this operation, Equation (13) takes the form: 𝐻ଵଵ = 𝐶௦ଶ𝜑௪ଶ𝜗𝐶∆𝑥𝑓௦௪  (32)

Figure 4. Graphic illustration of dependencies: (a) H11 = f (∆π/Cs)I=1.5 A/m2 , (b) H11 =

f (I)∆π/Cs=6.63 kJ/mol , (c) H12 = −H21 = f (∆πs/Cs)I=1.5 A/m2 , and (d) H12 = −H21 =

f (I)∆π/Cs=6.63 kJ/mol for aqueous NaCl solutions.

Membranes 2025, 15, 36 11 of 17 
 

 

This equation shows that at a fixed value of 𝜗 and ∆𝑥, the value of 𝐻ଵଵ is directly 
pro-portional to 𝐶௦ଶ𝜑௪ଶ and inversely proportional to 𝑓௦௪ . The curve shown in Figure 4a 
shows that the shape of this curve is determined by the 𝐶௦ଶ𝜑௪ଶ factor. The curves illus-
trating the dependences 𝐻ଵଶ = 𝑓(∆𝜋௦/𝐶௦, 𝐼 = 1.5 A/mଶ)  and 𝐻ଵଶ = 𝑓(𝐼, ∆𝜋/𝐶𝑠 = 6.63 kJ/mol ) show that the values of 𝐻ଵଶ coefficients increase nonlinearly with increasing values 
of ∆𝜋௦/𝐶௦ or 𝐼. In contrast, the curves illustrating the dependencies 𝐻ଶଵ = 𝑓(∆𝜋௦/𝐶௦, 𝐼 =1.5 A/mଶ)  and 𝐻ଶଵ = 𝑓(𝐼, ∆𝜋/𝐶𝑠 = 6.63 kJ/mol )  show that the value of 𝐻ଶଵ  coefficient 
decreases nonlinearly with increasing values of ∆𝜋௦/𝐶௦ or 𝐼. Equation (14) shows that the 
value of 𝐻ଵଶ is directly proportional to the 𝜏௦ coefficient, which is described by Equation 
(10). From this equation, it follows that the nature of the dependencies for 𝐻ଵଶ and 𝐻ଶଵ 
as functions of ∆𝜋௦/𝐶௦ or 𝐼 are determined by the curves for 𝜏௦. 

Including Equation (10) in Equations (14) and (15), we get the following: 𝐻ଵଶ = 1𝐹 𝑓ଵ௪𝑓ଶ௪ ൬𝐶௦𝜑௪𝑋 ൰ଶ = −𝐻ଶଵ (33)

The dependencies 𝐻ଶଶ = 𝑓(∆𝜋௦/𝐶௦, 𝐼 = 1.5 A/mଶ)  and 𝐻ଶଶ = 𝑓(𝐼, ∆𝜋/𝐶𝑠 = 6.63 kJ/mol ) are shown in Figure 5a,b, suitable for aqueous NaCl solutions. 

  
(a) (b) 

Figure 5. Graphic illustration of dependencies 𝐻ଶଶ = 𝑓(∆𝜋/𝐶௦)ூୀଵ.ହ /୫మ  (a) and 𝐻ଶଶ =𝑓(𝐼)∆గ/ೞୀ.ଷ ୩/୫୭୪  (b) for aqueous NaCl solutions. 

The curves shown in Figure 5a,b show that the value of the 𝐻ଶଶ coefficient decreases 
nonlinearly with increasing values of ∆𝜋௦/𝐶௦ or 𝐼. Equation (14) shows that the value of 𝐻ଶଶ is inversely proportional to coefficient 𝜅. This means that a hyperbola would be ex-
pected as a solution. Although the curves shown in Figure 5a,b demonstrate a decreasing 
trend, they are also characterized by significant deviations from the hyperbolic course. An 
explanation for this shape of the curves in these figures can be made using the equation 
obtained from Equations (9) and (16). This equation takes the form: 𝐻ଶଶ = 𝑓௦௪𝜗 𝑋 𝐹ଶ (34)

From this equation, it follows that at a fixed value of 𝜗 and ∆𝑥, the value of 𝐻ଶଶ is 
directly proportional to 𝑓௦௪  and inversely proportional to ion concentration in the mem-
brane matrix (𝑋). If 𝑋 grows faster than 𝑓௦௪ , we get a hyperbola. Deviations from hyper-
bola are perhaps caused by the accumulation and/or depletion of ions in some sectors of 
the membrane structure. 
  

Figure 5. Graphic illustration of dependencies H22 = f (∆π/Cs)I=1.5 A/m2 (a) and H22 =
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It can be seen in Figure 4a–d that the graphs illustrating the dependencies
H11 = f

(
∆πs/Cs, I = 1.5 A/m2) and H11 = f (I, ∆π/Cs = 6.63 kJ/mol) are nonlinearly

increasing functions of ∆πs/Cs or I. Equation (13) shows that at a fixed value of ωs, the
value of H11 is a linear function of Cs. While the graph shown in Figure 4b approximately
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fulfills this criterion, the graph shown in Figure 4a shows significant deviations from linear-
ity. These deviations can be explained using the equation for H11, which can be obtained
by including Equations (8)–(10) in Equation (13). After this operation, Equation (13) takes
the form:

H11 =
Cs

2 φw
2ϑ

C∆x f 0
sw

(32)

This equation shows that at a fixed value of ϑ and ∆x, the value of H11 is di-
rectly pro-portional to Cs

2 φw
2 and inversely proportional to f 0

sw. The curve shown
in Figure 4a shows that the shape of this curve is determined by the Cs

2 φw
2 fac-

tor. The curves illustrating the dependences H12 = f
(
∆πs/Cs, I = 1.5 A/m2) and

H12 = f (I, ∆π/Cs = 6.63 kJ/mol) show that the values of H12 coefficients increase non-
linearly with increasing values of ∆πs/Cs or I. In contrast, the curves illustrating the
dependencies H21 = f

(
∆πs/Cs, I = 1.5 A/m2) and H21 = f (I, ∆π/Cs = 6.63 kJ/mol)

show that the value of H21 coefficient decreases nonlinearly with increasing values of
∆πs/Cs or I. Equation (14) shows that the value of H12 is directly proportional to the τs

coefficient, which is described by Equation (10). From this equation, it follows that the
nature of the dependencies for H12 and H21 as functions of ∆πs/Cs or I are determined by
the curves for τs.

Including Equation (10) in Equations (14) and (15), we get the following:

H12 =
1
F

f1w
f2w

(
Cs φw

X

)2
= −H21 (33)

The dependencies H22 = f
(
∆πs/Cs, I = 1.5 A/m2) and H22 = f(I, ∆π/Cs = 6.63 kJ/mol)

are shown in Figure 5a,b, suitable for aqueous NaCl solutions.
The curves shown in Figure 5a,b show that the value of the H22 coefficient decreases

nonlinearly with increasing values of ∆πs/Cs or I. Equation (14) shows that the value
of H22 is inversely proportional to coefficient κ. This means that a hyperbola would be
expected as a solution. Although the curves shown in Figure 5a,b demonstrate a decreasing
trend, they are also characterized by significant deviations from the hyperbolic course. An
explanation for this shape of the curves in these figures can be made using the equation
obtained from Equations (9) and (16). This equation takes the form:

H22 =
f 0
sw

ϑ X F2 (34)

From this equation, it follows that at a fixed value of ϑ and ∆x, the value of H22 is di-
rectly proportional to f 0

sw and inversely proportional to ion concentration in the membrane
matrix (X). If X grows faster than f 0

sw, we get a hyperbola. Deviations from hyperbola
are perhaps caused by the accumulation and/or depletion of ions in some sectors of the
membrane structure.

3.2. Characteristics hij = f (∆πs/Cs, I), (i, j∈{1, 2, 3}) and QH = f (∆πs/Cs, I)

Taking into account the dependencies Hij = f
(
∆πs/Cs, I = 1.5 A/m2) and

Hij = f (I, ∆πs/Cs = 6.63 kJ/mol), (i, j ∈ {1, 2}) shown in Figure 6a–d, in Equation (20),
the dependencies h12 = f

(
∆πs/Cs, I = 1.5 A/m2) and h12 = f (I, ∆πs/Cs = 6.63 kJ/mol)

were calculated. The curves presented in Figure 6a,b show that the characteristics
h12 = f

(
∆πs/Cs, I = 1.5 A/m2) and h12 = f (I, ∆πs/Cs = 6.63 kJ/mol) are nonlinear

and h12 = −h21.
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Considering Equations (8)–(10), in Equation (18), we obtain the “frictional” version of
this equation:

h12 =
τs

F

(
κ

Csωs

) 1
2
=

f1wCs φw

f2wC
= −h21 (35)

Considering the h12 = f
(
∆πs/Cs, I = 1.5 A/m2) and h12 = f (I, ∆πs/Cs =

6.63 kJ/mol) dependencies shown in Figure 6c,d and Equation (20), the dependen-
cies QH = f

(
∆πs/Cs, I = 1.5 A/m2) and QH = f (I, ∆πs/Cs = 6.63 kJ/mol) were

calculated. The curves presented in Figure 6c,d show that the characteristics QH =

f
(
∆πs/Cs, I = 1.5 A/m2) and QH = f (I, ∆πs/Cs = 6.63 kJ/mol) are nonlinear, increasing

functions of ∆πs/Cs or I. Analysing the dependence of the energy coupling coefficient
of membrane processes (QH), it is possible to find narrow range of changes in the control
parameters (6 kJ/mol < ∆πs/Cs < 7 kJ/mol or 1.4 A/m2 < I < 1.8 A/m2), in which the rate
of change of QH is much greater than in the other ranges of change in control parameters.
This can be connected to the transition range of the control parameters, which separates
low values of the control parameters with stable ion transport processes at low ion densities
in the membrane from high values of the control parameters, for which high ion concen-
trations in the membrane contribute to the manifestation of the “saturation effect” in the
membrane transport processes.
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In Figure 6c,d, it can be seen that in the range of ∆π/Cs from 0 to 2.25 kJ/mol,
the tangent of the angle of inclination of this section of the curve is ∆QH/∆(πs/Cs) =
0.0014 mol/kJ, from 2.25 to 6.19 kJ/mol, ∆QH/∆(πs/Cs) = 0.0007 mol/kJ, from 6.19 to
7.02 kJ/mol ∆QH/∆(πs/Cs) = 0.009 mol/kJ, while from 7.24 to 8.34 kJ/mol = 0.001 mol/kJ.
In the range from 0 to 0.75 A/m2, the tangent of the angle of inclination of this section of
the curve is ∆QH/∆I = 0.005 m2/A from 0.75 to 1.5 A/m2, ∆QH/∆I = 0.003 m2/A, from
1.5 to 2 A/m2, ∆QH/∆I = 0.154 m2/A, while from 2 to 3.25 A/m2, ∆QH/∆I = 0.001 m2/A.
Considering Equations (8)–(10), in Equation (19), we get the “frictional” version of the
QH coefficient:

QH = Qh =
f 2
1w

f 2
1w + 2 f 2

2w
(36)

Considering the h12 = f
(
∆πs/Cs, I = 1.5 A/m2) and h12 = f (I, ∆πs/Cs = 6.63 kJ/mol)

dependencies shown in Figure 7a,b and Equation (21), the dependencies (eH)max =

f
(
∆πs/Cs, I = 1.5 A/m2) and (eH)max = f (I, ∆πs/Cs = 6.63 kJ/mol) were calculated.

These dependencies are presented in Figure 7a,b.
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In Figure 7a,b, it can be seen that in the studied ranges of ∆π/Cs and I, there is the
range of ∆π/Cs from 0 to 2.25 kJ/mol, where the tangent of the angle of inclination of
this section of the curve is ∆(eH)max/∆(πs/Cs) = 0.0007 mol/kJ, from 2.25 to 6.19 kJ/mol,
∆(eH)max/∆(πs/Cs) = 0.00035 mol/kJ, from 6.19 to 7.02 kJ/mol ∆(eH)max/∆(πs/Cs) =
0.0037 mol/kJ, while from 7.24 to 8.34 kJ/mol = 0.0027 mol/kJ. In the range of I from
0 to 0.75 A/m2, the tangent of the angle of inclination of this section of the curve is
∆(eH)max/∆(πs/Cs) = 0.0028 m2/A from 0.75 to 1.5 A/m2, ∆(eH)max/∆I = 0.0025 m2/A,
from 1.5 to 2 A/m2, ∆(eH)max/∆I = 0.0047 m2/A, while from 2 to 3.25 A/m2, ∆(eH)max/∆I
= 0.003 m2/A. These ranges of change in the maximal energy conversion efficiency co-
efficient ((eH)max) are similar to the ranges of change in the energy coupling coefficient
of membrane processes (QH). Considering Equation (20), in Equation (35), we get the
“frictional” version of the (eH)max coefficient:

(eH)max =
f 2
1w

√
f 2
1w + f 2

2w(
f 2
1w + f 2

2w
)
·
(

f2w +
√

f 2
1w + f 2

2w

) (37)
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Figures 3a,c, 6c,d and 7a,b show that the shape of the curves illustrating the de-
pendencies κ = f

(
∆πs/Cs, I = 1.5 A/m2) (Figure 3a), κ = f (I, ∆πs/Cs = 6.63 kJ/mol)

(Figure 3c), QH = f
(
∆πs/Cs, I = 1.5 A/m2) (Figure 6c), QH = f (I, ∆πs/Cs = 6.63 kJ/mol)

(Figure 6d), (eH)max = f
(
∆πs/Cs, I = 1.5 A/m2) (Figure 7a), and (eH)max = f (I, ∆πs/Cs =

6.63 kJ/mol) (Figure 7b) are similar. In turn, Figures 3b,d and 4c,d show that the shapes
of the curves illustrating the dependencies τs = f

(
∆πs/Cs, I = 1.5 A/m2) (Figure 3b),

τs = f (I, ∆πs/Cs = 6.63 kJ/mol (Figure 3d), H12 = f
(
∆πs/Cs, I = 1.5 A/m2) (Figure 4c),

and H12 = f (I, ∆π/Cs = 6.63 kJ/mol) are also similar.

3.3. The Characteristics [(ΦS)H ]I=const = f (∆πs/Cs) and [(ΦS)H ]∆πs/Cs=const = f (I)

Taking into account Hij = f (∆πs/Cs), (i, j ∈ {1, 2}), shown in Figures 4a–d and 5a,b,
in Equation (23), the dependencies (ΦS)H = f (∆πs/Cs, I = const.) and (ΦS)H =

f (I, ∆πs/Cs = const) were calculated. The results of calculations are presented in
Figure 8a,b. The graphs shown in these figures are nonlinear, increasing the functions
of control parameters ∆πs/Cs (Figure 8a) and I (Figure 8b). In Figure 8a,b, it can be seen
that (ΦS)H increases both with the increase of ∆πs/Cs at a fixed value of I and with the
increase of I at a fixed value of ∆πs/Cs. Taking into account Equations (13) and (16), in
Equation (24), we get the frictional version of Equation (24):
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The results of the calculations show that the value of the first component of Equation (38)
is always greater than the value of the second component of this equation.

The flux of dissipated energy in membrane processes, presented in Figure 8a,b, de-
pends on the control parameters and, as could be expected, is an increasing function of
these parameters. The dependence [(ΦS)H ]I=const = f (∆πs/Cs) is a nonlinear increasing
function, where for small values of ∆πs/Cs, lower than 6 kJ/mol, the rate of change of the
dissipated energy is smaller than in the range ∆πs/Cs > 6 kJ/mol. We observe that the
rate of increase of [(ΦS)H ]I=const increases with the increase of ∆πs/Cs. In turn, increas-
ing the current density to a value of about 1.2 A/m2 in the membrane system causes an
increase in the energy dissipated in membrane processes, after which, passing through
a local maximum, the amount of dissipated energy decreases slightly, and then, current
densities of greater than about 1.9 A/m2 increase again, with a similar rate of increase as
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low current density values. The relative changes in the flux of dissipated energy in the
observed ranges of control parameters are greater for the current density changes than for
the ∆πs/Cs changes.

3.4. Characteristics [(ΦF)H ]I=const = f (∆πs/Cs) and [(ΦF)H ]∆πs/Cs=const = f (I) and
[(ΦU)H ]I=const = f (∆πs/Cs) and [(ΦU)H ]∆πs/Cs=const = f (I)

Taking into account (eH)max = f (∆πs/Cs), shown in Figure 7a,b, in Equations (21)
and (27), and dependencies [(ΦS)H ]I=const = f (∆πs/Cs) and [(ΦS)H ]∆πs/Cs=const =

f (I), presented in Figure 8a,b, the dependencies [(ΦF)H ]I=const = f (∆πs/Cs) and
[(ΦF)H ]∆πs/Cs=const = f (I) were calculated. These dependencies are shown in Figure 9a,b.
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[(ΦF)H ]I=const

)
I=const = f (∆πs/Cs) (a) and

([(ΦF)H ])∆πs/Cs=const = f (I) (b) for aqueous NaCl solutions.

Comparing the data for [(ΦF)H]I=const. = f (∆πs/Cs) and [(ΦS)H]I=const. = f (∆πs/Cs),
shown in Figure 8a,b, and the data for [(ΦF)H]∆πs/Cs=const. = f (I) and [(ΦS)H]∆πs/Cs=const. =

f (I), shown in Figure 9a,b, it can be seen that [(ΦF)H]I=const. ≈ 0.01[(ΦS)H]I=const. and
[(ΦF)H]∆πs/Cs=const. ≈ 0.01[(ΦS)H]∆πs/Cs=const..

The flux of useful energy in comparison with the flux of dissipated energy in the same
conditions of measurement is much lower. This means that almost the entire flux of internal
energy of the system associated with membrane processes is converted into an energy flux
dissipated in the system. The useful energy flux also depends on both control parameters,
and these dependencies are increasing and non-linear functions. If the useful energy flux
increases evenly in almost the entire range of current densities (for I > 0.025 A/m2), then
for the dependence of the useful energy flux on ∆πs/Cs, relatively small changes in this
flux for small values of ∆πs/Cs < 6 kJ/mol are followed by a rapid increase in the useful
energy flux with the change of ∆πs/Cs.

4. Conclusions
All calculated coefficients of coupling between thermodynamic forces and fluxes in

the H version of PNT (Hij, i, j ∈ {1, 2}) depend nonlinearly on both control parameters
∆πs/Cs and I. The coefficients H11, H12, and H22 are positive over the entire range of the
used NaCl concentrations. A positive value of the Hij coefficient means that an increase in
the j-th stimulus causes an increase in the corresponding i-th flux. Nonlinear changes in the
coefficient Hij make the force–flux relationship more complex. The greater the slope of the
characteristics Hij = f (∆πs/Cs, I = const.), and Hij = f (I, ∆πs/Cs = const.) (i, j ∈ {1, 2}),
the greater the nonlinear effect between thermodynamic forces and fluxes.
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The nonlinearity of these characteristics is connected with the structure of the mem-
brane and its frictional interactions with the individual transported substances and, thus,
indirectly to the interaction between the transported substances in the membrane. The
coupling coefficients hij between the various processes in the membrane take values rang-
ing from zero (no coupling) to one (full coupling). As can be seen in the calculations, an
increase in I or ∆πs/Cs causes an increase in coupling between ion transport processes in
the Ultra Flo 145 Dialyser membrane. In addition, an increase in I or ∆πs/Cs causes an
increase in the coefficient of energy conversion efficiency (eH)max, as well as fluxes of free
energy and dissipated energy for the Ultra Flo 145 Dialyser membrane during ion transport
through the membrane.

The membrane transport of ions through the membrane Ultra Flo 145 dialyzer requires
an extension of the linear model, for example, by making the model’s transport coefficients
dependent on thermodynamic parameters.
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